Distinct multiple fermionic states in a single topological metal
Among the quantum materials that have recently gained interest are the topological insulators, wherein symmetry-protected surface states cross in reciprocal space, and the Dirac nodal-line semimetals, where bulk bands touch along a line in k-space. However, the existence of multiple fermion phases i...
Saved in:
Published in: | Nature communications Vol. 9; no. 1; pp. 3002 - 8 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-08-2018
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Among the quantum materials that have recently gained interest are the topological insulators, wherein symmetry-protected surface states cross in reciprocal space, and the Dirac nodal-line semimetals, where bulk bands touch along a line in k-space. However, the existence of multiple fermion phases in a single material has not been verified yet. Using angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations, we systematically study the metallic material Hf
2
Te
2
P and discover properties, which are unique in a single topological quantum material. We experimentally observe weak topological insulator surface states and our calculations suggest additional strong topological insulator surface states. Our first-principles calculations reveal a one-dimensional Dirac crossing—the surface Dirac-node arc—along a high-symmetry direction which is confirmed by our ARPES measurements. This novel state originates from the surface bands of a weak topological insulator and is therefore distinct from the well-known Fermi arcs in semimetals.
The existence of multiple topological phases in a single material, although theoretically possible, has not been verified. Here, the authors observe weak topological insulator surface states and a one-dimensional Dirac-node crossing surface state in a single metallic material Hf
2
Te
2
P. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 LA-UR-18-28780 USDOE 89233218CNA000001 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-05233-1 |