Noninvasive Digital Detection of Fetal DNA in Plasma of 4-Week-Pregnant Women following In Vitro Fertilization and Embryo Transfer

The discovery of cell-free fetal DNA (cfDNA) circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD). However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecu...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 10; no. 5; p. e0126501
Main Authors: Karakas, Bedri, Qubbaj, Wafa, Al-Hassan, Saad, Coskun, Serdar
Format: Journal Article
Language:English
Published: United States Public Library of Science 13-05-2015
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The discovery of cell-free fetal DNA (cfDNA) circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD). However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecular techniques for its reliable use in NIPD. In this proof of principle study, we evaluated the earliest possible detection of cfDNA in the maternal plasma by a bead-based emulsion PCR technology known as BEAMing (beads, emulsion, amplification, magnetics). Blood samples were collected from in vitro fertilization (IVF) patients at 2 to 6 weeks following embryo transfer (i.e., 4 to 8 week pregnancies) and plasma DNA was extracted. The genomic regions of both X and Y chromosome-specific sequences (AMELX and AMELY) were concurrently amplified in two sequential PCRs; first by conventional PCR then by BEAMing. The positive beads either for AMELX or AMELY gene sequences were counted by a flow cytometer. Our results showed that the pregnancies yielding boys had significantly higher plasma AMELY gene fractions (0.512 ± 0.221) than the ones yielding girls (0.028 ± 0.003) or non-pregnant women (0.020 ± 0.005, P= 0.0059). Here, we clearly demonstrated that the BEAMing technique is capable of reliably detecting cfDNA in the blood circulation of 4-week-pregnant women, which is only two weeks after the embryo transfer. BEAMing technique can also be used to early detect fetal DNA alterations in other pregnancy-associated disorders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: BK SC. Performed the experiments: BK SC. Analyzed the data: BK SC. Contributed reagents/materials/analysis tools: BK SC WQ SAH. Wrote the paper: BK SC.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0126501