Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in obese subjects

Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)‐compliant study was approved by...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging Vol. 42; no. 3; pp. 811 - 817
Main Authors: Artz, Nathan S., Haufe, William M., Hooker, Catherine A., Hamilton, Gavin, Wolfson, Tanya, Campos, Guilherme M., Gamst, Anthony C., Schwimmer, Jeffrey B., Sirlin, Claude B., Reeder, Scott B.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-09-2015
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)‐compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38–53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder‐corrected multiecho chemical shift‐encoded gradient‐echo‐based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex‐based (MRI‐C) and 2D magnitude‐based (MRI‐M) MRI. Single‐voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI‐C, MRI‐M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI‐C, MRI‐M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best‐fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI‐C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI‐M (m = 1.0 [0.90, 1.08], b = –1.4 [–2.4, −0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [–0.2, 3.0]). Comparing MRI‐C and MRI‐M yielded an R2 = 0.98 (m = 1.1 [1.02, 1.16], b = –1.8 [–2.8, −1.1]) at 1.5T, and R2 = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder‐corrected MR‐based methods. J. Magn. Reson. Imaging 2015;42:811–817.
AbstractList Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)‐compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38–53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder‐corrected multiecho chemical shift‐encoded gradient‐echo‐based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex‐based (MRI‐C) and 2D magnitude‐based (MRI‐M) MRI. Single‐voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI‐C, MRI‐M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI‐C, MRI‐M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best‐fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI‐C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI‐M (m = 1.0 [0.90, 1.08], b = –1.4 [–2.4, −0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [–0.2, 3.0]). Comparing MRI‐C and MRI‐M yielded an R2 = 0.98 (m = 1.1 [1.02, 1.16], b = –1.8 [–2.8, −1.1]) at 1.5T, and R2 = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder‐corrected MR‐based methods. J. Magn. Reson. Imaging 2015;42:811–817.
PURPOSETo examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths.MATERIALS AND METHODSThis Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38-53 kg/m(2) ) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths.RESULTS1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI-C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI-M (m = 1.0 [0.90, 1.08], b = -1.4 [-2.4, -0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R(2)  = 0.98 (m = 1.1 [1.02, 1.16], b = -1.8 [-2.8, -1.1]) at 1.5T, and R(2)  = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T.CONCLUSIONThis study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods.
Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45±4, range: 38-53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m)=1, intercept(b)=0), indicating excellent agreement for each case: MRI-C (m=0.92 [0.87, 0.99], b=1.4 [0.7, 1.8]); MRI-M (m=1.0 [0.90, 1.08], b=-1.4 [-2.4, -0.5]); MRS (m=0.98 [0.82, 1.15], b=1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R2=0.98 (m=1.1 [1.02, 1.16], b=-1.8 [-2.8, -1.1]) at 1.5T, and R2=0.99 (m=0.98 [0.93, 1.03], b=1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. J. Magn. Reson. Imaging 2015;42:811-817.
To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38-53 kg/m(2) ) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI-C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI-M (m = 1.0 [0.90, 1.08], b = -1.4 [-2.4, -0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R(2)  = 0.98 (m = 1.1 [1.02, 1.16], b = -1.8 [-2.8, -1.1]) at 1.5T, and R(2)  = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T. This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods.
Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 plus or minus 4, range: 38-53 kg/m super(2)) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R super(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m)=1, intercept(b)=0), indicating excellent agreement for each case: MRI-C (m=0.92 [0.87, 0.99], b=1.4 [0.7, 1.8]); MRI-M (m=1.0 [0.90, 1.08], b=-1.4 [-2.4, -0.5]); MRS (m=0.98 [0.82, 1.15], b=1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R super(2)=0.98 (m=1.1 [1.02, 1.16], b=-1.8 [-2.8, -1.1]) at 1.5T, and R super(2)=0.99 (m=0.98 [0.93, 1.03], b=1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. J. Magn. Reson. Imaging 2015; 42:811-817.
Author Gamst, Anthony C.
Reeder, Scott B.
Artz, Nathan S.
Schwimmer, Jeffrey B.
Sirlin, Claude B.
Haufe, William M.
Wolfson, Tanya
Hooker, Catherine A.
Hamilton, Gavin
Campos, Guilherme M.
