Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas

Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repe...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics Vol. 17; no. 1; p. e1009310
Main Authors: Teper, Doron, Wang, Nian
Format: Journal Article
Language:English
Published: United States Public Library of Science 19-01-2021
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBEPthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9-28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens.
AbstractList Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBE.sub.PthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9-28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens.
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBEPthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9-28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens.
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri ( Xcc ), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBE PthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4 :Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9–28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4 :Tn5 restored the ability to induce the expression of CsLOB1 , promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens. Mutation of the EBEs of susceptibility (S) genes via genome editing and utilization of naturally occurring EBE variants have been used to generate disease resistant plants. However, TALE adaptations may lead to resistance loss, limiting the long-term efficacy of the strategy. We utilized an experimental evolution approach to test TALEs adaptations in the Xanthomonas citri -citrus pathosystem using designer TALEs that cannot recognize the EBE of host targets. We identified adaptive TALE mutations and deletions that occurred during less than 30 cycles of repeated infections, which reconstituted the virulence on the host. Adaptive variants originated from TALEs that harbored a small number of mismatches (≤5) to the EBE, whereas designer TALEs that harbored larger number of mismatches (≥7) to the EBE failed to adapt in the duration of this study. Our study experimentally demonstrates adaptive rearrangements of TALEs during host adaptation and suggests that the potential durability in the resistance of modified crops should be a significant factor to be considered prior to their introduction into the field.
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri ( Xcc ), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBE PthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4 :Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9–28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4 :Tn5 restored the ability to induce the expression of CsLOB1 , promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens.
Audience Academic
Author Wang, Nian
Teper, Doron
AuthorAffiliation Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
The University of North Carolina at Chapel Hill, UNITED STATES
AuthorAffiliation_xml – name: The University of North Carolina at Chapel Hill, UNITED STATES
– name: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
Author_xml – sequence: 1
  givenname: Doron
  orcidid: 0000-0002-5608-1917
  surname: Teper
  fullname: Teper, Doron
  organization: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
– sequence: 2
  givenname: Nian
  orcidid: 0000-0001-7743-0728
  surname: Wang
  fullname: Wang, Nian
  organization: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33465093$$D View this record in MEDLINE/PubMed
BookMark eNqVklur1DAUhYsc8Vz0H4gUBNGHGZPm2hdhGLwMDB7UQXwLaZq0GTpJbVLx_HtTZzxMwQclD7l9a7Gzs66zC-edzrKnECwhYvD13o-Dk92yb7RbQgBKBMGD7AoSghYMA3xxtr7MrkPYA4AIL9mj7BIhTElSXGWf1t4F_X3UTumQe5PLWvZRRuvdtNuttrk2Rqvoh3Tt8taHmIcxKN1HW9nOxrs8-vybdLH1B-9keJw9NLIL-slpvsl2797u1h8W29v3m_Vqu1CU4bgwhkAMOKEUc0orjBSFpFYUMcUIQKCoSwrSqzCvSqCwMoxSXZi6LAHAiKObbHO0rb3ci36wBzncCS-t-H3gh0bIIVrVaUE0ALyosKpqjkuJpKkoAlxVZQUp4Ch5vTl69WN10LXSLg6ym5nOb5xtReN_CMYxKclUzMuTweBTL0MUB5ta1HXSaT8GUWBW4gLRgiX0-RFtZCrNOuOTo5pwsUp_wiEmlCRq-RcqjVofrEpBMDadzwSvZoLERP0zNnIMQWy-fP4P9uO_s7df5-yLM7bVsott8N04hSnMQXwE1eBDGLS5bzUEYgq3OIVbTOEWp3An2bPzb7oX_Ukz-gVXXvWR
CitedBy_id crossref_primary_10_1111_pbi_14109
crossref_primary_10_1111_pbi_14208
crossref_primary_10_1093_plphys_kiae230
crossref_primary_10_3390_cells11030315
crossref_primary_10_1016_j_pbi_2023_102469
crossref_primary_10_3390_ijms23031524
crossref_primary_10_1094_PHYTO_04_21_0144_R
crossref_primary_10_1094_PHYTO_04_21_0175_R
crossref_primary_10_1094_MPMI_01_21_0026_R
crossref_primary_10_1007_s00425_022_03994_0
crossref_primary_10_1186_s12864_023_09228_1
crossref_primary_10_1186_s42397_023_00140_3
crossref_primary_10_1094_MPMI_34_9
crossref_primary_10_1094_PHYTO_11_22_0424_R
crossref_primary_10_1016_j_tplants_2021_11_003
crossref_primary_10_1186_s12864_022_08900_2
crossref_primary_10_1111_ppa_13965
