E2F1 mediated apoptosis induced by the DNA damage response is blocked by EBV nuclear antigen 3C in lymphoblastoid cells
EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the maj...
Saved in:
Published in: | PLoS pathogens Vol. 8; no. 3; p. e1002573 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-03-2012
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1 degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for development of effective therapies against EBV associated B-cell lymphomas. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: AS ESR. Performed the experiments: AS LM MPAJ. Analyzed the data: AS ESR. Contributed reagents/materials/analysis tools: JL LM SKU MPAJ. Wrote the paper: AS ESR. |
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1002573 |