AuthorAffiliation 6 Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
8 Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
10 Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
3 Department of Computational and Applied Statistics Laboratory, University of California, San Diego, California, USA
1 Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
7 Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
5 Department of Pediatrics, University of California, San Diego, California, USA
9 Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
4 Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA
2 Department of Radiology, University of California, San Diego, California, USA
AuthorAffiliation_xml – name: 3 Department of Computational and Applied Statistics Laboratory, University of California, San Diego, California, USA
– name: 10 Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
– name: 2 Department of Radiology, University of California, San Diego, California, USA
– name: 6 Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
– name: 1 Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
– name: 4 Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA
– name: 8 Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
– name: 7 Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
– name: 9 Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
– name: 5 Department of Pediatrics, University of California, San Diego, California, USA
Author_xml – sequence: 1
  givenname: Nathan S.
  surname: Artz
  fullname: Artz, Nathan S.
  email: nartz@wisc.edu
  organization: Department of Radiology, University of Wisconsin, Wisconsin, Madison, USA
– sequence: 2
  givenname: William M.
  surname: Haufe
  fullname: Haufe, William M.
  organization: Department of Radiology, University of California, California, San Diego, USA
– sequence: 3
  givenname: Catherine A.
  surname: Hooker
  fullname: Hooker, Catherine A.
  organization: Department of Radiology, University of California, California, San Diego, USA
– sequence: 4
  givenname: Gavin
  surname: Hamilton
  fullname: Hamilton, Gavin
  organization: Department of Radiology, University of California, California, San Diego, USA
– sequence: 5
  givenname: Tanya
  surname: Wolfson
  fullname: Wolfson, Tanya
  organization: Department of Computational and Applied Statistics Laboratory, University of California, California, San Diego, USA
– sequence: 6
  givenname: Guilherme M.
  surname: Campos
  fullname: Campos, Guilherme M.
  organization: Department of Surgery, University of Wisconsin, Wisconsin, Madison, USA
– sequence: 7
  givenname: Anthony C.
  surname: Gamst
  fullname: Gamst, Anthony C.
  organization: Department of Computational and Applied Statistics Laboratory, University of California, California, San Diego, USA
– sequence: 8
  givenname: Jeffrey B.
  surname: Schwimmer
  fullname: Schwimmer, Jeffrey B.
  organization: Department of Radiology, University of California, San Diego, California, USA
– sequence: 9
  givenname: Claude B.
  surname: Sirlin
  fullname: Sirlin, Claude B.
  organization: Department of Radiology, University of California, California, San Diego, USA
– sequence: 10
  givenname: Scott B.
  surname: Reeder
  fullname: Reeder, Scott B.
  organization: Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25620624$$D View this record in MEDLINE/PubMed
BookMark eNqF0t1u0zAUB_AIDbGtcMMDIEvcIKQUfyYOF5PQBGNoBamU7dJynOPNJbE7O9noA_DepOtWARdwYdmSf_7LPj6H2Z4PHrLsOcFTgjF9s-yim1IuOX2UHRBBaU6FLPbGNRYsJxKX-9lhSkuMcVVx8STbp6KguKD8IPs5h1UMzWBc7VrXr1GwaDbPa52gQa27gYis7tH1oH3vrDO6d8EjbWJICVkHbYNSH8Ff9ldv0VfdQd7oNTKhW-no0khr6G8BPCJTsUDaN4gtkPMo1JAApaFegunT0-yx1W2CZ_fzJPv24f3i-GN-9uXk9PjdWW4KIWhuDK5qLimTtbEgiKWswaRkRljDgWFLLalKWjUC04I2oihrqGQjJTAry4KySXa0zV0NdQeNAd9H3apVdJ2OaxW0U3_ueHelLsON4hKzzZhkr-4DYrgeIPWqc8lA22oPYUiKyKpksirK8v-0xJxxXlVypC__osswRD9WYqOY4IUgfFSvt-qu-BHs7t4Eq00jqE0jqLtGGPGL31-6ow8_PwKyBbeuhfU_otSn2fz0ITTfnnGphx-7Mzp-V0XJSqEuPp-oc3ku6AWbqRn7BZhEz4Q
CitedBy_id crossref_primary_10_1097_RLI_0000000000000561
crossref_primary_10_1148_radiol_2017161228
crossref_primary_10_1002_jmri_25699
crossref_primary_10_1002_edm2_335
crossref_primary_10_1016_j_jrras_2023_100658
crossref_primary_10_2463_mrms_mp_2016_0081
crossref_primary_10_3390_ijms23095035
crossref_primary_10_1002_hep_29797
crossref_primary_10_1002_hep_29596
crossref_primary_10_1371_journal_pone_0153595
crossref_primary_10_1148_radiol_2017161786
crossref_primary_10_1002_mrm_28062
crossref_primary_10_1055_s_0042_1742574
crossref_primary_10_1002_jmri_28084
crossref_primary_10_5009_gnl15492
crossref_primary_10_1007_s00261_016_0728_5
crossref_primary_10_1016_j_ejmp_2020_06_019
crossref_primary_10_1371_journal_pone_0206450
crossref_primary_10_1002_jmri_24919
crossref_primary_10_1007_s10334_016_0595_7
crossref_primary_10_1007_s00261_018_1745_3
crossref_primary_10_1148_radiol_2021204288
crossref_primary_10_1016_j_clinimag_2021_01_034
crossref_primary_10_1002_jmri_26931
crossref_primary_10_1148_radiol_2017160606
crossref_primary_10_1002_jmri_26575
crossref_primary_10_1259_bjr_20170959
crossref_primary_10_1002_jmri_26814
crossref_primary_10_1002_lt_24965
crossref_primary_10_3390_diagnostics13111852
crossref_primary_10_1148_radiol_2021202912
crossref_primary_10_1038_nrdp_2015_80
crossref_primary_10_1002_jmri_25083
crossref_primary_10_1148_radiol_2017170550
crossref_primary_10_3390_nu12010244
crossref_primary_10_1016_j_ejrad_2016_02_013
crossref_primary_10_1016_j_crad_2020_02_014
crossref_primary_10_1371_journal_pone_0252928
crossref_primary_10_1007_s10334_024_01148_9
crossref_primary_10_1148_radiol_2017162931
crossref_primary_10_1002_jmri_27611
crossref_primary_10_1007_s00261_019_02350_3
crossref_primary_10_1007_s00261_023_03887_0
crossref_primary_10_1371_journal_pone_0160789
crossref_primary_10_1002_jmri_25319
crossref_primary_10_3390_diagnostics11050842
crossref_primary_10_1002_jmri_26967
crossref_primary_10_1371_journal_pone_0204175
crossref_primary_10_1002_mrm_26228
crossref_primary_10_1177_0300060520931281
crossref_primary_10_1093_cdn_nzaa171
crossref_primary_10_1007_s00261_015_0542_5
crossref_primary_10_2214_AJR_17_19391
crossref_primary_10_1002_mrm_27065
crossref_primary_10_1148_radiol_2018181134
crossref_primary_10_1007_s00261_016_0925_2
crossref_primary_10_1007_s11427_017_9279_1
crossref_primary_10_1007_s00330_023_09864_x
crossref_primary_10_1007_s00330_021_07851_8
crossref_primary_10_1159_000439130
crossref_primary_10_1002_jmri_25382
crossref_primary_10_1007_s00330_022_08581_1
crossref_primary_10_1016_j_mri_2019_08_016
Cites_doi 10.2214/AJR.09.2590
10.1097/RLI.0b013e31824baff3
10.1016/0730-725X(94)92543-7
10.1016/j.hep.2003.09.022
10.1016/j.mri.2011.09.011
10.1148/radiol.10100708
10.1016/j.mri.2007.08.012
10.1053/j.gastro.2005.03.084
10.1002/jmri.22890
10.1002/jmri.22514
10.1148/radiol.09090131
10.1002/mrm.21737
10.1056/NEJMoa1200225
10.1002/jmri.21090
10.1016/j.amjmed.2008.09.041
10.1002/hep.21327
10.1002/hep.20466
10.1002/jmri.21957
10.1002/jmri.24153
10.1002/mrm.22840
10.1148/radiol.2511080666
10.1073/pnas.0904944106
10.1002/jmri.23741
10.1002/nbm.1622
10.1056/NEJMra0912063
10.1002/jmri.20831
10.1148/radiol.12112520
10.1152/ajpendo.00064.2004
10.1002/mrm.21301
10.1002/jmri.1880050311
10.1210/jc.2013-1138
10.1148/radiol.10100659
10.1002/jmri.22701
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
K9.
P64
7X8
7TS
5PM
DOI 10.1002/jmri.24842
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Physical Education Index
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Physical Education Index
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Physical Education Index
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 817
ExternalDocumentID 3775943201
10_1002_jmri_24842
25620624
JMRI24842
ark_67375_WNG_V8V52W3M_M
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR000427
– fundername: NIDDK NIH HHS
  grantid: K24 DK102595
– fundername: NIDDK NIH HHS
  grantid: R01 DK083380
– fundername: NIDDK NIH HHS
  grantid: R01 DK100651
– fundername: NIDDK NIH HHS
  grantid: R01 DK088925-01
– fundername: NIDDK NIH HHS
  grantid: R01 DK088925
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7TK
8FD
FR3
K9.
P64
7X8
7TS
5PM
ID FETCH-LOGICAL-c6552-cc09b48238bcfe51f23d0173c5fc4e30f2f19729d50262d567be98d88e3f87623
IEDL.DBID 33P
ISSN 1053-1807
IngestDate Tue Sep 17 20:45:31 EDT 2024
Fri Aug 16 01:00:11 EDT 2024
Fri Aug 16 09:10:27 EDT 2024
Tue Nov 19 04:52:26 EST 2024
Fri Nov 22 03:01:55 EST 2024
Sat Sep 28 08:06:36 EDT 2024
Sat Aug 24 01:17:04 EDT 2024
Wed Oct 30 09:55:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords magnetic resonance imaging
proton density fat-fraction
liver
reproducibility
fat quantification
chemical shift
obesity
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6552-cc09b48238bcfe51f23d0173c5fc4e30f2f19729d50262d567be98d88e3f87623
Notes ark:/67375/WNG-V8V52W3M-M
istex:D9B293BB1D10D08C8AC9E5AEB30286F70FF505BC
ArticleID:JMRI24842
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.24842
PMID 25620624
PQID 1703546514
PQPubID 1006400
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4803480
proquest_miscellaneous_1897389677
proquest_miscellaneous_1704344998
proquest_journals_1703546514
crossref_primary_10_1002_jmri_24842
pubmed_primary_25620624
wiley_primary_10_1002_jmri_24842_JMRI24842
istex_primary_ark_67375_WNG_V8V52W3M_M
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hines CD, Frydrychowicz A, Hamilton G, et al. T(1) independent, T(2) (*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. J Magn Reson Imaging 2011;33:873-881.
Boyce CJ, Pickhardt PJ, Kim DH, et al. Hepatic steatosis (fatty liver disease) in asymptomatic adults identified by unenhanced low-dose CT. AJR Am J Roentgenol 2010;194:623-628.
Hines CD, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 2009;30:1215-1222.
Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 2009;106:15430-15435.
Longo R, Pollesello P, Ricci C, et al. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 1995;5:281-285.
Hansen KH, Schroeder ME, Hamilton G, Sirlin CB, Bydder M. Robustness of fat quantification using chemical shift imaging. Magn Reson Imaging 2012;30:151-157.
Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767-775.
Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O. Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 1994;12:487-495.
Kuhn JP, Hernando D, Munoz del Rio A, et al. Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 2012;265:133-142.
Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999;276(5 Pt 1):E977-989.
Kang GH, Cruite I, Shiehmorteza M, et al. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011;34:928-934.
Kang BK, Yu ES, Lee SS, et al. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard. Invest Radiol 2012;47:368-375.
Johnson BL, Schroeder ME, Wolfson T, et al. Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 2014;39:440-447.
Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 2011;258:749-759.
Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134.
Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005;128:1898-1906.
Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012;366:1567-1576.
Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 2012;36:1011-1014.
Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67-76.
Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005;288:E462-468.
Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40:1387-1395.
Yu H, Shimakawa A, Hines CD, et al. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199-206.
Hines CD, Agni R, Roen C, et al. Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse. J Magn Reson Imaging 2012;35:844-851.
Bedossa P, Dargere D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003;38:1449-1457.
Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 2010;363:1341-1350.
Reeder SB, McKenzie CA, Pineda AR, et al. Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 2007;25:644-652.
Bydder M, Yokoo T, Hamilton G, et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347-359.
Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 2007;58:354-364.
Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 2009;122:248-256 e245.
Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007;26:1153-1161.
Hamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat (1)H MR spectrum. NMR Biomed 2011;24:784-790.
Alderete TL, Toledo-Corral CM, Desai P, Weigensberg MJ, Goran MI. Liver fat has a stronger association with risk factors for type 2 diabetes in African-American compared with Hispanic adolescents. J Clin Endocrinol Metab 2013;98:3748-3754.
Ekstedt M, Franzén LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006;44:865-873.
Hines CD, Yu H, Shimakawa A, et al. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 2010;254:119-128.
2011; 258
2004; 40
2012; 265
2012; 366
2010
2010; 363
2011; 33
2003; 38
2011; 34
2009; 251
2012; 36
2012; 35
1995; 5
2007; 58
2012; 30
2009; 30
2013; 98
2005; 288
2006; 44
2005; 128
1994; 12
2010; 254
2008; 26
2009; 122
2011; 66
2010; 194
2011; 24
1999; 276
2014; 39
2012; 47
2008; 60
2007; 25
2007; 26
2009; 106
17006923 - Hepatology. 2006 Oct;44(4):865-73
10329993 - Am J Physiol. 1999 May;276(5 Pt 1):E977-89
18093781 - Magn Reson Imaging. 2008 Apr;26(3):347-59
22055856 - Magn Reson Imaging. 2012 Feb;30(2):151-7
20173137 - AJR Am J Roentgenol. 2010 Mar;194(3):623-8
15565570 - Hepatology. 2004 Dec;40(6):1387-95
15940625 - Gastroenterology. 2005 Jun;128(7):1898-906
19706383 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15430-5
22127834 - J Magn Reson Imaging. 2012 Apr;35(4):844-51
21769986 - J Magn Reson Imaging. 2011 Oct;34(4):928-34
7633104 - J Magn Reson Imaging. 1995 May-Jun;5(3):281-5
21834002 - NMR Biomed. 2011 Aug;24(7):784-90
19856457 - J Magn Reson Imaging. 2009 Nov;30(5):1215-22
21212366 - Radiology. 2011 Mar;258(3):749-59
17326087 - J Magn Reson Imaging. 2007 Mar;25(3):644-52
21248233 - Radiology. 2011 Mar;258(3):767-75
15339742 - Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E462-8
23596052 - J Magn Reson Imaging. 2014 Feb;39(2):440-7
14647056 - Hepatology. 2003 Dec;38(6):1449-57
20879883 - N Engl J Med. 2010 Sep 30;363(14):1341-50
22449319 - N Engl J Med. 2012 Apr 26;366(17):1567-76
20032146 - Radiology. 2010 Jan;254(1):119-28
21448952 - J Magn Reson Imaging. 2011 Apr;33(4):873-81
17896369 - J Magn Reson Imaging. 2007 Oct;26(4):1153-61
8007779 - Magn Reson Imaging. 1994;12(3):487-95
21695724 - Magn Reson Med. 2011 Jul;66(1):199-206
22923718 - Radiology. 2012 Oct;265(1):133-42
18956464 - Magn Reson Med. 2008 Nov;60(5):1122-34
17654578 - Magn Reson Med. 2007 Aug;58(2):354-64
22777847 - J Magn Reson Imaging. 2012 Nov;36(5):1011-4
22543969 - Invest Radiol. 2012 Jun;47(6):368-75
19221054 - Radiology. 2009 Apr;251(1):67-76
19272486 - Am J Med. 2009 Mar;122(3):248-256.e5
23873990 - J Clin Endocrinol Metab. 2013 Sep;98(9):3748-54
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
Szczepaniak LS (e_1_2_6_18_1) 1999; 276
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 366
  start-page: 1567
  year: 2012
  end-page: 1576
  article-title: Bariatric surgery versus intensive medical therapy in obese patients with diabetes
  publication-title: N Engl J Med
– volume: 58
  start-page: 354
  year: 2007
  end-page: 364
  article-title: Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise
  publication-title: Magn Reson Med
– volume: 38
  start-page: 1449
  year: 2003
  end-page: 1457
  article-title: Sampling variability of liver fibrosis in chronic hepatitis C
  publication-title: Hepatology
– volume: 47
  start-page: 368
  year: 2012
  end-page: 375
  article-title: Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical‐shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard
  publication-title: Invest Radiol
– volume: 122
  start-page: 248
  year: 2009
  end-page: 256 e245
  article-title: Weight and type 2 diabetes after bariatric surgery: systematic review and meta‐analysis
  publication-title: Am J Med
– volume: 288
  start-page: E462
  year: 2005
  end-page: 468
  article-title: Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population
  publication-title: Am J Physiol Endocrinol Metab
– volume: 194
  start-page: 623
  year: 2010
  end-page: 628
  article-title: Hepatic steatosis (fatty liver disease) in asymptomatic adults identified by unenhanced low‐dose CT
  publication-title: AJR Am J Roentgenol
– volume: 258
  start-page: 749
  year: 2011
  end-page: 759
  article-title: Estimation of hepatic proton‐density fat fraction by using MR imaging at 3.0 T
  publication-title: Radiology
– volume: 44
  start-page: 865
  year: 2006
  end-page: 873
  article-title: Long‐term follow‐up of patients with NAFLD and elevated liver enzymes
  publication-title: Hepatology
– volume: 12
  start-page: 487
  year: 1994
  end-page: 495
  article-title: Quantification of liver fat using magnetic resonance spectroscopy
  publication-title: Magn Reson Imaging
– volume: 5
  start-page: 281
  year: 1995
  end-page: 285
  article-title: Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 784
  year: 2011
  end-page: 790
  article-title: In vivo characterization of the liver fat (1)H MR spectrum
  publication-title: NMR Biomed
– volume: 254
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Quantification of hepatic steatosis with 3‐T MR imaging: validation in ob/ob mice
  publication-title: Radiology
– volume: 25
  start-page: 644
  year: 2007
  end-page: 652
  article-title: Water‐fat separation with IDEAL gradient‐echo imaging
  publication-title: J Magn Reson Imaging
– volume: 35
  start-page: 844
  year: 2012
  end-page: 851
  article-title: Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse
  publication-title: J Magn Reson Imaging
– volume: 276
  start-page: E977
  issue: 5 Pt 1
  year: 1999
  end-page: 989
  article-title: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo
  publication-title: Am J Physiol
– volume: 106
  start-page: 15430
  year: 2009
  end-page: 15435
  article-title: Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 1153
  year: 2007
  end-page: 1161
  article-title: Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation
  publication-title: J Magn Reson Imaging
– volume: 265
  start-page: 133
  year: 2012
  end-page: 142
  article-title: Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results
  publication-title: Radiology
– volume: 33
  start-page: 873
  year: 2011
  end-page: 881
  article-title: T(1) independent, T(2) (*) corrected chemical shift based fat‐water separation with multi‐peak fat spectral modeling is an accurate and precise measure of hepatic steatosis
  publication-title: J Magn Reson Imaging
– volume: 128
  start-page: 1898
  year: 2005
  end-page: 1906
  article-title: Sampling variability of liver biopsy in nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 60
  start-page: 1122
  year: 2008
  end-page: 1134
  article-title: Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling
  publication-title: Magn Reson Med
– volume: 36
  start-page: 1011
  year: 2012
  end-page: 1014
  article-title: Proton density fat‐fraction: a standardized MR‐based biomarker of tissue fat concentration
  publication-title: J Magn Reson Imaging
– volume: 30
  start-page: 1215
  year: 2009
  end-page: 1222
  article-title: T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat‐water‐SPIO phantom
  publication-title: J Magn Reson Imaging
– volume: 251
  start-page: 67
  year: 2009
  end-page: 76
  article-title: Nonalcoholic fatty liver disease: diagnostic and fat‐grading accuracy of low‐flip‐angle multiecho gradient‐recalled‐echo MR imaging at 1.5 T
  publication-title: Radiology
– volume: 40
  start-page: 1387
  year: 2004
  end-page: 1395
  article-title: Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity
  publication-title: Hepatology
– volume: 39
  start-page: 440
  year: 2014
  end-page: 447
  article-title: Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data‐based, T1‐independent, T2*‐corrected, spectrum‐modeled MRI
  publication-title: J Magn Reson Imaging
– volume: 258
  start-page: 767
  year: 2011
  end-page: 775
  article-title: Quantification of hepatic steatosis with T1‐independent, T2‐corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy
  publication-title: Radiology
– volume: 66
  start-page: 199
  year: 2011
  end-page: 206
  article-title: Combination of complex‐based and magnitude‐based multiecho water‐fat separation for accurate quantification of fat‐fraction
  publication-title: Magn Reson Med
– volume: 34
  start-page: 928
  year: 2011
  end-page: 934
  article-title: Reproducibility of MRI‐determined proton density fat fraction across two different MR scanner platforms
  publication-title: J Magn Reson Imaging
– volume: 26
  start-page: 347
  year: 2008
  end-page: 359
  article-title: Relaxation effects in the quantification of fat using gradient echo imaging
  publication-title: Magn Reson Imaging
– volume: 98
  start-page: 3748
  year: 2013
  end-page: 3754
  article-title: Liver fat has a stronger association with risk factors for type 2 diabetes in African‐American compared with Hispanic adolescents
  publication-title: J Clin Endocrinol Metab
– volume: 30
  start-page: 151
  year: 2012
  end-page: 157
  article-title: Robustness of fat quantification using chemical shift imaging
  publication-title: Magn Reson Imaging
– start-page: p 224
  year: 2010
– volume: 363
  start-page: 1341
  year: 2010
  end-page: 1350
  article-title: Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease
  publication-title: N Engl J Med
– ident: e_1_2_6_2_1
  doi: 10.2214/AJR.09.2590
– ident: e_1_2_6_26_1
  doi: 10.1097/RLI.0b013e31824baff3
– ident: e_1_2_6_19_1
  doi: 10.1016/0730-725X(94)92543-7
– ident: e_1_2_6_10_1
  doi: 10.1016/j.hep.2003.09.022
– ident: e_1_2_6_31_1
  doi: 10.1016/j.mri.2011.09.011
– volume: 276
  start-page: E977
  issue: 5
  year: 1999
  ident: e_1_2_6_18_1
  article-title: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo
  publication-title: Am J Physiol
  contributor:
    fullname: Szczepaniak LS
– ident: e_1_2_6_13_1
  doi: 10.1148/radiol.10100708
– ident: e_1_2_6_34_1
  doi: 10.1016/j.mri.2007.08.012
– ident: e_1_2_6_9_1
  doi: 10.1053/j.gastro.2005.03.084
– ident: e_1_2_6_29_1
  doi: 10.1002/jmri.22890
– ident: e_1_2_6_30_1
  doi: 10.1002/jmri.22514
– ident: e_1_2_6_12_1
  doi: 10.1148/radiol.09090131
– ident: e_1_2_6_21_1
  doi: 10.1002/mrm.21737
– ident: e_1_2_6_36_1
  doi: 10.1056/NEJMoa1200225
– ident: e_1_2_6_22_1
  doi: 10.1002/jmri.21090
– ident: e_1_2_6_35_1
  doi: 10.1016/j.amjmed.2008.09.041
– ident: e_1_2_6_5_1
  doi: 10.1002/hep.21327
– ident: e_1_2_6_4_1
  doi: 10.1002/hep.20466
– ident: e_1_2_6_33_1
– ident: e_1_2_6_23_1
  doi: 10.1002/jmri.21957
– ident: e_1_2_6_27_1
  doi: 10.1002/jmri.24153
– ident: e_1_2_6_25_1
  doi: 10.1002/mrm.22840
– ident: e_1_2_6_14_1
  doi: 10.1148/radiol.2511080666
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.0904944106
– ident: e_1_2_6_16_1
  doi: 10.1002/jmri.23741
– ident: e_1_2_6_11_1
  doi: 10.1002/nbm.1622
– ident: e_1_2_6_8_1
  doi: 10.1056/NEJMra0912063
– ident: e_1_2_6_20_1
  doi: 10.1002/jmri.20831
– ident: e_1_2_6_28_1
  doi: 10.1148/radiol.12112520
– ident: e_1_2_6_3_1
  doi: 10.1152/ajpendo.00064.2004
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.21301
– ident: e_1_2_6_17_1
  doi: 10.1002/jmri.1880050311
– ident: e_1_2_6_7_1
  doi: 10.1210/jc.2013-1138
– ident: e_1_2_6_15_1
  doi: 10.1148/radiol.10100659
– ident: e_1_2_6_32_1
  doi: 10.1002/jmri.22701
SSID ssj0009945
Score 2.4614954
Snippet Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different...
To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic...
Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different...
PURPOSETo examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 811
SubjectTerms Adipose Tissue - pathology
Adult
Body Mass Index
chemical shift
Echo-Planar Imaging
fat quantification
Female
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
liver
Liver - pathology
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Male
Middle Aged
Non-alcoholic Fatty Liver Disease - pathology
obesity
Obesity - physiopathology
proton density fat-fraction
Protons
Regression Analysis
reproducibility
Reproducibility of Results
Title Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in obese subjects
URI https://api.istex.fr/ark:/67375/WNG-V8V52W3M-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24842
https://www.ncbi.nlm.nih.gov/pubmed/25620624
https://www.proquest.com/docview/1703546514
https://search.proquest.com/docview/1704344998
https://search.proquest.com/docview/1897389677
https://pubmed.ncbi.nlm.nih.gov/PMC4803480
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIhLedNAQYNAHJDSJn7EDuKCSktBSoXapeVm2bFDF2gWNhuJ3rhy4zfyS2o72SwrUCXEIVIkj5XYM2N_tsffIPSYW-5whtUx5kbEVGsViwqLOMuExrTUqdD-NvLuAd97L15ue5qc5_O7MB0_xLDh5j0jjNfewZVuNhekoR9PpuMNTAX1A7BbJoT7G-TtgnE3DxmKHX4gcSoSPnCT4s1F1aXZ6JLv2G9_g5p_Rkz-jmTDVLRz9f8acQ2t9hAUXnQ2cx1dsPUNdLnoD9lvoh8OlAce2C5w9hQmFRT7v77_9DOegc8-kgMqNYOvrepCjYJ2QYU2QoiJA38Hpf4wO34GB-rEuspGnUI5JD2EPj4M0g02AlUbICMY1zDRtrHQtNpvDzW30Lud7dHWbtxnbIjLjDEcl2WSayocDNBlZVlaYWKcy5OSVSW1JKlw5dOc5Ya5pR82LOPa5sIIYUnlh2VyG63Uk9quIRDECjeTasYIo2VuPRG_YkaYhHpREqFHc83JLx0xh-womLH0vSpDr0boSVDqIKKmn3woG2fyaO-VPBSHDB-RQhYRWp9rXfZe3MjUDYchWTyN0MOh2PmfP1RRtZ20QYYS6taN4hwZkXMHDDPOI3SnM6ThhxzkxEmG3Rf4kokNAp7_e7mkHh8HHnAqEuKeCD0NJnZON8g3xf7r8Hb3X4TvoSsOH7IupG4drcymrb2PLjamfRB87QwBbC57
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70eggBGIA1LaxI_YQeKAoGULzQq125abZcc2XaBZ2GwkeuPKjd_IL8F2sllWoEqIQ6RIHivxeMb-bI-_AeARM8zhDKNixDSPiVIy5hbxOMu4QqRUKVf-NvJgjw3f8Zebnibn2fwuTMsP0W-4ec8I47V3cL8hvbFgDf1wPB2vI8KJG4FXSeYs0d_gwG8XnLt5yFHsEASOU56wnp0UbSzqLs1Hq161X_8GNv-Mmfwdy4bJaOvSfzbjMrjYoVD4vDWbK-CMqa6Cc0V3zn4NfHe4PFDBtrGzJ3BiYbH789sPP-lp-MkHc0ArZ_BLI9too9DBUIZGwhAWB_01lOr97Ogp3JPHxlXW8gSWfd5D2IWIwXSdjqCsNMQjOK7gRJnawLpRfoeovg72tzZHLwZxl7QhLjNKUVyWSa4Id0hAldbQ1CKsndfjktqSGJxYZH2ms1xTt_pDmmZMmZxrzg22fmTGN8BKNanMLQA5NtxNpopSTEmZG8_FL6nmOiFeFEfg4bzrxOeWm0O0LMxIeK2KoNUIPA692ovI6UcfzcaoOBy-Egf8gKJDXIgiAmvzbhedI9cidSNiyBdPIvCgL3Yu6M9VZGUmTZAhmLilIz9FhufMYcOMsQjcbC2p_yGHOlGSIfcFtmRjvYCnAF8uqcZHgQqc8AS7JwJPgo2dogbxutjdDm-3_0X4Pjg_GBU7Ymd7-OYOuODgIm0j7NbAymzamLvgbK2be8HxfgHyYTKj
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglSou5Q2BAkYgDkhpEz9iB3FBtEsLZFW1S9ubZcd2u0CzZbOR6I0rN34jvwTb2c2yAlVCHCJF8liJ7ZnxZ3v8DQBPmWEOZxgVI6Z5TJSSMbeIx1nGFSKlSrnyt5G391n_iG9ueZqcl7O7MC0_RLfh5i0j-Gtv4GfabsxJQz-ejofriHDiHPAycTjcM-djvDun3M1DimIHIHCc8oR15KRoY153YTpa9j379W9Y88-Qyd-hbJiLelf_rxXXwOoUg8JXrdJcB5dMdQOsFNNT9pvgu0PlgQi2jZw9hyMLi72f3374KU_Dzz6UA1o5gV8a2cYaheGFMrQRhqA46C-hVMeTkxdwX54aV1nLc1h2WQ_hNEAMput0AGWlIR7AYQVHytQG1o3y-0P1LfChtzV4vR1PUzbEZUYpissyyRXhDgeo0hqaWoS1s3lcUlsSgxOLrM9zlmvq1n5I04wpk3PNucHW-2V8GyxVo8rcBZBjw91UqijFlJS58Uz8kmquE-JFcQSezEZOnLXMHKLlYEbC96oIvRqBZ2FQOxE5_uRj2RgVh_034oAfUHSIC1FEYG026mJqxrVInT8M2eJJBB53xc4A_amKrMyoCTIEE7dw5BfI8Jw5ZJgxFoE7rSJ1P-QwJ0oy5L7AFlSsE_AE4Isl1fAkEIETnmD3ROB5ULELukG8LfZ2wtu9fxF-BFZ2N3vi_U7_3X1wxWFF2obXrYGlybgxD8DlWjcPg9n9AhnuMUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+MR%E2%80%90based+liver+fat+quantification+across+field+strength%3A+Same%E2%80%90day+comparison+between+1.5T+and+3T+in+obese+subjects&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Artz%2C+Nathan+S.&rft.au=Haufe%2C+William+M.&rft.au=Hooker%2C+Catherine+A.&rft.au=Hamilton%2C+Gavin&rft.date=2015-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=42&rft.issue=3&rft.spage=811&rft.epage=817&rft_id=info:doi/10.1002%2Fjmri.24842&rft.externalDBID=10.1002%252Fjmri.24842&rft.externalDocID=JMRI24842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon