Eoxins Are Proinflammatory Arachidonic Acid Metabolites Produced via the 15-Lipoxygenase-1 Pathway in Human Eosinophils and Mast Cells
Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C₄...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 2; pp. 680 - 685 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
15-01-2008
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C₄ in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC₄. This metabolite could be metabolized to 14,15-LTD₄ and 14,15-LTE₄ in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C₄, -D₄, and -E₄ instead of 14,15-LTC₄, -D₄, and -E₄, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC₄. Incubation of eosinophils with arachidonic acid favored the production of EXC₄, whereas challenge with calcium ionophore led to exclusive formation of LTC₄. Eosinophils produced EXC₄ after challenge with the proinflammatory agents LTC₄, prostaglandin D₂, and IL-5, demonstrating that EXC₄ can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC₄ and LTD₄. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. |
---|---|
AbstractList | Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C₄ in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC₄. This metabolite could be metabolized to 14,15-LTD₄ and 14,15-LTE₄ in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C₄, -D₄, and -E₄ instead of 14,15-LTC₄, -D₄, and -E₄, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC₄. Incubation of eosinophils with arachidonic acid favored the production of EXC₄, whereas challenge with calcium ionophore led to exclusive formation of LTC₄. Eosinophils produced EXC₄ after challenge with the proinflammatory agents LTC₄, prostaglandin D₂, and IL-5, demonstrating that EXC₄ can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC₄ and LTD₄. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC4. This metabolite could be metabolized to 14,15-LTD4 and 14,15-LTE4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C4, -D4, and -E4 instead of 14,15-LTC4, -D4, and -E4, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC4. Incubation of eosinophils with arachidonic acid favored the production of EXC4, whereas challenge with calcium ionophore led to exclusive formation of LTC4. Eosinophils produced EXC4 after challenge with the proinflammatory agents LTC4, prostaglandin D2, and IL-5, demonstrating that EXC4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC4 and LTD4. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C 4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC 4 . This metabolite could be metabolized to 14,15-LTD 4 and 14,15-LTE 4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C 4 , -D 4 , and -E 4 instead of 14,15-LTC 4 , -D 4 , and -E 4 , respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC 4 . Incubation of eosinophils with arachidonic acid favored the production of EXC 4 , whereas challenge with calcium ionophore led to exclusive formation of LTC 4 . Eosinophils produced EXC 4 after challenge with the proinflammatory agents LTC 4 , prostaglandin D 2 , and IL-5, demonstrating that EXC 4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro , indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC 4 and LTD 4 . Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. 15-LO 14,15-leukotriene Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C 4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC 4 . This metabolite could be metabolized to 14,15-LTD 4 and 14,15-LTE 4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C 4 , -D 4 , and -E 4 instead of 14,15-LTC 4 , -D 4 , and -E 4 , respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC 4 . Incubation of eosinophils with arachidonic acid favored the production of EXC 4 , whereas challenge with calcium ionophore led to exclusive formation of LTC 4 . Eosinophils produced EXC 4 after challenge with the proinflammatory agents LTC 4 , prostaglandin D 2 , and IL-5, demonstrating that EXC 4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro , indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC 4 and LTD 4 . Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C... in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC... This metabolite could be metabolized to 14,15-LTD... and 14,15-LTE... in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C..., -D..., and -E... instead of 14,15-LTC..., -D..., and -E..., respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC... Incubation of eosinophils with arachidonic acid favored the production of EXC..., whereas challenge with calcium ionophore led to exclusive formation of LTC... Eosinophils produced EXC... after challenge with the proinflammatory agents LTC..., prostaglandin D..., and IL-5, demonstrating that EXC... can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC... and LTD... Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. (ProQuest: ... denotes formulae/symbols omitted.) Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C sub(4) in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC sub(4). This metabolite could be metabolized to 14,15-LTD sub(4) and 14,15-LTE sub(4) in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C sub(4), -D sub(4), and -E sub(4) instead of 14,15-LTC sub(4), -D sub(4), and -E sub(4), respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC sub(4). Incubation of eosinophils with arachidonic acid favored the production of EXC sub(4), whereas challenge with calcium ionophore led to exclusive formation of LTC sub(4). Eosinophils produced EXC sub(4) after challenge with the proinflammatory agents LTC sub(4), prostaglandin D sub(2), and IL-5, demonstrating that EXC sub(4) can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC sub(4) and LTD sub(4). Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. |
Author | Björkholm, Magnus Backman, Linda Claesson, Hans-Erik Gautam, Narinder Edenius, Charlotte Feltenmark, Stina Brunnström, Åsa Lindbom, Lennart Griffiths, William |
Author_xml | – sequence: 1 givenname: Stina surname: Feltenmark fullname: Feltenmark, Stina – sequence: 2 givenname: Narinder surname: Gautam fullname: Gautam, Narinder – sequence: 3 givenname: Åsa surname: Brunnström fullname: Brunnström, Åsa – sequence: 4 givenname: William surname: Griffiths fullname: Griffiths, William – sequence: 5 givenname: Linda surname: Backman fullname: Backman, Linda – sequence: 6 givenname: Charlotte surname: Edenius fullname: Edenius, Charlotte – sequence: 7 givenname: Lennart surname: Lindbom fullname: Lindbom, Lennart – sequence: 8 givenname: Magnus surname: Björkholm fullname: Björkholm, Magnus – sequence: 9 givenname: Hans-Erik surname: Claesson fullname: Claesson, Hans-Erik |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18184802$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:116534960$$DView record from Swedish Publication Index |
BookMark | eNqFkkFv2yAcxdHUaU27nXfahHrYzS1gwHCZFEXZOinTeugdYRs3ZDZ4BrfJF9jnHlaypp027WIs-L0n_o93Bk6cdwaAtxhdYlTkV73T4RIVGGGSPuwFmGEkccapRCdghhApMkEJPQVnIWwQQpIJ9AqcYoEFFYjMwM-l31oX4Hww8Gbw1jWt7jod_bBLe7pa29o7W8F5ZWv41URd-tZGEya4HitTw3urYVwbiFm2sr3f7u5MupTJMLzRcf2gd9A6eD122sGlD9b5fm3bALVLfjpEuDBtG16Dl41ug3lzWM_B7afl7eI6W337_GUxX2UVL0TMCkp5KTlLc9Va5qTkAmkpWN0wVhmsBReUSVQg3qQYpKDSUMPLUuc51Y3Oz0G2tw0Pph9L1Q-208NOeW3VYet7-jOKcU6pTLz8J9-nAI6i30KMOcup5ChpP-61CehMXRkXB90-t3h24uxa3fl7RQjiTPJk8OFgMPgfowlRdTZUKS3tjB-DKhDBhDL8X5AglhdUTuNc_AFu_Di4FHhiMMU8lyxBV3uoGnwIg2ker4yRmkqnptKpY-mS4v3TSY_8oWUJeHcAJuXRjimi0gs-GeCv56oZ2zaabTwabUJq6CNJWIoBM5T_AqgV92w |
CitedBy_id | crossref_primary_10_1007_s00044_013_0506_7 crossref_primary_10_1021_acsomega_2c07625 crossref_primary_10_1111_j_1600_065X_2011_01020_x crossref_primary_10_1038_s41598_018_32944_8 crossref_primary_10_1016_j_bbalip_2014_10_008 crossref_primary_10_1016_j_prostaglandins_2015_04_010 crossref_primary_10_1194_jlr_M033746 crossref_primary_10_3390_ijerph16142560 crossref_primary_10_1111_all_13955 crossref_primary_10_3390_cells11010141 crossref_primary_10_1016_j_ejphar_2017_12_005 crossref_primary_10_1002_alr_22243 crossref_primary_10_3390_cancers15030946 crossref_primary_10_1155_2015_956750 crossref_primary_10_1016_j_ejmech_2016_07_010 crossref_primary_10_1016_j_prostaglandins_2020_106426 crossref_primary_10_1096_fj_201600679RR crossref_primary_10_1371_journal_pone_0033780 crossref_primary_10_3390_antibiotics11081114 crossref_primary_10_1016_j_biochi_2020_04_022 crossref_primary_10_1038_s41590_022_01312_0 crossref_primary_10_3390_biom10111568 crossref_primary_10_1292_jvms_22_0355 crossref_primary_10_1016_j_abb_2011_09_004 crossref_primary_10_1042_EBC20190082 crossref_primary_10_1111_j_1365_2222_2009_03261_x crossref_primary_10_1155_2017_3549375 crossref_primary_10_1042_EBC20190083 crossref_primary_10_1016_j_cytogfr_2019_05_003 crossref_primary_10_1038_s41418_021_00807_x crossref_primary_10_1371_journal_pone_0202424 crossref_primary_10_1038_nrrheum_2014_1 crossref_primary_10_1172_JCI155884 crossref_primary_10_1111_cbdd_13174 crossref_primary_10_1016_j_bbalip_2016_07_014 crossref_primary_10_1016_j_yexcr_2011_10_017 crossref_primary_10_1152_ajpheart_00349_2009 crossref_primary_10_1016_j_jaci_2012_07_027 crossref_primary_10_3390_brainsci10060381 crossref_primary_10_1007_s00216_013_7422_z crossref_primary_10_1021_acs_jmedchem_9b00555 crossref_primary_10_1002_alr_22787 crossref_primary_10_1007_s00018_024_05127_0 crossref_primary_10_1016_j_prostaglandins_2020_106480 crossref_primary_10_1016_j_prostaglandins_2009_01_002 crossref_primary_10_1016_j_plefa_2013_08_005 crossref_primary_10_1016_j_ejmech_2024_116138 crossref_primary_10_1016_j_iac_2012_10_003 crossref_primary_10_1074_jbc_M110_153338 crossref_primary_10_1016_j_bmcl_2015_05_007 crossref_primary_10_1152_ajplung_00036_2008 crossref_primary_10_1248_yakushi_131_73 crossref_primary_10_1016_j_bmc_2012_07_025 crossref_primary_10_1016_j_eujim_2024_102377 crossref_primary_10_1165_rcmb_2007_0443OC crossref_primary_10_1016_j_envint_2021_106787 crossref_primary_10_3390_ijms22094356 crossref_primary_10_1111_cea_13301 crossref_primary_10_1016_j_prostaglandins_2008_12_003 crossref_primary_10_1016_j_prostaglandins_2013_07_006 crossref_primary_10_1080_14756366_2020_1742116 crossref_primary_10_1007_s11033_020_05698_8 crossref_primary_10_1093_jleuko_qiae100 crossref_primary_10_1002_mnfr_201200828 crossref_primary_10_1016_j_prostaglandins_2024_106871 crossref_primary_10_1007_s12079_021_00622_6 crossref_primary_10_1016_j_pharmthera_2018_01_004 crossref_primary_10_3945_an_114_007732 crossref_primary_10_1096_fj_201802509R crossref_primary_10_1016_j_plipres_2018_11_001 crossref_primary_10_1146_annurev_physiol_010908_163114 crossref_primary_10_1159_000351422 crossref_primary_10_1021_acs_jmedchem_9b00212 crossref_primary_10_1016_j_bbalip_2011_11_006 crossref_primary_10_1016_j_bbalip_2021_158886 crossref_primary_10_1371_journal_pone_0067907 crossref_primary_10_3389_fimmu_2018_03161 crossref_primary_10_1194_jlr_R900004_JLR200 crossref_primary_10_3390_ijms19113285 crossref_primary_10_1177_1087057110373383 crossref_primary_10_1016_j_jaip_2016_11_021 crossref_primary_10_3816_CLM_2008_n_049 crossref_primary_10_1111_cea_12797 crossref_primary_10_1016_j_bbalip_2016_08_002 crossref_primary_10_1016_j_bioorg_2021_105197 crossref_primary_10_1007_s11745_012_3684_z crossref_primary_10_1002_JLB_1MR1117_442RR crossref_primary_10_1016_j_jaci_2013_12_1081 crossref_primary_10_1016_j_prostaglandins_2019_106350 crossref_primary_10_1038_s41588_018_0314_6 crossref_primary_10_3389_fendo_2020_591819 crossref_primary_10_2174_0929867327999200820173853 crossref_primary_10_1111_j_1742_4658_2008_06570_x crossref_primary_10_1194_jlr_M030171 crossref_primary_10_1016_j_plefa_2012_07_003 crossref_primary_10_1016_j_jaci_2015_05_026 crossref_primary_10_1021_ac401461b crossref_primary_10_1016_j_xgen_2022_100218 crossref_primary_10_1080_1744666X_2023_2215986 crossref_primary_10_1016_j_ejmech_2012_09_006 crossref_primary_10_3349_ymj_2009_50_6_744 crossref_primary_10_1016_j_clinbiochem_2012_12_005 crossref_primary_10_1152_physrev_00034_2018 crossref_primary_10_2217_pgs_15_43 crossref_primary_10_1038_s41585_022_00640_y crossref_primary_10_1074_jbc_M109_084632 crossref_primary_10_3389_falgy_2021_734733 crossref_primary_10_1517_13543776_2016_1113259 crossref_primary_10_1016_j_jaci_2010_07_015 crossref_primary_10_1016_j_plefa_2009_11_006 crossref_primary_10_1016_j_plefa_2020_102160 crossref_primary_10_1111_cbdd_13944 crossref_primary_10_3390_ijms24108838 crossref_primary_10_1038_s41590_018_0049_7 crossref_primary_10_1016_j_ejmech_2015_03_007 crossref_primary_10_1007_s11745_010_3485_1 crossref_primary_10_1016_j_abb_2010_08_016 crossref_primary_10_1080_14756366_2021_1908277 crossref_primary_10_1016_j_exphem_2009_11_005 crossref_primary_10_1016_j_gene_2015_07_073 crossref_primary_10_1016_j_prostaglandins_2024_106839 crossref_primary_10_1371_journal_pone_0171789 crossref_primary_10_1007_s00216_020_02795_2 crossref_primary_10_1016_j_scitotenv_2024_173526 crossref_primary_10_1186_s12974_015_0419_0 crossref_primary_10_1158_0008_5472_CAN_21_0839 |
Cites_doi | 10.1016/S0021-9258(18)34538-1 10.1038/sj.bjp.0702186 10.1111/j.1748-1716.1992.tb09463.x 10.1016/S0021-9258(18)42302-2 10.1073/pnas.89.1.217 10.1164/ajrccm/147.4.1024 10.1038/ni1276 10.1016/j.plipres.2006.02.003 10.1073/pnas.94.12.6148 10.1073/pnas.78.5.3195 10.1016/j.bbalip.2007.06.001 10.1084/jem.191.11.1829 10.1073/pnas.091076998 10.1073/pnas.80.6.1712 10.1183/09031936.95.08091465 10.1083/jcb.120.6.1371 10.1046/j.1365-2222.2002.01477.x 10.1111/j.1748-1716.1980.tb06656.x 10.1016/0006-291X(82)91400-0 10.1016/0006-291X(81)91258-4 10.1016/S0378-4347(00)82589-X 10.1067/mai.2000.105122 10.1016/0003-9861(90)90114-E 10.1073/pnas.78.7.4579 10.1046/j.1365-2796.1999.00418.x 10.1016/S1044-0305(01)00256-2 10.1007/s11882-002-0088-9 10.1073/pnas.80.10.2884 10.1042/bj3180305 10.1073/pnas.82.14.4633 10.1016/S0090-6980(02)00035-7 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 15, 2008 2008 by The National Academy of Sciences of the USA 2008 |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 15, 2008 – notice: 2008 by The National Academy of Sciences of the USA 2008 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1073/pnas.0710127105 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Sustainability Science Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 685 |
ExternalDocumentID | oai_swepub_ki_se_566449 oai_prod_swepub_kib_ki_se_116534960 1416487931 10_1073_pnas_0710127105 18184802 105_2_680 25451150 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C511356/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C515771/1 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FRP GX1 HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7ST 7U6 7X8 5PM .GJ 3O- 692 6TJ ACKIV ADTPV AOWAS D8T HGD NEJ NHB VOH ZCG ZZAVC |
ID | FETCH-LOGICAL-c678t-7446b965027da932b680a985df55ce1a8684590706f0919849e4e6bba334afa3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Nov 12 03:38:28 EST 2024 Wed Oct 30 05:05:12 EDT 2024 Tue Sep 17 21:28:36 EDT 2024 Fri Oct 25 04:36:16 EDT 2024 Fri Oct 25 22:34:00 EDT 2024 Thu Oct 10 17:54:34 EDT 2024 Thu Nov 21 22:21:48 EST 2024 Tue Aug 27 13:47:06 EDT 2024 Wed Nov 11 00:29:14 EST 2020 Thu May 30 08:49:35 EDT 2019 Fri Feb 02 07:05:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c678t-7446b965027da932b680a985df55ce1a8684590706f0919849e4e6bba334afa3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: N.G. and Å.B. contributed equally to this work; S.F., W.G., C.E., L.L., M.B., and H.-E.C. designed research; S.F., N.G., Å.B., and L.B. performed research; S.F., N.G., Å.B., W.G., L.L., and H.-E.C. analyzed data; and S.F., W.G., C.E., L.L., and H.-E.C. wrote the paper. Communicated by Bengt Samuelsson, Karolinska Institutet, Stockholm, Sweden, November 2, 2007 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:116534960 |
PMID | 18184802 |
PQID | 201416395 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_566449 pnas_primary_105_2_680 proquest_journals_201416395 pubmed_primary_18184802 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2206596 jstor_primary_25451150 pnas_primary_105_2_680_fulltext proquest_miscellaneous_20537499 crossref_primary_10_1073_pnas_0710127105 swepub_primary_oai_prod_swepub_kib_ki_se_116534960 proquest_miscellaneous_70212451 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2008-01-15 |
PublicationDateYYYYMMDD | 2008-01-15 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Murray JJ (e_1_3_3_16_2) 1985; 98 e_1_3_3_17_2 Bradding P (e_1_3_3_11_2) 1995; 151 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Laviolette M (e_1_3_3_24_2) 1995; 8 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_6_2 doi: 10.1016/S0021-9258(18)34538-1 – ident: e_1_3_3_27_2 doi: 10.1038/sj.bjp.0702186 – ident: e_1_3_3_26_2 doi: 10.1111/j.1748-1716.1992.tb09463.x – ident: e_1_3_3_21_2 doi: 10.1016/S0021-9258(18)42302-2 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.89.1.217 – ident: e_1_3_3_10_2 doi: 10.1164/ajrccm/147.4.1024 – ident: e_1_3_3_22_2 doi: 10.1038/ni1276 – ident: e_1_3_3_3_2 doi: 10.1016/j.plipres.2006.02.003 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.94.12.6148 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.78.5.3195 – ident: e_1_3_3_4_2 doi: 10.1016/j.bbalip.2007.06.001 – ident: e_1_3_3_32_2 doi: 10.1084/jem.191.11.1829 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.091076998 – volume: 151 start-page: 1201 year: 1995 ident: e_1_3_3_11_2 publication-title: Am J Respir Crit Care Med contributor: fullname: Bradding P – ident: e_1_3_3_15_2 doi: 10.1073/pnas.80.6.1712 – volume: 8 start-page: 1465 year: 1995 ident: e_1_3_3_24_2 publication-title: Eur Respir J doi: 10.1183/09031936.95.08091465 contributor: fullname: Laviolette M – ident: e_1_3_3_33_2 doi: 10.1083/jcb.120.6.1371 – ident: e_1_3_3_14_2 doi: 10.1046/j.1365-2222.2002.01477.x – ident: e_1_3_3_13_2 doi: 10.1111/j.1748-1716.1980.tb06656.x – ident: e_1_3_3_31_2 doi: 10.1016/0006-291X(82)91400-0 – ident: e_1_3_3_19_2 doi: 10.1016/0006-291X(81)91258-4 – ident: e_1_3_3_18_2 doi: 10.1016/S0378-4347(00)82589-X – ident: e_1_3_3_17_2 doi: 10.1067/mai.2000.105122 – ident: e_1_3_3_12_2 doi: 10.1016/0003-9861(90)90114-E – volume: 98 start-page: 275 year: 1985 ident: e_1_3_3_16_2 publication-title: Trans Assoc Am Physicians contributor: fullname: Murray JJ – ident: e_1_3_3_29_2 doi: 10.1073/pnas.78.7.4579 – ident: e_1_3_3_1_2 doi: 10.1046/j.1365-2796.1999.00418.x – ident: e_1_3_3_23_2 doi: 10.1016/S1044-0305(01)00256-2 – ident: e_1_3_3_25_2 doi: 10.1007/s11882-002-0088-9 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.80.10.2884 – ident: e_1_3_3_9_2 doi: 10.1042/bj3180305 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.82.14.4633 – ident: e_1_3_3_2_2 doi: 10.1016/S0090-6980(02)00035-7 |
SSID | ssj0009580 |
Score | 2.357605 |
Snippet | Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils... |
SourceID | swepub pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 680 |
SubjectTerms | Arachidonate 15-Lipoxygenase - metabolism Arachidonic Acid - metabolism Asthma Biological Sciences Calcium Calcium - metabolism Cells Cellular metabolism Chromatography, Liquid - methods Enzymes Eosinophils Eosinophils - enzymology Epithelial cells Fatty acids Gene Expression Regulation, Enzymologic Histamines Humans Interleukin-6 - metabolism Leukocytes Leukotriene C4 - metabolism Leukotriene C4 - physiology Leukotriene E4 - analogs & derivatives Leukotriene E4 - metabolism Leukotriene E4 - pharmacology Leukotriene E4 - physiology Leukotrienes - chemistry Leukotrienes - pharmacology Mass Spectrometry - methods Mast cells Mast Cells - enzymology Mast Cells - metabolism Medicin och hälsovetenskap Metabolites Models, Biological Models, Chemical Nasal polyps Prostaglandin D2 - metabolism Proteins Spectrometry, Mass, Electrospray Ionization - methods Tissues |
SummonAdditionalLinks | – databaseName: JSTOR Life Sciences Collection dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT1yAAoVQPnwAVA5RE8eOnWNVtuoB0Er0wM1yYkeN2CarehfaP9Df3Rkn2e2KrcRhL_HYa41nMm80k2dCPtalSoxLbFxLK2PujIkLbtCvDE-sshCRMVE8-yl__FJfJ0iT82n8FgbbKkNfYKjiA0AqZ-4IkhiRhsx8RyWq79u7x6yr-u9MGLxuOeMjf4_Mjuat8cjAh-XVFC-ouxd6-u5DpDQFoW3w8t8uyQ0u0RB_Tp_-586fkScDwKTHvUXskUeufU72Bhf29HDgmf7ygtxOuuum9SDq6PSqA1MD67gMVXd4hk2WFnlz6XHVWPrdwV9hrxysMQ0ssc7SP42hACBpKuJvzby7vgFrhKgYp3QKwPKvuaFNS0OZgE4637Td_KKZeWpaWM_4BT1xs5l_Sc5PJ-cnZ_FwLUNcQWRbxBIyyLIAZMekNQD_yhyOu1DC1kJULjUqV1xAzp3kNYCRQvHCcZeXpckybmqT7ZPdtmvda0KTypWID2qWOZ6qulAVEhhaWDktE5NH5HA8MD3vyTd0KJrLTOOx6fXZRmQ_KH8lN2oeBoLoer7QTMOWI_Jh-4Cuh7abiByMVqEHz_aaYWcswDqB88dRcEmss5jWdUsUEZmETPJhCYnE-rC_iLzqbWy9CwBQXCUsInLD-lYCSAe-OdI2F4EWnDGskYPSWG-nm1PAMvTw_HeDP-2dRu4lvDEAlPF5y6SVPMoC7ue8ePOQng_I476VJo1T8ZbsLq6W7h3Z8Xb5PvjrHaivPrE priority: 102 providerName: JSTOR |
Title | Eoxins Are Proinflammatory Arachidonic Acid Metabolites Produced via the 15-Lipoxygenase-1 Pathway in Human Eosinophils and Mast Cells |
URI | https://www.jstor.org/stable/25451150 http://www.pnas.org/content/105/2/680.abstract https://www.ncbi.nlm.nih.gov/pubmed/18184802 https://www.proquest.com/docview/201416395 https://search.proquest.com/docview/20537499 https://search.proquest.com/docview/70212451 https://pubmed.ncbi.nlm.nih.gov/PMC2206596 http://kipublications.ki.se/Default.aspx?queryparsed=id:116534960 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXYnrggChTSlsUHhMoh3XzYiXNEZateQEj0wM1yYkdrsetEzS60f6C_mxkn2dWK5cIhl_U4GWVmMm_W42dC3teliJSJdFjnOg-ZUSosmMK4UizSQkNGxkLx5nv-9Yf4PEeaHD7uhfFN-1VpL91ydenswvdWtqtqNvaJzb59uUoSXA3MZhMyAWw4luhbpl3R7ztJ4PPLEjby-eTprHWqQ0Y-XG4FXIGEoZCvmBj-UxmzUt-YiGynIH8Ief7dQLlHM-pT0_Vz8mzAlPRTr_sxeWLcC3I8RG1HLwZq6Y8vyeO8ubeuo-rOUHgeeBc4xMovtFMkbl5YjVS5VFVW05VZg4fgHuUOhTU4gaa_rKKAGWnMw6Vtm_sHcEBIhGFM8Wzj3-qBWkf9wX_UNJ11TbuwS3igg_upbk1xoaB7RW6v57dXN-FwEkNYQTJbhzkUjWUBYC7JtQLEV2Zg4UJwXXNemViJTDAOZXaU1YA_CsEKw0xWlipNmapVekKOXOPMG0KjypQICeokNSwWdSEq5CzUcOe4jFQWkIvRELLt-TakXyfPU4nmkDvzBeTEG2orB7UuR4ALA150N5_LRILKAXl3eEDWQ6dNQM5Ga8shmDuZYDMsIDmO88dRiEJ8Y8qZZoMiPM2hePy3RI5c-qBfQF73vrPTYvDBgOR7XrUVQAbw_REIDM8EPgRCQJLe__angGfI4fefFi_ZGYl0S3hIALyMDwcmbeVRFqA-Y8Xpf-t1Rp727TVxGPNzcrS-25i3ZNLpzdT33k79AR9TH79_AHi5Srg |
link.rule.ids | 230,315,729,782,786,808,811,887,27934,27935,53802,53804,58027,58039,58260,58272 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgPMDLYMAgDJgfAI2HaPlhx87jNDoV0U2V6ANvllM7WkRJqrkd2z_A382dk7Sr6CQe-hKfXet8l_tOd_lMyIeykJG2kQlLYUTIrNZhzjT6lWaRkQYiMiaKw-_i4of8MkCanI_9tzDYVun7An0VHwBSMbPHkMTw2Gfmj7iEPKq9GOAOt65svzRJ4IXLEtYz-Ij0eF5rhxx8WGCN8Yq6O8Gn7T9EUlMQ2gYw_-2T3GAT9RHo7Ol_7v0Z2e0gJj1pbWKPPLD1c7LXObGjRx3T9OcX5M-gualqB6KWjq8aMDawj1--7g7PsM3SIHMuPZlWhp5b-CvsloM1xp4n1hp6XWkKEJLGPBxV8-bmFuwR4mIY0zFAy9_6llY19YUCOmhcVTfzy2rmqK5hPe0W9NTOZu4lmZwNJqfDsLuYIZxCbFuEAnLIIgdslwijAQAWGRx4LrkpOZ_aWMtMMg5Zd5SVAEdyyXLLbFYUOk2ZLnW6T3bqpravCY2mtkCEUCapZbEsczlFCkMDK8dFpLOAHPUHpuYt_YbyZXORKjw2tT7bgOx75a_kes3DgBddz-cqUbDlgBxuH1Bl13gTkIPeKlTn204l2BsLwI7j_H4UnBIrLbq2zRJFeCogl7xfQiC1PuwvIK9aG1vvAiAUAysPiNiwvpUAEoJvjtTVpScGTxKskoPSktZON6eAZaju-c8Kf8pZhexLeGcAKOPTlkkreZQF5M9Y_uY-PR-Sx8PJ-UiNvl58OyBP2saaOIz5W7KzuFrad-ShM8v33nf_AmIsQfk |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELZgSIgXYMAgDJgfENoeoiaOHTuP09ZqiDFVYg-8WU7taBEliZYWtj_A7-bOSdpVdA889CU-u5bvLved7vKZkI9FriLjIhsW0sqQO2PCjBv0K8MjqyxEZEwUz77Ji-_qdIw0OUfDtzDYVun7An0VHwBSPnejxhYjSGRE7LPzR0IxybruvTv8uqr72oTBS5czPrD4yGTUVKZFHj4sssZ4Td2dANT1ICKxKQhtA5n_9kpuMIr6KDR59h_7f06e9lCTHne2sUseuOoF2e2duaWHPeP00UvyZ1zflFULoo5Or2swOrCTn77-Ds-w3dIigy49npWWfnXwd9g1B2tMPV-ss_RXaShASRqL8Lxs6ptbsEuIj2FMpwAxf5tbWlbUFwzouG7Lqm6uynlLTQXrmXZBT9x83r4il5Px5clZ2F_QEM4gxi1CCblkngHGY9IaAIJ5CorPlLCFEDMXG5UqLiD7jtICYEmmeOa4S_PcJAk3hUn2yE5VV-4NodHM5YgUCpY4HqsiUzOkMrSwcpxHJg3I4aA03XQ0HNqXz2WiUXV6rd-A7HkFrOSGk4cBL7qeLzTTsOWAHGwf0EXfgBOQ_cEydO_jrWbYIwsAT-D8YRScEysupnL1EkVEIiGnvF9CIsU-7C8grzs7W-8CoBRXEQuI3LDAlQASg2-OVOWVJwhnDKvlcGiss9XNKWAZun_-o8Sfbp1GFia8OwAO49OWSSt5lIUMgPPs7X3nfEAeT08n-vzzxZd98qTrr4nDWLwjO4vrpXtPHrZ2-cG771-Vr0SD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eoxins+Are+Proinflammatory+Arachidonic+Acid+Metabolites+Produced+via+the+15-Lipoxygenase-1+Pathway+in+Human+Eosinophils+and+Mast+Cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Feltenmark%2C+Stina&rft.au=Gautam%2C+Narinder&rft.au=Brunnstr%C3%B6m%2C+%C3%85sa&rft.au=Griffiths%2C+William&rft.date=2008-01-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=2&rft.spage=680&rft.epage=685&rft_id=info:doi/10.1073%2Fpnas.0710127105&rft.externalDocID=25451150 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F2.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F2.cover.gif |