crossref_primary_10_3389_fpls_2021_769907
crossref_primary_10_1094_PHYTO_10_22_0365_KD
crossref_primary_10_1016_j_pmpp_2023_102163
crossref_primary_10_3389_fmicb_2021_731711
crossref_primary_10_1094_PHYTO_03_24_0084_RVW
Cites_doi 10.1111/tpj.12838
10.1371/journal.ppat.1003972
10.1111/nph.13015
10.1038/nature03630
10.1093/mp/sst176
10.1016/0378-1119(95)00584-1
10.1094/PDIS.2004.88.11.1179
10.1038/nature25447
10.1111/pbi.12613
10.1093/molbev/msu229
10.1073/pnas.1911660116
10.1094/MPMI-07-16-0137-R
10.1111/pbi.12677
10.1126/science.1144958
10.1073/pnas.0604088103
10.1016/j.molp.2014.10.010
10.1038/s41467-018-04996-x
10.1073/pnas.1313271111
10.1094/MPMI-20-8-0934
10.1111/mpp.12900
10.1371/journal.ppat.1006044
10.1146/annurev-phyto-080508-081936
10.3389/fpls.2018.01857
10.1126/science.1144956
10.1016/j.cub.2020.05.092
10.1007/s00299-014-1673-9
10.1111/nph.12411
10.1105/tpc.113.119255
10.1007/s12033-012-9619-3
10.1111/pbi.13109
10.1046/j.1365-313X.2003.01937.x
10.1111/tpj.13042
10.1016/j.sbi.2012.11.001
10.1007/s00299-007-0403-y
10.1038/ncomms13435
10.1038/nbt.2199
10.1111/j.1365-2958.2004.04076.x
10.1093/gbe/evx108
10.1073/pnas.1620407114
10.1094/MPMI-11-10-0254
10.1038/ismej.2013.215
10.1111/mpp.12638
10.1094/PHYTO-09-15-0201-R
10.1093/genetics/55.4.699
10.1111/j.1469-8137.2012.04367.x
10.1046/j.1365-313x.2000.00868.x
10.1105/tpc.110.078964
10.1073/pnas.93.14.7120
10.1371/journal.ppat.1008886
10.1007/BF00290109
10.1111/j.1364-3703.2010.00636.x
10.1016/j.molp.2015.01.012
10.1111/pbi.12733
10.1111/pbi.12874
10.1021/sb400137b
10.1038/s41587-019-0267-z
10.1094/MPMI-1-059
10.1146/annurev-phyto-082718-100026
10.1093/nar/gks608
10.1111/pbi.12495
10.1007/s00253-010-2717-x
10.1146/annurev-phyto-080508-081752
10.1111/mpp.12670
10.1038/ncomms5780
10.1371/journal.pone.0203711
10.1093/nar/gkr218
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Teper, Wang 2021 Teper, Wang
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Teper, Wang 2021 Teper, Wang
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1009310
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList



CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Adaptation of TAL effectors
EISSN 1553-7404
Editor Copenhaver, Gregory P.
Editor_xml – sequence: 1
  givenname: Gregory P.
  surname: Copenhaver
  fullname: Copenhaver, Gregory P.
EndPage e1009310
ExternalDocumentID oai_doaj_org_article_5e0082b4cbd849a3afb6308cb9b16083
A650814565
10_1371_journal_pgen_1009310
33465093
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
ECM
EIF
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c674t-ff514085664866b43c615dc637c750302d96000948b90c4cf766e2fd99004383
IEDL.DBID RPM
ISSN 1553-7404
1553-7390
IngestDate Tue Oct 22 15:12:16 EDT 2024
Tue Sep 17 21:17:33 EDT 2024
Fri Jun 28 09:58:29 EDT 2024
Tue Nov 19 20:50:44 EST 2024
Tue Nov 12 23:28:26 EST 2024
Thu Aug 01 19:41:13 EDT 2024
Thu Aug 01 19:45:53 EDT 2024
Thu Aug 01 20:05:50 EDT 2024
Tue Aug 20 22:05:55 EDT 2024
Fri Aug 23 00:48:32 EDT 2024
Sat Sep 28 08:24:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-ff514085664866b43c615dc637c750302d96000948b90c4cf766e2fd99004383
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-5608-1917
0000-0001-7743-0728
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845958/
PMID 33465093
PQID 2479423627
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5e0082b4cbd849a3afb6308cb9b16083
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7845958
proquest_miscellaneous_2479423627
gale_infotracmisc_A650814565
gale_infotracacademiconefile_A650814565
gale_incontextgauss_ISR_A650814565
gale_incontextgauss_ISN_A650814565
gale_incontextgauss_IOV_A650814565
gale_healthsolutions_A650814565
crossref_primary_10_1371_journal_pgen_1009310
pubmed_primary_33465093
PublicationCentury 2000
PublicationDate 2021-01-19
PublicationDateYYYYMMDD 2021-01-19
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References TJM van den Bosch (pgen.1009310.ref044) 2020; 21
R Moore (pgen.1009310.ref003) 2014; 3
S Timilsina (pgen.1009310.ref011) 2020
M Hutin (pgen.1009310.ref026) 2015; 84
J Boch (pgen.1009310.ref001) 2010; 48
ST Lovett (pgen.1009310.ref066) 1996; 93
A Muñoz Bodnar (pgen.1009310.ref007) 2013; 53
AL Perez-Quintero (pgen.1009310.ref008) 2019; 57
J Sambrook (pgen.1009310.ref078) 1989
N Schandry (pgen.1009310.ref032) 2018; 19
J Zhou (pgen.1009310.ref033) 2015; 82
EL Doyle (pgen.1009310.ref056) 2012; 40
A Erkes (pgen.1009310.ref063) 2017; 9
D Teper (pgen.1009310.ref054) 2020; 16
D Teper (pgen.1009310.ref076) 2019
N Jalan (pgen.1009310.ref036) 2013
S Wang (pgen.1009310.ref047) 2015; 8
Y Hu (pgen.1009310.ref019) 2014; 111
J Streubel (pgen.1009310.ref034) 2013; 200
MN Domingues (pgen.1009310.ref071) 2010; 11
S Blanvillain-Baufumé (pgen.1009310.ref038) 2017; 15
J Wang (pgen.1009310.ref031) 2018
RA Cernadas (pgen.1009310.ref015) 2014; 10
P Trivedi (pgen.1009310.ref053) 2014; 8
ST Lovett (pgen.1009310.ref064) 1994; 245
SP Stice (pgen.1009310.ref045) 2020; 30
Z Peng (pgen.1009310.ref018) 2019; 116
GA Wu (pgen.1009310.ref060) 2018; 554
H Jia (pgen.1009310.ref075) 2007; 26
C Wang (pgen.1009310.ref030) 2015; 8
X Sun (pgen.1009310.ref059) 2004; 88
AN-S Mak (pgen.1009310.ref002) 2013; 23
H Jia (pgen.1009310.ref039) 2017; 15
A Guidot (pgen.1009310.ref051) 2014; 31
K Gu (pgen.1009310.ref023) 2005; 435
G Popov (pgen.1009310.ref009) 2016; 29
Q Yan (pgen.1009310.ref061) 2011; 25
JL Fothergill (pgen.1009310.ref049) 2014; 5
AR Schwartz (pgen.1009310.ref016) 2017; 114
T Li (pgen.1009310.ref037) 2012; 30
J Long (pgen.1009310.ref010) 2018; 9
A Perrier (pgen.1009310.ref052) 2016; 12
RE Stall (pgen.1009310.ref048) 2009; 47
H Jia (pgen.1009310.ref073) 2014; 33
ST Lovett (pgen.1009310.ref043) 2004; 52
T Cermak (pgen.1009310.ref077) 2011; 39
H Jia (pgen.1009310.ref069) 2019; 17
R Oliva (pgen.1009310.ref041) 2019; 37
L Bricio-Moreno (pgen.1009310.ref050) 2018; 9
S Duan (pgen.1009310.ref020) 2018
G Antony (pgen.1009310.ref013) 2010; 22
P Römer (pgen.1009310.ref025) 2007; 318
Y Wei (pgen.1009310.ref046) 2018; 16
Z Ji (pgen.1009310.ref027) 2016; 7
D Teper (pgen.1009310.ref074) 2018
A Peng (pgen.1009310.ref040) 2017; 15
CM Ference (pgen.1009310.ref055) 2018; 19
B Yang (pgen.1009310.ref012) 2006; 103
SQ An (pgen.1009310.ref005) 2019
A Al-Saadi (pgen.1009310.ref021) 2007; 20
M Hutin (pgen.1009310.ref004) 2015; 6
A Zaka (pgen.1009310.ref028) 2018; 13
AD Buch (pgen.1009310.ref068) 2010; 88
ME Kovach (pgen.1009310.ref067) 1995; 166
S Kay (pgen.1009310.ref017) 2007; 318
NC Franklin (pgen.1009310.ref065) 1967; 55
H Jia (pgen.1009310.ref070) 2016; 14
H Jia (pgen.1009310.ref042) 2020
Y Hu (pgen.1009310.ref022) 2016; 106
DW Gabriel (pgen.1009310.ref058) 1988; 1
D Tian (pgen.1009310.ref029) 2014; 26
J Boch (pgen.1009310.ref006) 2014; 204
V Verdier (pgen.1009310.ref014) 2012; 196
Y Yu (pgen.1009310.ref035) 2011; 24
AL Pérez-Quintero (pgen.1009310.ref057) 2015
Z Li (pgen.1009310.ref062) 2014; 7
J Zuo (pgen.1009310.ref072) 2000; 24
S Schornack (pgen.1009310.ref024) 2004; 37
References_xml – volume: 82
  start-page: 632
  year: 2015
  ident: pgen.1009310.ref033
  article-title: Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice
  publication-title: Plant J
  doi: 10.1111/tpj.12838
  contributor:
    fullname: J Zhou
– volume: 10
  start-page: e1003972
  year: 2014
  ident: pgen.1009310.ref015
  article-title: Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003972
  contributor:
    fullname: RA Cernadas
– volume: 204
  start-page: 823
  year: 2014
  ident: pgen.1009310.ref006
  article-title: TAL effectors—pathogen strategies and plant resistance engineering
  publication-title: New Phytol
  doi: 10.1111/nph.13015
  contributor:
    fullname: J Boch
– volume: 435
  start-page: 1122
  year: 2005
  ident: pgen.1009310.ref023
  article-title: R gene expression induced by a type-III effector triggers disease resistance in rice
  publication-title: Nature
  doi: 10.1038/nature03630
  contributor:
    fullname: K Gu
– year: 2020
  ident: pgen.1009310.ref011
  article-title: Xanthomonas diversity, virulence and plant-pathogen interactions
  publication-title: Nat Rev Microbiol
  contributor:
    fullname: S Timilsina
– volume: 7
  start-page: 912
  year: 2014
  ident: pgen.1009310.ref062
  article-title: A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri
  publication-title: Mol Plant
  doi: 10.1093/mp/sst176
  contributor:
    fullname: Z Li
– volume: 166
  start-page: 175
  year: 1995
  ident: pgen.1009310.ref067
  article-title: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes
  publication-title: Gene
  doi: 10.1016/0378-1119(95)00584-1
  contributor:
    fullname: ME Kovach
– year: 2019
  ident: pgen.1009310.ref076
  article-title: TfmR, a novel TetR-family transcriptional regulator, modulates the virulence of Xanthomonas citri in response to fatty acids
  publication-title: Mol Plant Pathol
  contributor:
    fullname: D Teper
– volume: 88
  start-page: 1179
  year: 2004
  ident: pgen.1009310.ref059
  article-title: Detection and characterization of a new strain of citrus canker bacteria from key/mexican lime and Alemow in south Florida
  publication-title: Plant Dis
  doi: 10.1094/PDIS.2004.88.11.1179
  contributor:
    fullname: X Sun
– volume: 554
  start-page: 311
  year: 2018
  ident: pgen.1009310.ref060
  article-title: Genomics of the origin and evolution of citrus
  publication-title: Nature
  doi: 10.1038/nature25447
  contributor:
    fullname: GA Wu
– volume: 15
  start-page: 306
  year: 2017
  ident: pgen.1009310.ref038
  article-title: Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12613
  contributor:
    fullname: S Blanvillain-Baufumé
– volume: 31
  start-page: 2913
  year: 2014
  ident: pgen.1009310.ref051
  article-title: Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu229
  contributor:
    fullname: A Guidot
– volume: 116
  start-page: 20938
