Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in obese subjects
Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)‐compliant study was approved by...
Saved in:
Published in: | Journal of magnetic resonance imaging Vol. 42; no. 3; pp. 811 - 817 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-09-2015
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different magnetic field strengths.
Materials and Methods
This Health Insurance Portability and Accountability Act (HIPAA)‐compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38–53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder‐corrected multiecho chemical shift‐encoded gradient‐echo‐based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex‐based (MRI‐C) and 2D magnitude‐based (MRI‐M) MRI. Single‐voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI‐C, MRI‐M, MRS) at each field strength and for each method across field strengths.
Results
1.5T vs. 3T regression analyses for MRI‐C, MRI‐M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best‐fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI‐C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI‐M (m = 1.0 [0.90, 1.08], b = –1.4 [–2.4, −0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [–0.2, 3.0]). Comparing MRI‐C and MRI‐M yielded an R2 = 0.98 (m = 1.1 [1.02, 1.16], b = –1.8 [–2.8, −1.1]) at 1.5T, and R2 = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T.
Conclusion
This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder‐corrected MR‐based methods. J. Magn. Reson. Imaging 2015;42:811–817. |
---|---|
AbstractList | Purpose
To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different magnetic field strengths.
Materials and Methods
This Health Insurance Portability and Accountability Act (HIPAA)‐compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38–53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder‐corrected multiecho chemical shift‐encoded gradient‐echo‐based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex‐based (MRI‐C) and 2D magnitude‐based (MRI‐M) MRI. Single‐voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI‐C, MRI‐M, MRS) at each field strength and for each method across field strengths.
Results
1.5T vs. 3T regression analyses for MRI‐C, MRI‐M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best‐fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI‐C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI‐M (m = 1.0 [0.90, 1.08], b = –1.4 [–2.4, −0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [–0.2, 3.0]). Comparing MRI‐C and MRI‐M yielded an R2 = 0.98 (m = 1.1 [1.02, 1.16], b = –1.8 [–2.8, −1.1]) at 1.5T, and R2 = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T.
Conclusion
This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder‐corrected MR‐based methods. J. Magn. Reson. Imaging 2015;42:811–817. PURPOSETo examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths.MATERIALS AND METHODSThis Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38-53 kg/m(2) ) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths.RESULTS1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI-C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI-M (m = 1.0 [0.90, 1.08], b = -1.4 [-2.4, -0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R(2) = 0.98 (m = 1.1 [1.02, 1.16], b = -1.8 [-2.8, -1.1]) at 1.5T, and R(2) = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T.CONCLUSIONThis study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45±4, range: 38-53 kg/m2) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R2 values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m)=1, intercept(b)=0), indicating excellent agreement for each case: MRI-C (m=0.92 [0.87, 0.99], b=1.4 [0.7, 1.8]); MRI-M (m=1.0 [0.90, 1.08], b=-1.4 [-2.4, -0.5]); MRS (m=0.98 [0.82, 1.15], b=1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R2=0.98 (m=1.1 [1.02, 1.16], b=-1.8 [-2.8, -1.1]) at 1.5T, and R2=0.99 (m=0.98 [0.93, 1.03], b=1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. J. Magn. Reson. Imaging 2015;42:811-817. To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 ± 4, range: 38-53 kg/m(2) ) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m) = 1, intercept(b) = 0), indicating excellent agreement for each case: MRI-C (m = 0.92 [0.87, 0.99], b = 1.4 [0.7, 1.8]); MRI-M (m = 1.0 [0.90, 1.08], b = -1.4 [-2.4, -0.5]); MRS (m = 0.98 [0.82, 1.15], b = 1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R(2) = 0.98 (m = 1.1 [1.02, 1.16], b = -1.8 [-2.8, -1.1]) at 1.5T, and R(2) = 0.99 (m = 0.98 [0.93, 1.03], b = 1.2 [0.7, 1.7]) at 3T. This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic field strengths. Materials and Methods This Health Insurance Portability and Accountability Act (HIPAA)-compliant study was approved by the Institutional Review Board. Following informed consent, 25 severely obese subjects (mean body mass index [BMI]: 45 plus or minus 4, range: 38-53 kg/m super(2)) were scanned at 1.5T and 3T on the same day. Two confounder-corrected multiecho chemical shift-encoded gradient-echo-based imaging methods were acquired to estimate PDFF over the entire liver: 3D complex-based (MRI-C) and 2D magnitude-based (MRI-M) MRI. Single-voxel MR spectroscopy (MRS) was performed in the right liver lobe. Using linear regression, pairwise comparisons of estimated PDFF were made between methods (MRI-C, MRI-M, MRS) at each field strength and for each method across field strengths. Results 1.5T vs. 3T regression analyses for MRI-C, MRI-M, and MRS PDFF measurements yielded R super(2) values of 0.99, 0.97, and 0.90, respectively. The best-fit line was near unity (slope(m)=1, intercept(b)=0), indicating excellent agreement for each case: MRI-C (m=0.92 [0.87, 0.99], b=1.4 [0.7, 1.8]); MRI-M (m=1.0 [0.90, 1.08], b=-1.4 [-2.4, -0.5]); MRS (m=0.98 [0.82, 1.15], b=1.2 [-0.2, 3.0]). Comparing MRI-C and MRI-M yielded an R super(2)=0.98 (m=1.1 [1.02, 1.16], b=-1.8 [-2.8, -1.1]) at 1.5T, and R super(2)=0.99 (m=0.98 [0.93, 1.03], b=1.2 [0.7, 1.7]) at 3T. Conclusion This study demonstrates that PDFF estimation is reproducible across field strengths and across two confounder-corrected MR-based methods. J. Magn. Reson. Imaging 2015; 42:811-817. |
Author | Gamst, Anthony C. Reeder, Scott B. Artz, Nathan S. Schwimmer, Jeffrey B. Sirlin, Claude B. Haufe, William M. Wolfson, Tanya Hooker, Catherine A. Hamilton, Gavin Campos, Guilherme M. |
AuthorAffiliation | 6 Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA 8 Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA 10 Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA 3 Department of Computational and Applied Statistics Laboratory, University of California, San Diego, California, USA 1 Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA 7 Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA 5 Department of Pediatrics, University of California, San Diego, California, USA 9 Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA 4 Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA 2 Department of Radiology, University of California, San Diego, California, USA |
AuthorAffiliation_xml | – name: 3 Department of Computational and Applied Statistics Laboratory, University of California, San Diego, California, USA – name: 10 Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA – name: 2 Department of Radiology, University of California, San Diego, California, USA – name: 6 Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA – name: 1 Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA – name: 4 Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA – name: 8 Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA – name: 7 Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA – name: 9 Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA – name: 5 Department of Pediatrics, University of California, San Diego, California, USA |
Author_xml | – sequence: 1 givenname: Nathan S. surname: Artz fullname: Artz, Nathan S. email: nartz@wisc.edu organization: Department of Radiology, University of Wisconsin, Wisconsin, Madison, USA – sequence: 2 givenname: William M. surname: Haufe fullname: Haufe, William M. organization: Department of Radiology, University of California, California, San Diego, USA – sequence: 3 givenname: Catherine A. surname: Hooker fullname: Hooker, Catherine A. organization: Department of Radiology, University of California, California, San Diego, USA – sequence: 4 givenname: Gavin surname: Hamilton fullname: Hamilton, Gavin organization: Department of Radiology, University of California, California, San Diego, USA – sequence: 5 givenname: Tanya surname: Wolfson fullname: Wolfson, Tanya organization: Department of Computational and Applied Statistics Laboratory, University of California, California, San Diego, USA – sequence: 6 givenname: Guilherme M. surname: Campos fullname: Campos, Guilherme M. organization: Department of Surgery, University of Wisconsin, Wisconsin, Madison, USA – sequence: 7 givenname: Anthony C. surname: Gamst fullname: Gamst, Anthony C. organization: Department of Computational and Applied Statistics Laboratory, University of California, California, San Diego, USA – sequence: 8 givenname: Jeffrey B. surname: Schwimmer fullname: Schwimmer, Jeffrey B. organization: Department of Radiology, University of California, San Diego, California, USA – sequence: 9 givenname: Claude B. surname: Sirlin fullname: Sirlin, Claude B. organization: Department of Radiology, University of California, California, San Diego, USA – sequence: 10 givenname: Scott B. surname: Reeder fullname: Reeder, Scott B. organization: Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25620624$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t1u0zAUB_AIDbGtcMMDIEvcIKQUfyYOF5PQBGNoBamU7dJynOPNJbE7O9noA_DepOtWARdwYdmSf_7LPj6H2Z4PHrLsOcFTgjF9s-yim1IuOX2UHRBBaU6FLPbGNRYsJxKX-9lhSkuMcVVx8STbp6KguKD8IPs5h1UMzWBc7VrXr1GwaDbPa52gQa27gYis7tH1oH3vrDO6d8EjbWJICVkHbYNSH8Ff9ldv0VfdQd7oNTKhW-no0khr6G8BPCJTsUDaN4gtkPMo1JAApaFegunT0-yx1W2CZ_fzJPv24f3i-GN-9uXk9PjdWW4KIWhuDK5qLimTtbEgiKWswaRkRljDgWFLLalKWjUC04I2oihrqGQjJTAry4KySXa0zV0NdQeNAd9H3apVdJ2OaxW0U3_ueHelLsON4hKzzZhkr-4DYrgeIPWqc8lA22oPYUiKyKpksirK8v-0xJxxXlVypC__osswRD9WYqOY4IUgfFSvt-qu-BHs7t4Eq00jqE0jqLtGGPGL31-6ow8_PwKyBbeuhfU_otSn2fz0ITTfnnGphx-7Mzp-V0XJSqEuPp-oc3ku6AWbqRn7BZhEz4Q |
CitedBy_id | crossref_primary_10_1097_RLI_0000000000000561 crossref_primary_10_1148_radiol_2017161228 crossref_primary_10_1002_jmri_25699 crossref_primary_10_1002_edm2_335 crossref_primary_10_1016_j_jrras_2023_100658 crossref_primary_10_2463_mrms_mp_2016_0081 crossref_primary_10_3390_ijms23095035 crossref_primary_10_1002_hep_29797 crossref_primary_10_1002_hep_29596 crossref_primary_10_1371_journal_pone_0153595 crossref_primary_10_1148_radiol_2017161786 crossref_primary_10_1002_mrm_28062 crossref_primary_10_1055_s_0042_1742574 crossref_primary_10_1002_jmri_28084 crossref_primary_10_5009_gnl15492 crossref_primary_10_1007_s00261_016_0728_5 crossref_primary_10_1016_j_ejmp_2020_06_019 crossref_primary_10_1371_journal_pone_0206450 crossref_primary_10_1002_jmri_24919 crossref_primary_10_1007_s10334_016_0595_7 crossref_primary_10_1007_s00261_018_1745_3 crossref_primary_10_1148_radiol_2021204288 crossref_primary_10_1016_j_clinimag_2021_01_034 crossref_primary_10_1002_jmri_26931 crossref_primary_10_1148_radiol_2017160606 crossref_primary_10_1002_jmri_26575 crossref_primary_10_1259_bjr_20170959 crossref_primary_10_1002_jmri_26814 crossref_primary_10_1002_lt_24965 crossref_primary_10_3390_diagnostics13111852 crossref_primary_10_1148_radiol_2021202912 crossref_primary_10_1038_nrdp_2015_80 crossref_primary_10_1002_jmri_25083 crossref_primary_10_1148_radiol_2017170550 crossref_primary_10_3390_nu12010244 crossref_primary_10_1016_j_ejrad_2016_02_013 crossref_primary_10_1016_j_crad_2020_02_014 crossref_primary_10_1371_journal_pone_0252928 crossref_primary_10_1007_s10334_024_01148_9 crossref_primary_10_1148_radiol_2017162931 crossref_primary_10_1002_jmri_27611 crossref_primary_10_1007_s00261_019_02350_3 crossref_primary_10_1007_s00261_023_03887_0 crossref_primary_10_1371_journal_pone_0160789 crossref_primary_10_1002_jmri_25319 crossref_primary_10_3390_diagnostics11050842 crossref_primary_10_1002_jmri_26967 crossref_primary_10_1371_journal_pone_0204175 crossref_primary_10_1002_mrm_26228 crossref_primary_10_1177_0300060520931281 crossref_primary_10_1093_cdn_nzaa171 crossref_primary_10_1007_s00261_015_0542_5 crossref_primary_10_2214_AJR_17_19391 crossref_primary_10_1002_mrm_27065 crossref_primary_10_1148_radiol_2018181134 crossref_primary_10_1007_s00261_016_0925_2 crossref_primary_10_1007_s11427_017_9279_1 crossref_primary_10_1007_s00330_023_09864_x crossref_primary_10_1007_s00330_021_07851_8 crossref_primary_10_1159_000439130 crossref_primary_10_1002_jmri_25382 crossref_primary_10_1007_s00330_022_08581_1 crossref_primary_10_1016_j_mri_2019_08_016 |
Cites_doi | 10.2214/AJR.09.2590 10.1097/RLI.0b013e31824baff3 10.1016/0730-725X(94)92543-7 10.1016/j.hep.2003.09.022 10.1016/j.mri.2011.09.011 10.1148/radiol.10100708 10.1016/j.mri.2007.08.012 10.1053/j.gastro.2005.03.084 10.1002/jmri.22890 10.1002/jmri.22514 10.1148/radiol.09090131 10.1002/mrm.21737 10.1056/NEJMoa1200225 10.1002/jmri.21090 10.1016/j.amjmed.2008.09.041 10.1002/hep.21327 10.1002/hep.20466 10.1002/jmri.21957 10.1002/jmri.24153 10.1002/mrm.22840 10.1148/radiol.2511080666 10.1073/pnas.0904944106 10.1002/jmri.23741 10.1002/nbm.1622 10.1056/NEJMra0912063 10.1002/jmri.20831 10.1148/radiol.12112520 10.1152/ajpendo.00064.2004 10.1002/mrm.21301 10.1002/jmri.1880050311 10.1210/jc.2013-1138 10.1148/radiol.10100659 10.1002/jmri.22701 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7TK 8FD FR3 K9. P64 7X8 7TS 5PM |
DOI | 10.1002/jmri.24842 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Physical Education Index PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Physical Education Index |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE Physical Education Index |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 817 |
ExternalDocumentID | 3775943201 10_1002_jmri_24842 25620624 JMRI24842 ark_67375_WNG_V8V52W3M_M |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR000427 – fundername: NIDDK NIH HHS grantid: K24 DK102595 – fundername: NIDDK NIH HHS grantid: R01 DK083380 – fundername: NIDDK NIH HHS grantid: R01 DK100651 – fundername: NIDDK NIH HHS grantid: R01 DK088925-01 – fundername: NIDDK NIH HHS grantid: R01 DK088925 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7TK 8FD FR3 K9. P64 7X8 7TS 5PM |
ID | FETCH-LOGICAL-c6552-cc09b48238bcfe51f23d0173c5fc4e30f2f19729d50262d567be98d88e3f87623 |
IEDL.DBID | 33P |
ISSN | 1053-1807 |
IngestDate | Tue Sep 17 20:45:31 EDT 2024 Fri Aug 16 01:00:11 EDT 2024 Fri Aug 16 09:10:27 EDT 2024 Tue Nov 19 04:52:26 EST 2024 Fri Nov 22 03:01:55 EST 2024 Sat Sep 28 08:06:36 EDT 2024 Sat Aug 24 01:17:04 EDT 2024 Wed Oct 30 09:55:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | magnetic resonance imaging proton density fat-fraction liver reproducibility fat quantification chemical shift obesity |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6552-cc09b48238bcfe51f23d0173c5fc4e30f2f19729d50262d567be98d88e3f87623 |
Notes | ark:/67375/WNG-V8V52W3M-M istex:D9B293BB1D10D08C8AC9E5AEB30286F70FF505BC ArticleID:JMRI24842 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.24842 |
PMID | 25620624 |
PQID | 1703546514 |
PQPubID | 1006400 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4803480 proquest_miscellaneous_1897389677 proquest_miscellaneous_1704344998 proquest_journals_1703546514 crossref_primary_10_1002_jmri_24842 pubmed_primary_25620624 wiley_primary_10_1002_jmri_24842_JMRI24842 istex_primary_ark_67375_WNG_V8V52W3M_M |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hines CD, Frydrychowicz A, Hamilton G, et al. T(1) independent, T(2) (*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. J Magn Reson Imaging 2011;33:873-881. Boyce CJ, Pickhardt PJ, Kim DH, et al. Hepatic steatosis (fatty liver disease) in asymptomatic adults identified by unenhanced low-dose CT. AJR Am J Roentgenol 2010;194:623-628. Hines CD, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 2009;30:1215-1222. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 2009;106:15430-15435. Longo R, Pollesello P, Ricci C, et al. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 1995;5:281-285. Hansen KH, Schroeder ME, Hamilton G, Sirlin CB, Bydder M. Robustness of fat quantification using chemical shift imaging. Magn Reson Imaging 2012;30:151-157. Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258:767-775. Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O. Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 1994;12:487-495. Kuhn JP, Hernando D, Munoz del Rio A, et al. Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 2012;265:133-142. Szczepaniak LS, Babcock EE, Schick F, et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999;276(5 Pt 1):E977-989. Kang GH, Cruite I, Shiehmorteza M, et al. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011;34:928-934. Kang BK, Yu ES, Lee SS, et al. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard. Invest Radiol 2012;47:368-375. Johnson BL, Schroeder ME, Wolfson T, et al. Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 2014;39:440-447. Yokoo T, Shiehmorteza M, Hamilton G, et al. Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 2011;258:749-759. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134. Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005;128:1898-1906. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012;366:1567-1576. Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 2012;36:1011-1014. Yokoo T, Bydder M, Hamilton G, et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 2009;251:67-76. Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005;288:E462-468. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40:1387-1395. Yu H, Shimakawa A, Hines CD, et al. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med 2011;66:199-206. Hines CD, Agni R, Roen C, et al. Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse. J Magn Reson Imaging 2012;35:844-851. Bedossa P, Dargere D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003;38:1449-1457. Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 2010;363:1341-1350. Reeder SB, McKenzie CA, Pineda AR, et al. Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging 2007;25:644-652. Bydder M, Yokoo T, Hamilton G, et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008;26:347-359. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 2007;58:354-364. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 2009;122:248-256 e245. Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007;26:1153-1161. Hamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat (1)H MR spectrum. NMR Biomed 2011;24:784-790. Alderete TL, Toledo-Corral CM, Desai P, Weigensberg MJ, Goran MI. Liver fat has a stronger association with risk factors for type 2 diabetes in African-American compared with Hispanic adolescents. J Clin Endocrinol Metab 2013;98:3748-3754. Ekstedt M, Franzén LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006;44:865-873. Hines CD, Yu H, Shimakawa A, et al. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice. Radiology 2010;254:119-128. 2011; 258 2004; 40 2012; 265 2012; 366 2010 2010; 363 2011; 33 2003; 38 2011; 34 2009; 251 2012; 36 2012; 35 1995; 5 2007; 58 2012; 30 2009; 30 2013; 98 2005; 288 2006; 44 2005; 128 1994; 12 2010; 254 2008; 26 2009; 122 2011; 66 2010; 194 2011; 24 1999; 276 2014; 39 2012; 47 2008; 60 2007; 25 2007; 26 2009; 106 17006923 - Hepatology. 2006 Oct;44(4):865-73 10329993 - Am J Physiol. 1999 May;276(5 Pt 1):E977-89 18093781 - Magn Reson Imaging. 2008 Apr;26(3):347-59 22055856 - Magn Reson Imaging. 2012 Feb;30(2):151-7 20173137 - AJR Am J Roentgenol. 2010 Mar;194(3):623-8 15565570 - Hepatology. 2004 Dec;40(6):1387-95 15940625 - Gastroenterology. 2005 Jun;128(7):1898-906 19706383 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15430-5 22127834 - J Magn Reson Imaging. 2012 Apr;35(4):844-51 21769986 - J Magn Reson Imaging. 2011 Oct;34(4):928-34 7633104 - J Magn Reson Imaging. 1995 May-Jun;5(3):281-5 21834002 - NMR Biomed. 2011 Aug;24(7):784-90 19856457 - J Magn Reson Imaging. 2009 Nov;30(5):1215-22 21212366 - Radiology. 2011 Mar;258(3):749-59 17326087 - J Magn Reson Imaging. 2007 Mar;25(3):644-52 21248233 - Radiology. 2011 Mar;258(3):767-75 15339742 - Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E462-8 23596052 - J Magn Reson Imaging. 2014 Feb;39(2):440-7 14647056 - Hepatology. 2003 Dec;38(6):1449-57 20879883 - N Engl J Med. 2010 Sep 30;363(14):1341-50 22449319 - N Engl J Med. 2012 Apr 26;366(17):1567-76 20032146 - Radiology. 2010 Jan;254(1):119-28 21448952 - J Magn Reson Imaging. 2011 Apr;33(4):873-81 17896369 - J Magn Reson Imaging. 2007 Oct;26(4):1153-61 8007779 - Magn Reson Imaging. 1994;12(3):487-95 21695724 - Magn Reson Med. 2011 Jul;66(1):199-206 22923718 - Radiology. 2012 Oct;265(1):133-42 18956464 - Magn Reson Med. 2008 Nov;60(5):1122-34 17654578 - Magn Reson Med. 2007 Aug;58(2):354-64 22777847 - J Magn Reson Imaging. 2012 Nov;36(5):1011-4 22543969 - Invest Radiol. 2012 Jun;47(6):368-75 19221054 - Radiology. 2009 Apr;251(1):67-76 19272486 - Am J Med. 2009 Mar;122(3):248-256.e5 23873990 - J Clin Endocrinol Metab. 2013 Sep;98(9):3748-54 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 Szczepaniak LS (e_1_2_6_18_1) 1999; 276 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 366 start-page: 1567 year: 2012 end-page: 1576 article-title: Bariatric surgery versus intensive medical therapy in obese patients with diabetes publication-title: N Engl J Med – volume: 58 start-page: 354 year: 2007 end-page: 364 article-title: Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise publication-title: Magn Reson Med – volume: 38 start-page: 1449 year: 2003 end-page: 1457 article-title: Sampling variability of liver fibrosis in chronic hepatitis C publication-title: Hepatology – volume: 47 start-page: 368 year: 2012 end-page: 375 article-title: Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical‐shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard publication-title: Invest Radiol – volume: 122 start-page: 248 year: 2009 end-page: 256 e245 article-title: Weight and type 2 diabetes after bariatric surgery: systematic review and meta‐analysis publication-title: Am J Med – volume: 288 start-page: E462 year: 2005 end-page: 468 article-title: Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population publication-title: Am J Physiol Endocrinol Metab – volume: 194 start-page: 623 year: 2010 end-page: 628 article-title: Hepatic steatosis (fatty liver disease) in asymptomatic adults identified by unenhanced low‐dose CT publication-title: AJR Am J Roentgenol – volume: 258 start-page: 749 year: 2011 end-page: 759 article-title: Estimation of hepatic proton‐density fat fraction by using MR imaging at 3.0 T publication-title: Radiology – volume: 44 start-page: 865 year: 2006 end-page: 873 article-title: Long‐term follow‐up of patients with NAFLD and elevated liver enzymes publication-title: Hepatology – volume: 12 start-page: 487 year: 1994 end-page: 495 article-title: Quantification of liver fat using magnetic resonance spectroscopy publication-title: Magn Reson Imaging – volume: 5 start-page: 281 year: 1995 end-page: 285 article-title: Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis publication-title: J Magn Reson Imaging – volume: 24 start-page: 784 year: 2011 end-page: 790 article-title: In vivo characterization of the liver fat (1)H MR spectrum publication-title: NMR Biomed – volume: 254 start-page: 119 year: 2010 end-page: 128 article-title: Quantification of hepatic steatosis with 3‐T MR imaging: validation in ob/ob mice publication-title: Radiology – volume: 25 start-page: 644 year: 2007 end-page: 652 article-title: Water‐fat separation with IDEAL gradient‐echo imaging publication-title: J Magn Reson Imaging – volume: 35 start-page: 844 year: 2012 end-page: 851 article-title: Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse publication-title: J Magn Reson Imaging – volume: 276 start-page: E977 issue: 5 Pt 1 year: 1999 end-page: 989 article-title: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo publication-title: Am J Physiol – volume: 106 start-page: 15430 year: 2009 end-page: 15435 article-title: Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 1153 year: 2007 end-page: 1161 article-title: Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation publication-title: J Magn Reson Imaging – volume: 265 start-page: 133 year: 2012 end-page: 142 article-title: Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results publication-title: Radiology – volume: 33 start-page: 873 year: 2011 end-page: 881 article-title: T(1) independent, T(2) (*) corrected chemical shift based fat‐water separation with multi‐peak fat spectral modeling is an accurate and precise measure of hepatic steatosis publication-title: J Magn Reson Imaging – volume: 128 start-page: 1898 year: 2005 end-page: 1906 article-title: Sampling variability of liver biopsy in nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 60 start-page: 1122 year: 2008 end-page: 1134 article-title: Multiecho water‐fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling publication-title: Magn Reson Med – volume: 36 start-page: 1011 year: 2012 end-page: 1014 article-title: Proton density fat‐fraction: a standardized MR‐based biomarker of tissue fat concentration publication-title: J Magn Reson Imaging – volume: 30 start-page: 1215 year: 2009 end-page: 1222 article-title: T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat‐water‐SPIO phantom publication-title: J Magn Reson Imaging – volume: 251 start-page: 67 year: 2009 end-page: 76 article-title: Nonalcoholic fatty liver disease: diagnostic and fat‐grading accuracy of low‐flip‐angle multiecho gradient‐recalled‐echo MR imaging at 1.5 T publication-title: Radiology – volume: 40 start-page: 1387 year: 2004 end-page: 1395 article-title: Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity publication-title: Hepatology – volume: 39 start-page: 440 year: 2014 end-page: 447 article-title: Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data‐based, T1‐independent, T2*‐corrected, spectrum‐modeled MRI publication-title: J Magn Reson Imaging – volume: 258 start-page: 767 year: 2011 end-page: 775 article-title: Quantification of hepatic steatosis with T1‐independent, T2‐corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy publication-title: Radiology – volume: 66 start-page: 199 year: 2011 end-page: 206 article-title: Combination of complex‐based and magnitude‐based multiecho water‐fat separation for accurate quantification of fat‐fraction publication-title: Magn Reson Med – volume: 34 start-page: 928 year: 2011 end-page: 934 article-title: Reproducibility of MRI‐determined proton density fat fraction across two different MR scanner platforms publication-title: J Magn Reson Imaging – volume: 26 start-page: 347 year: 2008 end-page: 359 article-title: Relaxation effects in the quantification of fat using gradient echo imaging publication-title: Magn Reson Imaging – volume: 98 start-page: 3748 year: 2013 end-page: 3754 article-title: Liver fat has a stronger association with risk factors for type 2 diabetes in African‐American compared with Hispanic adolescents publication-title: J Clin Endocrinol Metab – volume: 30 start-page: 151 year: 2012 end-page: 157 article-title: Robustness of fat quantification using chemical shift imaging publication-title: Magn Reson Imaging – start-page: p 224 year: 2010 – volume: 363 start-page: 1341 year: 2010 end-page: 1350 article-title: Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease publication-title: N Engl J Med – ident: e_1_2_6_2_1 doi: 10.2214/AJR.09.2590 – ident: e_1_2_6_26_1 doi: 10.1097/RLI.0b013e31824baff3 – ident: e_1_2_6_19_1 doi: 10.1016/0730-725X(94)92543-7 – ident: e_1_2_6_10_1 doi: 10.1016/j.hep.2003.09.022 – ident: e_1_2_6_31_1 doi: 10.1016/j.mri.2011.09.011 – volume: 276 start-page: E977 issue: 5 year: 1999 ident: e_1_2_6_18_1 article-title: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo publication-title: Am J Physiol contributor: fullname: Szczepaniak LS – ident: e_1_2_6_13_1 doi: 10.1148/radiol.10100708 – ident: e_1_2_6_34_1 doi: 10.1016/j.mri.2007.08.012 – ident: e_1_2_6_9_1 doi: 10.1053/j.gastro.2005.03.084 – ident: e_1_2_6_29_1 doi: 10.1002/jmri.22890 – ident: e_1_2_6_30_1 doi: 10.1002/jmri.22514 – ident: e_1_2_6_12_1 doi: 10.1148/radiol.09090131 – ident: e_1_2_6_21_1 doi: 10.1002/mrm.21737 – ident: e_1_2_6_36_1 doi: 10.1056/NEJMoa1200225 – ident: e_1_2_6_22_1 doi: 10.1002/jmri.21090 – ident: e_1_2_6_35_1 doi: 10.1016/j.amjmed.2008.09.041 – ident: e_1_2_6_5_1 doi: 10.1002/hep.21327 – ident: e_1_2_6_4_1 doi: 10.1002/hep.20466 – ident: e_1_2_6_33_1 – ident: e_1_2_6_23_1 doi: 10.1002/jmri.21957 – ident: e_1_2_6_27_1 doi: 10.1002/jmri.24153 – ident: e_1_2_6_25_1 doi: 10.1002/mrm.22840 – ident: e_1_2_6_14_1 doi: 10.1148/radiol.2511080666 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.0904944106 – ident: e_1_2_6_16_1 doi: 10.1002/jmri.23741 – ident: e_1_2_6_11_1 doi: 10.1002/nbm.1622 – ident: e_1_2_6_8_1 doi: 10.1056/NEJMra0912063 – ident: e_1_2_6_20_1 doi: 10.1002/jmri.20831 – ident: e_1_2_6_28_1 doi: 10.1148/radiol.12112520 – ident: e_1_2_6_3_1 doi: 10.1152/ajpendo.00064.2004 – ident: e_1_2_6_24_1 doi: 10.1002/mrm.21301 – ident: e_1_2_6_17_1 doi: 10.1002/jmri.1880050311 – ident: e_1_2_6_7_1 doi: 10.1210/jc.2013-1138 – ident: e_1_2_6_15_1 doi: 10.1148/radiol.10100659 – ident: e_1_2_6_32_1 doi: 10.1002/jmri.22701 |
SSID | ssj0009945 |
Score | 2.4614954 |
Snippet | Purpose
To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat‐fraction (PDFF) at different... To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different magnetic... Purpose To examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different... PURPOSETo examine the reproducibility of quantitative magnetic resonance (MR) methods to estimate hepatic proton density fat-fraction (PDFF) at different... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 811 |
SubjectTerms | Adipose Tissue - pathology Adult Body Mass Index chemical shift Echo-Planar Imaging fat quantification Female Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional liver Liver - pathology Magnetic Resonance Imaging Magnetic Resonance Spectroscopy Male Middle Aged Non-alcoholic Fatty Liver Disease - pathology obesity Obesity - physiopathology proton density fat-fraction Protons Regression Analysis reproducibility Reproducibility of Results |
Title | Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in obese subjects |
URI | https://api.istex.fr/ark:/67375/WNG-V8V52W3M-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24842 https://www.ncbi.nlm.nih.gov/pubmed/25620624 https://www.proquest.com/docview/1703546514 https://search.proquest.com/docview/1704344998 https://search.proquest.com/docview/1897389677 https://pubmed.ncbi.nlm.nih.gov/PMC4803480 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIhLedNAQYNAHJDSJn7EDuKCSktBSoXapeVm2bFDF2gWNhuJ3rhy4zfyS2o72SwrUCXEIVIkj5XYM2N_tsffIPSYW-5whtUx5kbEVGsViwqLOMuExrTUqdD-NvLuAd97L15ue5qc5_O7MB0_xLDh5j0jjNfewZVuNhekoR9PpuMNTAX1A7BbJoT7G-TtgnE3DxmKHX4gcSoSPnCT4s1F1aXZ6JLv2G9_g5p_Rkz-jmTDVLRz9f8acQ2t9hAUXnQ2cx1dsPUNdLnoD9lvoh8OlAce2C5w9hQmFRT7v77_9DOegc8-kgMqNYOvrepCjYJ2QYU2QoiJA38Hpf4wO34GB-rEuspGnUI5JD2EPj4M0g02AlUbICMY1zDRtrHQtNpvDzW30Lud7dHWbtxnbIjLjDEcl2WSayocDNBlZVlaYWKcy5OSVSW1JKlw5dOc5Ya5pR82LOPa5sIIYUnlh2VyG63Uk9quIRDECjeTasYIo2VuPRG_YkaYhHpREqFHc83JLx0xh-womLH0vSpDr0boSVDqIKKmn3woG2fyaO-VPBSHDB-RQhYRWp9rXfZe3MjUDYchWTyN0MOh2PmfP1RRtZ20QYYS6taN4hwZkXMHDDPOI3SnM6ThhxzkxEmG3Rf4kokNAp7_e7mkHh8HHnAqEuKeCD0NJnZON8g3xf7r8Hb3X4TvoSsOH7IupG4drcymrb2PLjamfRB87QwBbC57 |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70eggBGIA1LaxI_YQeKAoGULzQq125abZcc2XaBZ2GwkeuPKjd_IL8F2sllWoEqIQ6RIHivxeMb-bI-_AeARM8zhDKNixDSPiVIy5hbxOMu4QqRUKVf-NvJgjw3f8Zebnibn2fwuTMsP0W-4ec8I47V3cL8hvbFgDf1wPB2vI8KJG4FXSeYs0d_gwG8XnLt5yFHsEASOU56wnp0UbSzqLs1Hq161X_8GNv-Mmfwdy4bJaOvSfzbjMrjYoVD4vDWbK-CMqa6Cc0V3zn4NfHe4PFDBtrGzJ3BiYbH789sPP-lp-MkHc0ArZ_BLI9too9DBUIZGwhAWB_01lOr97Ogp3JPHxlXW8gSWfd5D2IWIwXSdjqCsNMQjOK7gRJnawLpRfoeovg72tzZHLwZxl7QhLjNKUVyWSa4Id0hAldbQ1CKsndfjktqSGJxYZH2ms1xTt_pDmmZMmZxrzg22fmTGN8BKNanMLQA5NtxNpopSTEmZG8_FL6nmOiFeFEfg4bzrxOeWm0O0LMxIeK2KoNUIPA692ovI6UcfzcaoOBy-Egf8gKJDXIgiAmvzbhedI9cidSNiyBdPIvCgL3Yu6M9VZGUmTZAhmLilIz9FhufMYcOMsQjcbC2p_yGHOlGSIfcFtmRjvYCnAF8uqcZHgQqc8AS7JwJPgo2dogbxutjdDm-3_0X4Pjg_GBU7Ymd7-OYOuODgIm0j7NbAymzamLvgbK2be8HxfgHyYTKj |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglSou5Q2BAkYgDkhpEz9iB3FBtEsLZFW1S9ubZcd2u0CzZbOR6I0rN34jvwTb2c2yAlVCHCJF8liJ7ZnxZ3v8DQBPmWEOZxgVI6Z5TJSSMbeIx1nGFSKlSrnyt5G391n_iG9ueZqcl7O7MC0_RLfh5i0j-Gtv4GfabsxJQz-ejofriHDiHPAycTjcM-djvDun3M1DimIHIHCc8oR15KRoY153YTpa9j379W9Y88-Qyd-hbJiLelf_rxXXwOoUg8JXrdJcB5dMdQOsFNNT9pvgu0PlgQi2jZw9hyMLi72f3374KU_Dzz6UA1o5gV8a2cYaheGFMrQRhqA46C-hVMeTkxdwX54aV1nLc1h2WQ_hNEAMput0AGWlIR7AYQVHytQG1o3y-0P1LfChtzV4vR1PUzbEZUYpissyyRXhDgeo0hqaWoS1s3lcUlsSgxOLrM9zlmvq1n5I04wpk3PNucHW-2V8GyxVo8rcBZBjw91UqijFlJS58Uz8kmquE-JFcQSezEZOnLXMHKLlYEbC96oIvRqBZ2FQOxE5_uRj2RgVh_034oAfUHSIC1FEYG026mJqxrVInT8M2eJJBB53xc4A_amKrMyoCTIEE7dw5BfI8Jw5ZJgxFoE7rSJ1P-QwJ0oy5L7AFlSsE_AE4Isl1fAkEIETnmD3ROB5ULELukG8LfZ2wtu9fxF-BFZ2N3vi_U7_3X1wxWFF2obXrYGlybgxD8DlWjcPg9n9AhnuMUk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+MR%E2%80%90based+liver+fat+quantification+across+field+strength%3A+Same%E2%80%90day+comparison+between+1.5T+and+3T+in+obese+subjects&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Artz%2C+Nathan+S.&rft.au=Haufe%2C+William+M.&rft.au=Hooker%2C+Catherine+A.&rft.au=Hamilton%2C+Gavin&rft.date=2015-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=42&rft.issue=3&rft.spage=811&rft.epage=817&rft_id=info:doi/10.1002%2Fjmri.24842&rft.externalDBID=10.1002%252Fjmri.24842&rft.externalDocID=JMRI24842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |