Eoxins Are Proinflammatory Arachidonic Acid Metabolites Produced via the 15-Lipoxygenase-1 Pathway in Human Eosinophils and Mast Cells

Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C₄...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 2; pp. 680 - 685
Main Authors: Feltenmark, Stina, Gautam, Narinder, Brunnström, Åsa, Griffiths, William, Backman, Linda, Edenius, Charlotte, Lindbom, Lennart, Björkholm, Magnus, Claesson, Hans-Erik
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 15-01-2008
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C₄ in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC₄. This metabolite could be metabolized to 14,15-LTD₄ and 14,15-LTE₄ in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C₄, -D₄, and -E₄ instead of 14,15-LTC₄, -D₄, and -E₄, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC₄. Incubation of eosinophils with arachidonic acid favored the production of EXC₄, whereas challenge with calcium ionophore led to exclusive formation of LTC₄. Eosinophils produced EXC₄ after challenge with the proinflammatory agents LTC₄, prostaglandin D₂, and IL-5, demonstrating that EXC₄ can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC₄ and LTD₄. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps.
AbstractList Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C₄ in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC₄. This metabolite could be metabolized to 14,15-LTD₄ and 14,15-LTE₄ in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C₄, -D₄, and -E₄ instead of 14,15-LTC₄, -D₄, and -E₄, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC₄. Incubation of eosinophils with arachidonic acid favored the production of EXC₄, whereas challenge with calcium ionophore led to exclusive formation of LTC₄. Eosinophils produced EXC₄ after challenge with the proinflammatory agents LTC₄, prostaglandin D₂, and IL-5, demonstrating that EXC₄ can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC₄ and LTD₄. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps.
Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC4. This metabolite could be metabolized to 14,15-LTD4 and 14,15-LTE4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C4, -D4, and -E4 instead of 14,15-LTC4, -D4, and -E4, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC4. Incubation of eosinophils with arachidonic acid favored the production of EXC4, whereas challenge with calcium ionophore led to exclusive formation of LTC4. Eosinophils produced EXC4 after challenge with the proinflammatory agents LTC4, prostaglandin D2, and IL-5, demonstrating that EXC4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC4 and LTD4. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps.
Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C 4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC 4 . This metabolite could be metabolized to 14,15-LTD 4 and 14,15-LTE 4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C 4 , -D 4 , and -E 4 instead of 14,15-LTC 4 , -D 4 , and -E 4 , respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC 4 . Incubation of eosinophils with arachidonic acid favored the production of EXC 4 , whereas challenge with calcium ionophore led to exclusive formation of LTC 4 . Eosinophils produced EXC 4 after challenge with the proinflammatory agents LTC 4 , prostaglandin D 2 , and IL-5, demonstrating that EXC 4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro , indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC 4 and LTD 4 . Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. 15-LO 14,15-leukotriene
Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C 4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC 4 . This metabolite could be metabolized to 14,15-LTD 4 and 14,15-LTE 4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C 4 , -D 4 , and -E 4 instead of 14,15-LTC 4 , -D 4 , and -E 4 , respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC 4 . Incubation of eosinophils with arachidonic acid favored the production of EXC 4 , whereas challenge with calcium ionophore led to exclusive formation of LTC 4 . Eosinophils produced EXC 4 after challenge with the proinflammatory agents LTC 4 , prostaglandin D 2 , and IL-5, demonstrating that EXC 4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro , indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC 4 and LTD 4 . Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps.
Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C... in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC... This metabolite could be metabolized to 14,15-LTD... and 14,15-LTE... in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C..., -D..., and -E... instead of 14,15-LTC..., -D..., and -E..., respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC... Incubation of eosinophils with arachidonic acid favored the production of EXC..., whereas challenge with calcium ionophore led to exclusive formation of LTC... Eosinophils produced EXC... after challenge with the proinflammatory agents LTC..., prostaglandin D..., and IL-5, demonstrating that EXC... can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC... and LTD... Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. (ProQuest: ... denotes formulae/symbols omitted.)
Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C sub(4) in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC sub(4). This metabolite could be metabolized to 14,15-LTD sub(4) and 14,15-LTE sub(4) in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C sub(4), -D sub(4), and -E sub(4) instead of 14,15-LTC sub(4), -D sub(4), and -E sub(4), respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC sub(4). Incubation of eosinophils with arachidonic acid favored the production of EXC sub(4), whereas challenge with calcium ionophore led to exclusive formation of LTC sub(4). Eosinophils produced EXC sub(4) after challenge with the proinflammatory agents LTC sub(4), prostaglandin D sub(2), and IL-5, demonstrating that EXC sub(4) can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC sub(4) and LTD sub(4). Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps.
Author Björkholm, Magnus
Backman, Linda
Claesson, Hans-Erik
Gautam, Narinder
Edenius, Charlotte
Feltenmark, Stina
Brunnström, Åsa
Lindbom, Lennart
Griffiths, William
Author_xml – sequence: 1
  givenname: Stina
  surname: Feltenmark
  fullname: Feltenmark, Stina
– sequence: 2
  givenname: Narinder
  surname: Gautam
  fullname: Gautam, Narinder
– sequence: 3
  givenname: Åsa
  surname: Brunnström
  fullname: Brunnström, Åsa
– sequence: 4
  givenname: William
  surname: Griffiths
  fullname: Griffiths, William
– sequence: 5
  givenname: Linda
  surname: Backman
  fullname: Backman, Linda
– sequence: 6
  givenname: Charlotte
  surname: Edenius
  fullname: Edenius, Charlotte
– sequence: 7
  givenname: Lennart
  surname: Lindbom
  fullname: Lindbom, Lennart
– sequence: 8
  givenname: Magnus
  surname: Björkholm
  fullname: Björkholm, Magnus
– sequence: 9
  givenname: Hans-Erik
  surname: Claesson
  fullname: Claesson, Hans-Erik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18184802$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:116534960$$DView record from Swedish Publication Index
BookMark eNqFkkFv2yAcxdHUaU27nXfahHrYzS1gwHCZFEXZOinTeugdYRs3ZDZ4BrfJF9jnHlaypp027WIs-L0n_o93Bk6cdwaAtxhdYlTkV73T4RIVGGGSPuwFmGEkccapRCdghhApMkEJPQVnIWwQQpIJ9AqcYoEFFYjMwM-l31oX4Hww8Gbw1jWt7jod_bBLe7pa29o7W8F5ZWv41URd-tZGEya4HitTw3urYVwbiFm2sr3f7u5MupTJMLzRcf2gd9A6eD122sGlD9b5fm3bALVLfjpEuDBtG16Dl41ug3lzWM_B7afl7eI6W337_GUxX2UVL0TMCkp5KTlLc9Va5qTkAmkpWN0wVhmsBReUSVQg3qQYpKDSUMPLUuc51Y3Oz0G2tw0Pph9L1Q-208NOeW3VYet7-jOKcU6pTLz8J9-nAI6i30KMOcup5ChpP-61CehMXRkXB90-t3h24uxa3fl7RQjiTPJk8OFgMPgfowlRdTZUKS3tjB-DKhDBhDL8X5AglhdUTuNc_AFu_Di4FHhiMMU8lyxBV3uoGnwIg2ker4yRmkqnptKpY-mS4v3TSY_8oWUJeHcAJuXRjimi0gs-GeCv56oZ2zaabTwabUJq6CNJWIoBM5T_AqgV92w
CitedBy_id crossref_primary_10_1007_s00044_013_0506_7
crossref_primary_10_1021_acsomega_2c07625
crossref_primary_10_1111_j_1600_065X_2011_01020_x
crossref_primary_10_1038_s41598_018_32944_8
crossref_primary_10_1016_j_bbalip_2014_10_008
crossref_primary_10_1016_j_prostaglandins_2015_04_010
crossref_primary_10_1194_jlr_M033746
crossref_primary_10_3390_ijerph16142560
crossref_primary_10_1111_all_13955
crossref_primary_10_3390_cells11010141
crossref_primary_10_1016_j_ejphar_2017_12_005
crossref_primary_10_1002_alr_22243
crossref_primary_10_3390_cancers15030946
crossref_primary_10_1155_2015_956750
crossref_primary_10_1016_j_ejmech_2016_07_010
crossref_primary_10_1016_j_prostaglandins_2020_106426
crossref_primary_10_1096_fj_201600679RR
crossref_primary_10_1371_journal_pone_0033780
crossref_primary_10_3390_antibiotics11081114
crossref_primary_10_1016_j_biochi_2020_04_022
crossref_primary_10_1038_s41590_022_01312_0
crossref_primary_10_3390_biom10111568
crossref_primary_10_1292_jvms_22_0355
crossref_primary_10_1016_j_abb_2011_09_004
crossref_primary_10_1042_EBC20190082
crossref_primary_10_1111_j_1365_2222_2009_03261_x
crossref_primary_10_1155_2017_3549375
crossref_primary_10_1042_EBC20190083
crossref_primary_10_1016_j_cytogfr_2019_05_003
crossref_primary_10_1038_s41418_021_00807_x
crossref_primary_10_1371_journal_pone_0202424
crossref_primary_10_1038_nrrheum_2014_1
crossref_primary_10_1172_JCI155884
crossref_primary_10_1111_cbdd_13174
crossref_primary_10_1016_j_bbalip_2016_07_014
crossref_primary_10_1016_j_yexcr_2011_10_017
crossref_primary_10_1152_ajpheart_00349_2009
crossref_primary_10_1016_j_jaci_2012_07_027
crossref_primary_10_3390_brainsci10060381
crossref_primary_10_1007_s00216_013_7422_z
crossref_primary_10_1021_acs_jmedchem_9b00555
crossref_primary_10_1002_alr_22787
crossref_primary_10_1007_s00018_024_05127_0
crossref_primary_10_1016_j_prostaglandins_2020_106480
crossref_primary_10_1016_j_prostaglandins_2009_01_002
crossref_primary_10_1016_j_plefa_2013_08_005
crossref_primary_10_1016_j_ejmech_2024_116138
crossref_primary_10_1016_j_iac_2012_10_003
crossref_primary_10_1074_jbc_M110_153338
crossref_primary_10_1016_j_bmcl_2015_05_007
crossref_primary_10_1152_ajplung_00036_2008
crossref_primary_10_1248_yakushi_131_73
crossref_primary_10_1016_j_bmc_2012_07_025
crossref_primary_10_1016_j_eujim_2024_102377
crossref_primary_10_1165_rcmb_2007_0443OC
crossref_primary_10_1016_j_envint_2021_106787
crossref_primary_10_3390_ijms22094356
crossref_primary_10_1111_cea_13301
crossref_primary_10_1016_j_prostaglandins_2008_12_003
crossref_primary_10_1016_j_prostaglandins_2013_07_006
crossref_primary_10_1080_14756366_2020_1742116
crossref_primary_10_1007_s11033_020_05698_8
crossref_primary_10_1093_jleuko_qiae100
crossref_primary_10_1002_mnfr_201200828
crossref_primary_10_1016_j_prostaglandins_2024_106871
crossref_primary_10_1007_s12079_021_00622_6
crossref_primary_10_1016_j_pharmthera_2018_01_004
crossref_primary_10_3945_an_114_007732
crossref_primary_10_1096_fj_201802509R
crossref_primary_10_1016_j_plipres_2018_11_001
crossref_primary_10_1146_annurev_physiol_010908_163114
crossref_primary_10_1159_000351422
crossref_primary_10_1021_acs_jmedchem_9b00212
crossref_primary_10_1016_j_bbalip_2011_11_006
crossref_primary_10_1016_j_bbalip_2021_158886
crossref_primary_10_1371_journal_pone_0067907
crossref_primary_10_3389_fimmu_2018_03161
crossref_primary_10_1194_jlr_R900004_JLR200
crossref_primary_10_3390_ijms19113285
crossref_primary_10_1177_1087057110373383
crossref_primary_10_1016_j_jaip_2016_11_021
crossref_primary_10_3816_CLM_2008_n_049
crossref_primary_10_1111_cea_12797
crossref_primary_10_1016_j_bbalip_2016_08_002
crossref_primary_10_1016_j_bioorg_2021_105197
crossref_primary_10_1007_s11745_012_3684_z
crossref_primary_10_1002_JLB_1MR1117_442RR
crossref_primary_10_1016_j_jaci_2013_12_1081
crossref_primary_10_1016_j_prostaglandins_2019_106350
crossref_primary_10_1038_s41588_018_0314_6
crossref_primary_10_3389_fendo_2020_591819
crossref_primary_10_2174_0929867327999200820173853
crossref_primary_10_1111_j_1742_4658_2008_06570_x
crossref_primary_10_1194_jlr_M030171
crossref_primary_10_1016_j_plefa_2012_07_003
crossref_primary_10_1016_j_jaci_2015_05_026
crossref_primary_10_1021_ac401461b
crossref_primary_10_1016_j_xgen_2022_100218
crossref_primary_10_1080_1744666X_2023_2215986
crossref_primary_10_1016_j_ejmech_2012_09_006
crossref_primary_10_3349_ymj_2009_50_6_744
crossref_primary_10_1016_j_clinbiochem_2012_12_005
crossref_primary_10_1152_physrev_00034_2018
crossref_primary_10_2217_pgs_15_43
crossref_primary_10_1038_s41585_022_00640_y
crossref_primary_10_1074_jbc_M109_084632
crossref_primary_10_3389_falgy_2021_734733
crossref_primary_10_1517_13543776_2016_1113259
crossref_primary_10_1016_j_jaci_2010_07_015
crossref_primary_10_1016_j_plefa_2009_11_006
crossref_primary_10_1016_j_plefa_2020_102160
crossref_primary_10_1111_cbdd_13944
crossref_primary_10_3390_ijms24108838
crossref_primary_10_1038_s41590_018_0049_7
crossref_primary_10_1016_j_ejmech_2015_03_007
crossref_primary_10_1007_s11745_010_3485_1
crossref_primary_10_1016_j_abb_2010_08_016
crossref_primary_10_1080_14756366_2021_1908277
crossref_primary_10_1016_j_exphem_2009_11_005
crossref_primary_10_1016_j_gene_2015_07_073
crossref_primary_10_1016_j_prostaglandins_2024_106839
crossref_primary_10_1371_journal_pone_0171789
crossref_primary_10_1007_s00216_020_02795_2
crossref_primary_10_1016_j_scitotenv_2024_173526
crossref_primary_10_1186_s12974_015_0419_0
crossref_primary_10_1158_0008_5472_CAN_21_0839
Cites_doi 10.1016/S0021-9258(18)34538-1
10.1038/sj.bjp.0702186
10.1111/j.1748-1716.1992.tb09463.x
10.1016/S0021-9258(18)42302-2
10.1073/pnas.89.1.217
10.1164/ajrccm/147.4.1024
10.1038/ni1276
10.1016/j.plipres.2006.02.003
10.1073/pnas.94.12.6148
10.1073/pnas.78.5.3195
10.1016/j.bbalip.2007.06.001
10.1084/jem.191.11.1829
10.1073/pnas.091076998
10.1073/pnas.80.6.1712
10.1183/09031936.95.08091465
10.1083/jcb.120.6.1371
10.1046/j.1365-2222.2002.01477.x
10.1111/j.1748-1716.1980.tb06656.x
10.1016/0006-291X(82)91400-0
10.1016/0006-291X(81)91258-4
10.1016/S0378-4347(00)82589-X
10.1067/mai.2000.105122
10.1016/0003-9861(90)90114-E
10.1073/pnas.78.7.4579
10.1046/j.1365-2796.1999.00418.x
10.1016/S1044-0305(01)00256-2
10.1007/s11882-002-0088-9
10.1073/pnas.80.10.2884
10.1042/bj3180305
10.1073/pnas.82.14.4633
10.1016/S0090-6980(02)00035-7
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 15, 2008
2008 by The National Academy of Sciences of the USA 2008
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 15, 2008
– notice: 2008 by The National Academy of Sciences of the USA 2008
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7ST
7U6
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1073/pnas.0710127105
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Sustainability Science Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef

Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 685
ExternalDocumentID oai_swepub_ki_se_566449
oai_prod_swepub_kib_ki_se_116534960
1416487931
10_1073_pnas_0710127105
18184802
105_2_680
25451150
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C511356/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C515771/1
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7ST
7U6
7X8
5PM
.GJ
3O-
692
6TJ
ACKIV
ADTPV
AOWAS
D8T
HGD
NEJ
NHB
VOH
ZCG
ZZAVC
ID FETCH-LOGICAL-c678t-7446b965027da932b680a985df55ce1a8684590706f0919849e4e6bba334afa3
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Tue Nov 12 03:38:28 EST 2024
Wed Oct 30 05:05:12 EDT 2024
Tue Sep 17 21:28:36 EDT 2024
Fri Oct 25 04:36:16 EDT 2024
Fri Oct 25 22:34:00 EDT 2024
Thu Oct 10 17:54:34 EDT 2024
Thu Nov 21 22:21:48 EST 2024
Tue Aug 27 13:47:06 EDT 2024
Wed Nov 11 00:29:14 EST 2020
Thu May 30 08:49:35 EDT 2019
Fri Feb 02 07:05:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c678t-7446b965027da932b680a985df55ce1a8684590706f0919849e4e6bba334afa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: N.G. and Å.B. contributed equally to this work; S.F., W.G., C.E., L.L., M.B., and H.-E.C. designed research; S.F., N.G., Å.B., and L.B. performed research; S.F., N.G., Å.B., W.G., L.L., and H.-E.C. analyzed data; and S.F., W.G., C.E., L.L., and H.-E.C. wrote the paper.
Communicated by Bengt Samuelsson, Karolinska Institutet, Stockholm, Sweden, November 2, 2007
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:116534960
PMID 18184802
PQID 201416395
PQPubID 42026
PageCount 6
ParticipantIDs swepub_primary_oai_swepub_ki_se_566449
pnas_primary_105_2_680
proquest_journals_201416395
pubmed_primary_18184802
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2206596
jstor_primary_25451150
pnas_primary_105_2_680_fulltext
proquest_miscellaneous_20537499
crossref_primary_10_1073_pnas_0710127105
swepub_primary_oai_prod_swepub_kib_ki_se_116534960
proquest_miscellaneous_70212451
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2008-01-15
PublicationDateYYYYMMDD 2008-01-15
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Murray JJ (e_1_3_3_16_2) 1985; 98
e_1_3_3_17_2
Bradding P (e_1_3_3_11_2) 1995; 151
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Laviolette M (e_1_3_3_24_2) 1995; 8
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_6_2
  doi: 10.1016/S0021-9258(18)34538-1
– ident: e_1_3_3_27_2
  doi: 10.1038/sj.bjp.0702186
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1748-1716.1992.tb09463.x
– ident: e_1_3_3_21_2
  doi: 10.1016/S0021-9258(18)42302-2
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.89.1.217
– ident: e_1_3_3_10_2
  doi: 10.1164/ajrccm/147.4.1024
– ident: e_1_3_3_22_2
  doi: 10.1038/ni1276
– ident: e_1_3_3_3_2
  doi: 10.1016/j.plipres.2006.02.003
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.94.12.6148
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.78.5.3195
– ident: e_1_3_3_4_2
  doi: 10.1016/j.bbalip.2007.06.001
– ident: e_1_3_3_32_2
  doi: 10.1084/jem.191.11.1829
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.091076998
– volume: 151
  start-page: 1201
  year: 1995
  ident: e_1_3_3_11_2
  publication-title: Am J Respir Crit Care Med
  contributor:
    fullname: Bradding P
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.80.6.1712
– volume: 8
  start-page: 1465
  year: 1995
  ident: e_1_3_3_24_2
  publication-title: Eur Respir J
  doi: 10.1183/09031936.95.08091465
  contributor:
    fullname: Laviolette M
– ident: e_1_3_3_33_2
  doi: 10.1083/jcb.120.6.1371
– ident: e_1_3_3_14_2
  doi: 10.1046/j.1365-2222.2002.01477.x
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1748-1716.1980.tb06656.x
– ident: e_1_3_3_31_2
  doi: 10.1016/0006-291X(82)91400-0
– ident: e_1_3_3_19_2
  doi: 10.1016/0006-291X(81)91258-4
– ident: e_1_3_3_18_2
  doi: 10.1016/S0378-4347(00)82589-X
– ident: e_1_3_3_17_2
  doi: 10.1067/mai.2000.105122
– ident: e_1_3_3_12_2
  doi: 10.1016/0003-9861(90)90114-E
– volume: 98
  start-page: 275
  year: 1985
  ident: e_1_3_3_16_2
  publication-title: Trans Assoc Am Physicians
  contributor:
    fullname: Murray JJ
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.78.7.4579
– ident: e_1_3_3_1_2
  doi: 10.1046/j.1365-2796.1999.00418.x
– ident: e_1_3_3_23_2
  doi: 10.1016/S1044-0305(01)00256-2
– ident: e_1_3_3_25_2
  doi: 10.1007/s11882-002-0088-9
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.80.10.2884
– ident: e_1_3_3_9_2
  doi: 10.1042/bj3180305
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.82.14.4633
– ident: e_1_3_3_2_2
  doi: 10.1016/S0090-6980(02)00035-7
SSID ssj0009580
Score 2.357605
Snippet Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 680
SubjectTerms Arachidonate 15-Lipoxygenase - metabolism
Arachidonic Acid - metabolism
Asthma
Biological Sciences
Calcium
Calcium - metabolism
Cells
Cellular metabolism
Chromatography, Liquid - methods
Enzymes
Eosinophils
Eosinophils - enzymology
Epithelial cells
Fatty acids
Gene Expression Regulation, Enzymologic
Histamines
Humans
Interleukin-6 - metabolism
Leukocytes
Leukotriene C4 - metabolism
Leukotriene C4 - physiology
Leukotriene E4 - analogs & derivatives
Leukotriene E4 - metabolism
Leukotriene E4 - pharmacology
Leukotriene E4 - physiology
Leukotrienes - chemistry
Leukotrienes - pharmacology
Mass Spectrometry - methods
Mast cells
Mast Cells - enzymology
Mast Cells - metabolism
Medicin och hälsovetenskap
Metabolites
Models, Biological
Models, Chemical
Nasal polyps
Prostaglandin D2 - metabolism
Proteins
Spectrometry, Mass, Electrospray Ionization - methods
Tissues
SummonAdditionalLinks – databaseName: JSTOR Life Sciences Collection
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT1yAAoVQPnwAVA5RE8eOnWNVtuoB0Er0wM1yYkeN2CarehfaP9Df3Rkn2e2KrcRhL_HYa41nMm80k2dCPtalSoxLbFxLK2PujIkLbtCvDE-sshCRMVE8-yl__FJfJ0iT82n8FgbbKkNfYKjiA0AqZ-4IkhiRhsx8RyWq79u7x6yr-u9MGLxuOeMjf4_Mjuat8cjAh-XVFC-ouxd6-u5DpDQFoW3w8t8uyQ0u0RB_Tp_-586fkScDwKTHvUXskUeufU72Bhf29HDgmf7ygtxOuuum9SDq6PSqA1MD67gMVXd4hk2WFnlz6XHVWPrdwV9hrxysMQ0ssc7SP42hACBpKuJvzby7vgFrhKgYp3QKwPKvuaFNS0OZgE4637Td_KKZeWpaWM_4BT1xs5l_Sc5PJ-cnZ_FwLUNcQWRbxBIyyLIAZMekNQD_yhyOu1DC1kJULjUqV1xAzp3kNYCRQvHCcZeXpckybmqT7ZPdtmvda0KTypWID2qWOZ6qulAVEhhaWDktE5NH5HA8MD3vyTd0KJrLTOOx6fXZRmQ_KH8lN2oeBoLoer7QTMOWI_Jh-4Cuh7abiByMVqEHz_aaYWcswDqB88dRcEmss5jWdUsUEZmETPJhCYnE-rC_iLzqbWy9CwBQXCUsInLD-lYCSAe-OdI2F4EWnDGskYPSWG-nm1PAMvTw_HeDP-2dRu4lvDEAlPF5y6SVPMoC7ue8ePOQng_I476VJo1T8ZbsLq6W7h3Z8Xb5PvjrHaivPrE
  priority: 102
  providerName: JSTOR
Title Eoxins Are Proinflammatory Arachidonic Acid Metabolites Produced via the 15-Lipoxygenase-1 Pathway in Human Eosinophils and Mast Cells
URI https://www.jstor.org/stable/25451150
http://www.pnas.org/content/105/2/680.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18184802
https://www.proquest.com/docview/201416395
https://search.proquest.com/docview/20537499
https://search.proquest.com/docview/70212451
https://pubmed.ncbi.nlm.nih.gov/PMC2206596
http://kipublications.ki.se/Default.aspx?queryparsed=id:116534960
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXYnrggChTSlsUHhMoh3XzYiXNEZateQEj0wM1yYkdrsetEzS60f6C_mxkn2dWK5cIhl_U4GWVmMm_W42dC3teliJSJdFjnOg-ZUSosmMK4UizSQkNGxkLx5nv-9Yf4PEeaHD7uhfFN-1VpL91ydenswvdWtqtqNvaJzb59uUoSXA3MZhMyAWw4luhbpl3R7ztJ4PPLEjby-eTprHWqQ0Y-XG4FXIGEoZCvmBj-UxmzUt-YiGynIH8Ief7dQLlHM-pT0_Vz8mzAlPRTr_sxeWLcC3I8RG1HLwZq6Y8vyeO8ubeuo-rOUHgeeBc4xMovtFMkbl5YjVS5VFVW05VZg4fgHuUOhTU4gaa_rKKAGWnMw6Vtm_sHcEBIhGFM8Wzj3-qBWkf9wX_UNJ11TbuwS3igg_upbk1xoaB7RW6v57dXN-FwEkNYQTJbhzkUjWUBYC7JtQLEV2Zg4UJwXXNemViJTDAOZXaU1YA_CsEKw0xWlipNmapVekKOXOPMG0KjypQICeokNSwWdSEq5CzUcOe4jFQWkIvRELLt-TakXyfPU4nmkDvzBeTEG2orB7UuR4ALA150N5_LRILKAXl3eEDWQ6dNQM5Ga8shmDuZYDMsIDmO88dRiEJ8Y8qZZoMiPM2hePy3RI5c-qBfQF73vrPTYvDBgOR7XrUVQAbw_REIDM8EPgRCQJLe__angGfI4fefFi_ZGYl0S3hIALyMDwcmbeVRFqA-Y8Xpf-t1Rp727TVxGPNzcrS-25i3ZNLpzdT33k79AR9TH79_AHi5Srg
link.rule.ids 230,315,729,782,786,808,811,887,27934,27935,53802,53804,58027,58039,58260,58272
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgPMDLYMAgDJgfAI2HaPlhx87jNDoV0U2V6ANvllM7WkRJqrkd2z_A382dk7Sr6CQe-hKfXet8l_tOd_lMyIeykJG2kQlLYUTIrNZhzjT6lWaRkQYiMiaKw-_i4of8MkCanI_9tzDYVun7An0VHwBSMbPHkMTw2Gfmj7iEPKq9GOAOt65svzRJ4IXLEtYz-Ij0eF5rhxx8WGCN8Yq6O8Gn7T9EUlMQ2gYw_-2T3GAT9RHo7Ol_7v0Z2e0gJj1pbWKPPLD1c7LXObGjRx3T9OcX5M-gualqB6KWjq8aMDawj1--7g7PsM3SIHMuPZlWhp5b-CvsloM1xp4n1hp6XWkKEJLGPBxV8-bmFuwR4mIY0zFAy9_6llY19YUCOmhcVTfzy2rmqK5hPe0W9NTOZu4lmZwNJqfDsLuYIZxCbFuEAnLIIgdslwijAQAWGRx4LrkpOZ_aWMtMMg5Zd5SVAEdyyXLLbFYUOk2ZLnW6T3bqpravCY2mtkCEUCapZbEsczlFCkMDK8dFpLOAHPUHpuYt_YbyZXORKjw2tT7bgOx75a_kes3DgBddz-cqUbDlgBxuH1Bl13gTkIPeKlTn204l2BsLwI7j_H4UnBIrLbq2zRJFeCogl7xfQiC1PuwvIK9aG1vvAiAUAysPiNiwvpUAEoJvjtTVpScGTxKskoPSktZON6eAZaju-c8Kf8pZhexLeGcAKOPTlkkreZQF5M9Y_uY-PR-Sx8PJ-UiNvl58OyBP2saaOIz5W7KzuFrad-ShM8v33nf_AmIsQfk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELZgSIgXYMAgDJgfENoeoiaOHTuP09ZqiDFVYg-8WU7taBEliZYWtj_A7-bOSdpVdA889CU-u5bvLved7vKZkI9FriLjIhsW0sqQO2PCjBv0K8MjqyxEZEwUz77Ji-_qdIw0OUfDtzDYVun7An0VHwBSPnejxhYjSGRE7LPzR0IxybruvTv8uqr72oTBS5czPrD4yGTUVKZFHj4sssZ4Td2dANT1ICKxKQhtA5n_9kpuMIr6KDR59h_7f06e9lCTHne2sUseuOoF2e2duaWHPeP00UvyZ1zflFULoo5Or2swOrCTn77-Ds-w3dIigy49npWWfnXwd9g1B2tMPV-ss_RXaShASRqL8Lxs6ptbsEuIj2FMpwAxf5tbWlbUFwzouG7Lqm6uynlLTQXrmXZBT9x83r4il5Px5clZ2F_QEM4gxi1CCblkngHGY9IaAIJ5CorPlLCFEDMXG5UqLiD7jtICYEmmeOa4S_PcJAk3hUn2yE5VV-4NodHM5YgUCpY4HqsiUzOkMrSwcpxHJg3I4aA03XQ0HNqXz2WiUXV6rd-A7HkFrOSGk4cBL7qeLzTTsOWAHGwf0EXfgBOQ_cEydO_jrWbYIwsAT-D8YRScEysupnL1EkVEIiGnvF9CIsU-7C8grzs7W-8CoBRXEQuI3LDAlQASg2-OVOWVJwhnDKvlcGiss9XNKWAZun_-o8Sfbp1GFia8OwAO49OWSSt5lIUMgPPs7X3nfEAeT08n-vzzxZd98qTrr4nDWLwjO4vrpXtPHrZ2-cG771-Vr0SD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eoxins+Are+Proinflammatory+Arachidonic+Acid+Metabolites+Produced+via+the+15-Lipoxygenase-1+Pathway+in+Human+Eosinophils+and+Mast+Cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Feltenmark%2C+Stina&rft.au=Gautam%2C+Narinder&rft.au=Brunnstr%C3%B6m%2C+%C3%85sa&rft.au=Griffiths%2C+William&rft.date=2008-01-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=2&rft.spage=680&rft.epage=685&rft_id=info:doi/10.1073%2Fpnas.0710127105&rft.externalDocID=25451150
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F2.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F2.cover.gif