  year: 2019
  ident: pgen.1009310.ref018
  article-title: Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1911660116
  contributor:
    fullname: Z Peng
– start-page: 14
  year: 2018
  ident: pgen.1009310.ref074
  article-title: The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling
  publication-title: PLoS Pathog
  contributor:
    fullname: D Teper
– volume: 29
  start-page: 651
  year: 2016
  ident: pgen.1009310.ref009
  article-title: Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-07-16-0137-R
  contributor:
    fullname: G Popov
– start-page: 1
  year: 2013
  ident: pgen.1009310.ref036
  article-title: Complete genome sequence of Xanthomonas citri subsp. citri strain Aw12879, a restricted-host-range citrus canker-causing bacterium
  publication-title: Genome Announc
  contributor:
    fullname: N Jalan
– volume: 15
  start-page: 817
  year: 2017
  ident: pgen.1009310.ref039
  article-title: Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12677
  contributor:
    fullname: H Jia
– volume: 318
  start-page: 645
  year: 2007
  ident: pgen.1009310.ref025
  article-title: Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene
  publication-title: Science
  doi: 10.1126/science.1144958
  contributor:
    fullname: P Römer
– volume: 103
  start-page: 10503
  year: 2006
  ident: pgen.1009310.ref012
  article-title: Os8N3 is a host disease-susceptibility gene for bacterial blight of rice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0604088103
  contributor:
    fullname: B Yang
– volume: 8
  start-page: 290
  year: 2015
  ident: pgen.1009310.ref030
  article-title: XA23 is an executor R protein and confers broad-spectrum disease resistance in rice
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2014.10.010
  contributor:
    fullname: C Wang
– volume: 9
  start-page: 2635
  year: 2018
  ident: pgen.1009310.ref050
  article-title: Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04996-x
  contributor:
    fullname: L Bricio-Moreno
– volume: 111
  start-page: E521
  year: 2014
  ident: pgen.1009310.ref019
  article-title: Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1313271111
  contributor:
    fullname: Y Hu
– volume: 20
  start-page: 934
  year: 2007
  ident: pgen.1009310.ref021
  article-title: All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-20-8-0934
  contributor:
    fullname: A Al-Saadi
– volume: 21
  start-page: 349
  year: 2020
  ident: pgen.1009310.ref044
  article-title: Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defense
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12900
  contributor:
    fullname: TJM van den Bosch
– volume: 12
  start-page: e1006044
  year: 2016
  ident: pgen.1009310.ref052
  article-title: Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum
  publication-title: PLOS Pathog
  doi: 10.1371/journal.ppat.1006044
  contributor:
    fullname: A Perrier
– volume: 48
  start-page: 419
  year: 2010
  ident: pgen.1009310.ref001
  article-title: Xanthomonas AvrBs3 family-type III effectors: discovery and function
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080508-081936
  contributor:
    fullname: J Boch
– volume: 9
  start-page: 1857
  year: 2018
  ident: pgen.1009310.ref010
  article-title: Non-TAL effectors from Xanthomonas oryzae pv. oryzae suppress peptidoglycan-triggered MAPK activation in rice
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01857
  contributor:
    fullname: J Long
– volume: 318
  start-page: 648
  year: 2007
  ident: pgen.1009310.ref017
  article-title: A bacterial effector acts as a plant transcription factor and induces a cell size regulator
  publication-title: Science
  doi: 10.1126/science.1144956
  contributor:
    fullname: S Kay
– volume: 25
  start-page: 1
  year: 2011
  ident: pgen.1009310.ref061
  article-title: High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development
  publication-title: Mol Plant Microbe Interact
  contributor:
    fullname: Q Yan
– volume: 30
  start-page: 3130
  year: 2020
  ident: pgen.1009310.ref045
  article-title: Thiosulfinate Tolerance Is a Virulence Strategy of an Atypical Bacterial Pathogen of Onion
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2020.05.092
  contributor:
    fullname: SP Stice
– volume: 33
  start-page: 1993
  year: 2014
  ident: pgen.1009310.ref073
  article-title: Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-014-1673-9
  contributor:
    fullname: H Jia
– volume: 200
  start-page: 808
  year: 2013
  ident: pgen.1009310.ref034
  article-title: Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae
  publication-title: New Phytol
  doi: 10.1111/nph.12411
  contributor:
    fullname: J Streubel
– volume: 26
  start-page: 497
  year: 2014
  ident: pgen.1009310.ref029
  article-title: The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.119255
  contributor:
    fullname: D Tian
– volume: 53
  start-page: 228
  year: 2013
  ident: pgen.1009310.ref007
  article-title: Tell me a tale of TALEs
  publication-title: Mol Biotechnol
  doi: 10.1007/s12033-012-9619-3
  contributor:
    fullname: A Muñoz Bodnar
– volume: 17
  start-page: 1928
  year: 2019
  ident: pgen.1009310.ref069
  article-title: CRISPR -LbCas12a-mediated modification of citrus
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13109
  contributor:
    fullname: H Jia
– volume: 37
  start-page: 46
  year: 2004
  ident: pgen.1009310.ref024
  article-title: The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01937.x
  contributor:
    fullname: S Schornack
– year: 2018
  ident: pgen.1009310.ref031
  article-title: The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice
  publication-title: Mol Plant Pathol
  contributor:
    fullname: J Wang
– volume: 84
  start-page: 694
  year: 2015
  ident: pgen.1009310.ref026
  article-title: A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice
  publication-title: Plant J
  doi: 10.1111/tpj.13042
  contributor:
    fullname: M Hutin
– start-page: 6
  year: 2015
  ident: pgen.1009310.ref057
  article-title: QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically
  publication-title: Front Plant Sci
  contributor:
    fullname: AL Pérez-Quintero
– volume: 23
  start-page: 93
  year: 2013
  ident: pgen.1009310.ref002
  article-title: TAL effectors: function, structure, engineering and applications
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2012.11.001
  contributor:
    fullname: AN-S Mak
– volume: 26
  start-page: 1961
  year: 2007
  ident: pgen.1009310.ref075
  article-title: Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-007-0403-y
  contributor:
    fullname: H Jia
– volume: 7
  start-page: 13435
  year: 2016
  ident: pgen.1009310.ref027
  article-title: Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance
  publication-title: Nat Commun
  doi: 10.1038/ncomms13435
  contributor:
    fullname: Z Ji
– volume: 30
  start-page: 390
  year: 2012
  ident: pgen.1009310.ref037
  article-title: High-efficiency TALEN-based gene editing produces disease-resistant rice
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2199
  contributor:
    fullname: T Li
– year: 2020
  ident: pgen.1009310.ref042
  article-title: Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p
  publication-title: Plant Biotechnol J
  contributor:
    fullname: H Jia
– year: 2019
  ident: pgen.1009310.ref005
  article-title: Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas
  publication-title: FEMS Microbiol Rev
  contributor:
    fullname: SQ An
– volume: 52
  start-page: 1243
  year: 2004
  ident: pgen.1009310.ref043
  article-title: Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04076.x
  contributor:
    fullname: ST Lovett
– volume: 9
  start-page: 1599
  year: 2017
  ident: pgen.1009310.ref063
  article-title: Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evx108
  contributor:
    fullname: A Erkes
– year: 2018
  ident: pgen.1009310.ref020
  article-title: Functional characterization of the citrus canker susceptibility gene CsLOB1
  publication-title: Mol Plant Pathol
  contributor:
    fullname: S Duan
– volume: 114
  start-page: E897
  year: 2017
  ident: pgen.1009310.ref016
  article-title: TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1620407114
  contributor:
    fullname: AR Schwartz
– volume: 24
  start-page: 1102
  year: 2011
  ident: pgen.1009310.ref035
  article-title: Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-11-10-0254
  contributor:
    fullname: Y Yu
– volume: 8
  start-page: 727
  year: 2014
  ident: pgen.1009310.ref053
  article-title: Host immune responses accelerate pathogen evolution
  publication-title: ISME J
  doi: 10.1038/ismej.2013.215
  contributor:
    fullname: P Trivedi
– volume: 19
  start-page: 1302
  year: 2018
  ident: pgen.1009310.ref055
  article-title: Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12638
  contributor:
    fullname: CM Ference
– volume: 106
  start-page: 442
  year: 2016
  ident: pgen.1009310.ref022
  article-title: Temporal transcription profiling of sweet orange in response to PthA4-mediated Xanthomonas citri subsp. citri infection
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-09-15-0201-R
  contributor:
    fullname: Y Hu
– volume: 6
  start-page: 535
  year: 2015
  ident: pgen.1009310.ref004
  article-title: MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility
  publication-title: Front Plant Sci
  contributor:
    fullname: M Hutin
– volume: 55
  start-page: 699
  year: 1967
  ident: pgen.1009310.ref065
  article-title: Extraordinary recombinational events in Escherichia coli. Their independence of the rec+ function
  publication-title: Genetics
  doi: 10.1093/genetics/55.4.699
  contributor:
    fullname: NC Franklin
– volume: 196
  start-page: 1197
  year: 2012
  ident: pgen.1009310.ref014
  article-title: Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04367.x
  contributor:
    fullname: V Verdier
– volume-title: Molecular cloning: a laboratory manual
  year: 1989
  ident: pgen.1009310.ref078
  contributor:
    fullname: J Sambrook
– volume: 24
  start-page: 265
  year: 2000
  ident: pgen.1009310.ref072
  article-title: Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00868.x
  contributor:
    fullname: J Zuo
– volume: 22
  start-page: 3864
  year: 2010
  ident: pgen.1009310.ref013
  article-title: Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.078964
  contributor:
    fullname: G Antony
– volume: 93
  start-page: 7120
  year: 1996
  ident: pgen.1009310.ref066
  article-title: Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.14.7120
  contributor:
    fullname: ST Lovett
– volume: 16
  start-page: e1008886
  year: 2020
  ident: pgen.1009310.ref054
  article-title: The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector
  publication-title: PLOS Pathog
  doi: 10.1371/journal.ppat.1008886
  contributor:
    fullname: D Teper
– volume: 245
  start-page: 294
  year: 1994
  ident: pgen.1009310.ref064
  article-title: Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00290109
  contributor:
    fullname: ST Lovett
– volume: 11
  start-page: 663
  year: 2010
  ident: pgen.1009310.ref071
  article-title: The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair
  publication-title: Mol Plant Pathol
  doi: 10.1111/j.1364-3703.2010.00636.x
  contributor:
    fullname: MN Domingues
– volume: 8
  start-page: 1024
  year: 2015
  ident: pgen.1009310.ref047
  article-title: Rice OsFLS2-mediated perception of bacterial flagellins is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2015.01.012
  contributor:
    fullname: S Wang
– volume: 15
  start-page: 1509
  year: 2017
  ident: pgen.1009310.ref040
  article-title: Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12733
  contributor:
    fullname: A Peng
– volume: 16
  start-page: 1349
  year: 2018
  ident: pgen.1009310.ref046
  article-title: The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12874
  contributor:
    fullname: Y Wei
– volume: 3
  start-page: 708
  year: 2014
  ident: pgen.1009310.ref003
  article-title: Transcription activator-like effectors: a toolkit for synthetic biology
  publication-title: ACS Synth Biol
  doi: 10.1021/sb400137b
  contributor:
    fullname: R Moore
– volume: 37
  start-page: 1344
  year: 2019
  ident: pgen.1009310.ref041
  article-title: Broad-spectrum resistance to bacterial blight in rice using genome editing
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0267-z
  contributor:
    fullname: R Oliva
– volume: 1
  start-page: 59
  year: 1988
  ident: pgen.1009310.ref058
  article-title: Clonal Population Structure of Xanthomonas campestris and Genetic Diversity Among Citrus Canker Strains
  publication-title: Mol Plant-Microbe Interact
  doi: 10.1094/MPMI-1-059
  contributor:
    fullname: DW Gabriel
– volume: 57
  start-page: 459
  year: 2019
  ident: pgen.1009310.ref008
  article-title: A decade decoded: spies and hackers in the history of TAL effectors research
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-082718-100026
  contributor:
    fullname: AL Perez-Quintero
– volume: 40
  start-page: W117
  year: 2012
  ident: pgen.1009310.ref056
  article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks608
  contributor:
    fullname: EL Doyle
– volume: 14
  start-page: 1291
  year: 2016
  ident: pgen.1009310.ref070
  article-title: Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12495
  contributor:
    fullname: H Jia
– volume: 88
  start-page: 209
  year: 2010
  ident: pgen.1009310.ref068
  article-title: Broad-host-range plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-010-2717-x
  contributor:
    fullname: AD Buch
– volume: 47
  start-page: 265
  year: 2009
  ident: pgen.1009310.ref048
  article-title: Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080508-081752
  contributor:
    fullname: RE Stall
– volume: 19
  start-page: 1297
  year: 2018
  ident: pgen.1009310.ref032
  article-title: A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12670
  contributor:
    fullname: N Schandry
– volume: 5
  start-page: 4780
  year: 2014
  ident: pgen.1009310.ref049
  article-title: Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs
  publication-title: Nat Commun
  doi: 10.1038/ncomms5780
  contributor:
    fullname: JL Fothergill
– volume: 13
  start-page: e0203711
  year: 2018
  ident: pgen.1009310.ref028
  article-title: Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0203711
  contributor:
    fullname: A Zaka
– volume: 39
  start-page: e82
  year: 2011
  ident: pgen.1009310.ref077
  article-title: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr218
  contributor:
    fullname: T Cermak
SSID ssj0035897
Score 2.4971938
Snippet Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically...
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1009310
SubjectTerms Analysis
Bacterial Proteins - genetics
Biology and Life Sciences
Citrus - genetics
Citrus - microbiology
Disease susceptibility
DNA binding proteins
Gene Expression Regulation, Plant - genetics
Genetic aspects
Host-bacteria relationships
Host-Pathogen Interactions - genetics
Mutation - genetics
Physiological aspects
Plant Diseases - genetics
Plant Diseases - microbiology
Plant immunology
Plant Proteins - genetics
Promoter Regions, Genetic - genetics
Proteobacteria
Structure
Transcription Activator-Like Effectors - genetics
Virulence Factors - genetics
Xanthomonas - genetics
Xanthomonas - pathogenicity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgEhIXBC0fgUINQuJkmsSO7RyXfqhIqAi6Qr1ZtuMAl2TVbA7998zY2dVGHOiB465nDzsz9jzLb94Q8t43MpRBWVb6Ei4otQ5Me-5YwB9IqQoRG4UvrtTltT49Q5mc7agv5IQleeDkuOMqYJVywrtGi9py2zrJc-1d7QoJ-CGevrneXKbSGcwrncaqVBVnCq71U9McV8XxFKOPKwgQcgRqjt2zO0Upavf_fULvlKg5fXKnHp0_Jo8mIEkX6Q88IfdCt08epNGStwfk28kOTZr2LbWNXaVnd_y0XHyhicrR38ByR7HZgw7jEFkukTB7S9c9vbYoLgCpaoenZHl-tjy5YNP4BOalEmvWtgCGAFFJKbSUTnAP6KXxkiuPj5d52cDtBZmF2tW5F75VEuLWNlCfooDpM7LX9V14QajPna1laa2UXlTOWUCZRVCNEoimRJkRtnGfWSWRDBNfyhRcLpI7DLrbTO7OyCf08dYWJa7jFxB4MwXe_CvwGTnCCJnUL7rdqGaBmLNAoJqRd9ECZS465NH8tOMwmM9ff9zB6OryLkbfZ0YfJqO2h7zwdmpwAB-ixtbM8nBmCTvaz5bfbpLO4BLS4LrQj4MpcR5ACZhDZeR5SsKtEzkXqIYIflGz9Jx5eb7S_f4VBcWVFlVd6Zf_IyyvyMMSaT95wYr6kOytb8bwmtwfmvFN3KJ_AJEoPkw
  priority: 102
  providerName: Directory of Open Access Journals
Title Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas
URI https://www.ncbi.nlm.nih.gov/pubmed/33465093
https://search.proquest.com/docview/2479423627
https://pubmed.ncbi.nlm.nih.gov/PMC7845958
https://doaj.org/article/5e0082b4cbd849a3afb6308cb9b16083
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLboJNBeEPdljBIQEk9pk9ixncdSNm0CxmUV2ptlO8mYtCVV0z7s33OOnVSNeJl4bH0iVecSf6f-zmdCPtiCl2kpdJTaFBqUXJaRtNREJT7AuUiYGxQ-vRDnl_LzMcrkZP0sjCPtW3M9qW9uJ_X1H8etXN7aac8Tm_74NheSZXkmpyMyAmzYt-j-9Usz6W9UyTIaCejou3k5KpJpF57JEmKD9IAcsM0-eUQpQx05OtianIL_v-_pnY1qSKLc2ZVOnpDHHZwMZ_5nPyUPyvoZeegvmLx7Tn7Od8jSYVOFutBLf_iOnxazr6EndDQrWK5DHPkI203ruC6ONnsXrpvwUqPEACSsbl-QxcnxYn4adZcoRJYLto6qCiAR4CrOmeTcMGoBwxSWU2HxCDNOC-hhkF8oTR5bZivBIXpVAbuUkzF9Sfbqpi4PSGhjo3Oeas25ZZkxGrBmUopCMMRULA1I1LtPLb1UhnLnZQJaDO8OhZ5XnecD8gl9vLVFoWv3RbO6Ul24VVYiSDHMmkKyXFNdGU5jaU1uEg7wMSBvMULKT41uy1XNEHkmCFcD8t5ZoNhFjWyaK71pW3X2_fc9jC7O72P0a2D0sTOqGsgLq7sxB_AhKm0NLI8GllDXdrD8rk86hUtIhqvLZtOqFG8FSAF5iIC88km4dWKfywERg_QceHm4AlXmZMW7qjr87ydfk_0UGT9xEiX5EdlbrzblGzJqi80YmpWzL2P3h8fYletfxkRAzQ
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoEdALnwUChQaExCm7SezYznFZWm3FdvnoCvVm2U7SVmqT1Wb30H_PjJOsNuJS9ZjM5JCZsf0sv3km5IvNeB7nQgexjWGDkso8kJaaIMcPOBcRc43CkzMxO5ffj1AmJ-l6YRxp35qrQXl9MyivLh23cnFjhx1PbPjrdCwkS9JEDnfIQxivIe026c0ETBPZ3KmSJDQQsKdvO-aoiIZtggYLyA4SBFJAN3vkMaUMleRob3FyGv7_z9RbS1WfRrm1Lh0_u-cfPSdPWyDqjxrzC_IgL1-SR83VlLevyO_xFs3arwpfZ3rRHNvj03w09RsqSLUEc-ljs4hfr2vHknGE21t_VfnnGsUJoNR1vU_mx0fz8SRor18ILBdsFRQFgClAZJwzyblh1AL6ySynwuLhZxhnsPtBZqI0aWiZLQSHvBcZrG9OAPU12S2rMn9LfBsanfJYa84tS4zRgFKjXGSCIRpjsUeCLuxq0YhsKHfSJmBz0oRDYcZUmzGPfMPcbHxRItu9qJYXqg2rSnKEN4ZZk0mWaqoLw2korUlNxAF4euQQM6uaftPNQFcjxKwRAl2PfHYeKJNRIg_nQq_rWp38_HsHp7PZXZz-9Jy-tk5FBfVkddsgATFEja6e50HPE2YE2zN_6opVoQlpdGVerWsV430CMWAW4ZE3TfFugtiNAY-IXln3oty3QDU7QfK2et_d-8tD8mQyP52q6cnsx3uyFyNvKIyCKD0gu6vlOv9Adups_dEN83-q5lR4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIqpe-P4IFBoQEqfsJrFjJ8dl21UrylLoCvVm2U5SKtFktdk99N8z42RXG3Gp4Jh4csjM2H6W37wB-GhzUcSF1EFsYzygZGkRpJaZoKAPhJARd4XCJxdyepkeHZNMzqbVlyPtW3M9qH7fDKrrX45bOb-xwzVPbHj-dSxTnmRJOpzn5XAH7uOcDZP1Qb1dhFmStn1VkoQFEs_1XdUck9GwC9JgjhEikkCGCGcf9hjjpCbHehuU0_H_e7Xe2q76VMqtvWny6D_-6jE87ACpP2pNnsC9onoKD9oWlbfP4Pt4i27t16Wvcz1vr-_paTY681tKSL3A4cqnohG_WTWOLeOIt7f-svYvNYkUYMrr5jnMJsez8UnQtWEIrJB8GZQlgipEZkLwVAjDmUUUlFvBpKVL0DDO8RREDMXUZKHltpQC41_muM85IdQXsFvVVfEKfBsanYlYayEsT4zRiFajQuaSEyrjsQfB2vVq3optKHfjJvGQ0rpDUdRUFzUPPlN8NrYkle1e1Isr1blWJQXBHMOtyVOeaaZLI1iYWpOZSCAA9eCQoqvautPNhFcjwq4RAV4PPjgLksuoiI9zpVdNo06__byD0cX0LkY_ekafOqOyxpyyuiuUQB-SVlfP8qBniSuD7Q2_XyesoiGi01VFvWpUTH0FYsQu0oOXbQJvnLieBx7IXmr3vNwfwYx2wuRdBr_-5y8PYe_8aKLOTqdf3sB-TPShMAqi7AB2l4tV8RZ2mnz1zs30P1SRVvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consequences+of+adaptation+of+TAL+effectors+on+host+susceptibility+to+Xanthomonas&rft.jtitle=PLoS+genetics&rft.au=Teper%2C+Doron&rft.au=Wang%2C+Nian&rft.date=2021-01-19&rft.eissn=1553-7404&rft.volume=17&rft.issue=1&rft.spage=e1009310&rft.epage=e1009310&rft_id=info:doi/10.1371%2Fjournal.pgen.1009310&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon