Control of glutamate release by complexes of adenosine and cannabinoid receptors
© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credi...
Saved in:
Published in: | BMC biology Vol. 18; no. 1; p. 9 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Springer Nature
23-01-2020
BioMed Central Ltd BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
Work supported with the intramural funds of the National Institute on Drug Abuse, “Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/FEDER” (SAF2015-74627-JIN, SAF2016-77830-R, SAF2017-87349-R) and ISCIII/FEDER (PIE14/00034), the Catalan government (2017 SGR 1604), “Fundació la Marató de TV3” (20152031), FWO (SBO-140028), “Fundação para a Ciência e a Tecnologia” (PTDC/DTP-FTO/3346/2014 and PTDC/MED-NEU/31274/2017), FEDER (QREN) through “Programa Operacional Factores de Competitividade” (COMPETE 2020, POCI-01-0145-FEDER-007440, CENTRO-01-0145-FEDER-000012-N2323P30, and UID/NEU/04539/2019), and through “Programa Mais Centro” (CENTRO-01-0246-FEDER-000010 and CENTRO-07-ST24-FEDER-002006). |
---|---|
AbstractList | Abstract Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. It has been hypothesized that heteromers of adenosine A receptors (A2AR) and cannabinoid CB receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A receptors or dopamine D receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A.sub.1 receptors or dopamine D.sub.2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Background: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. Work supported with the intramural funds of the National Institute on Drug Abuse, “Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/FEDER” (SAF2015-74627-JIN, SAF2016-77830-R, SAF2017-87349-R) and ISCIII/FEDER (PIE14/00034), the Catalan government (2017 SGR 1604), “Fundació la Marató de TV3” (20152031), FWO (SBO-140028), “Fundação para a Ciência e a Tecnologia” (PTDC/DTP-FTO/3346/2014 and PTDC/MED-NEU/31274/2017), FEDER (QREN) through “Programa Operacional Factores de Competitividade” (COMPETE 2020, POCI-01-0145-FEDER-007440, CENTRO-01-0145-FEDER-000012-N2323P30, and UID/NEU/04539/2019), and through “Programa Mais Centro” (CENTRO-01-0246-FEDER-000010 and CENTRO-07-ST24-FEDER-002006). Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. Background It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A.sub.1 receptors or dopamine D.sub.2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. Keywords: Adenosine A.sub.2A receptor, Cannabinoid CB.sub.1 receptor, GPCR heteromers, Adenylyl cyclase, Glutamate transmission, Striatum BACKGROUNDIt has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTSUsing a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONSWe demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. |
ArticleNumber | 9 |
Audience | Academic |
Author | Yano, Hideaki Fernández-Dueñas, Victor Ciruela, Francisco Sánchez-Soto, Marta Cunha, Rodrigo A. Sebastião, Ana M Casadó-Anguera, Verònica Moreno, Estefanía Guixà-González, Ramón Pardo, Leonardo Casadó, Vicent Köfalvi, Attila Cordomí, Arnau Cai, Ning-Sheng Ferreira, Samira G. Ferré, Sergi |
Author_xml | – sequence: 1 fullname: Köfalvi, Attila – sequence: 2 fullname: Moreno, Estefanía – sequence: 3 fullname: Cordomí, Arnau – sequence: 4 fullname: Cai, Ning-Sheng – sequence: 5 fullname: Fernández-Dueñas, Victor – sequence: 6 fullname: Ferreira, Samira G. – sequence: 7 fullname: Guixà-González, Ramón – sequence: 8 fullname: Sánchez-Soto, Marta – sequence: 9 fullname: Yano, Hideaki – sequence: 10 fullname: Casadó-Anguera, Verònica – sequence: 11 fullname: Cunha, Rodrigo A. – scopusid: 7004409879 sequence: 12 givenname: Ana M orcidid: 0000-0001-9030-6115 surname: Sebastião fullname: Sebastião, Ana M – sequence: 13 fullname: Ciruela, Francisco – sequence: 14 fullname: Pardo, Leonardo – sequence: 15 fullname: Casadó, Vicent – sequence: 16 fullname: Ferré, Sergi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31973708$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wA9igIDawSPEj8U02SFXFY6RKRby21o19M3iUsQc7qdp_j4cppYNYIC9s2d85to_OcXHgg6eieMrZKeetep246HhTMcEqBrKr2IPiiEPNK2AMDu6tD4vjlFaMiQZAPioOJe9AAmuPio_nwU8xjGUYyuU4T7jGicpII2Gisr8pTVhvRrqmtCXQkg_JeSrR29Kg99g7H5zNCkObKcT0uHg44Jjoye18Unx99_bL-Yfq4vL94vzsojKqqadqEHLgCKxGVotOtl0r0Rir1MAta7EGbqHFHoSVQw-8E72s6xqYyTLRm1aeFIudrw240pvo1hhvdECnf22EuNQYJ2dG0tCzmphsBGQLZakl2ZNVwKRRpu5k9nqz89rM_ZqsoRwJjnum-yfefdfLcKVVB11OPhu8vDWI4cdMadJrlwyNI3oKc9IiP15Aw1WT0Rd_oaswR5-jylQDHKSA7g-1xPwB54eQ7zVbU32meAtCKM4ydfoPKg9La2dyVwaX9_cEr_YEmZnoelrinJJefP70_-zlt32W71gTQ0qRhrvsONPbqupdVXWuqt5WVW81z-6Hfqf43c0MPN8B0SBudKQrlyZM2bJuuG4a2Sj5E0IW7Hg |
CitedBy_id | crossref_primary_10_1016_j_bpsc_2020_07_016 crossref_primary_10_1021_acs_jmedchem_1c00484 crossref_primary_10_1093_bioinformatics_btaa117 crossref_primary_10_3390_ijms232113074 crossref_primary_10_1016_j_neuropharm_2022_109329 crossref_primary_10_1016_j_biopha_2022_113896 crossref_primary_10_1016_j_biopha_2023_114327 crossref_primary_10_3389_fncel_2021_786597 crossref_primary_10_1186_s12915_023_01685_0 crossref_primary_10_1021_acschemneuro_0c00510 crossref_primary_10_3390_pharmaceutics14010161 crossref_primary_10_1096_fj_202100672R crossref_primary_10_1038_s41386_023_01533_3 crossref_primary_10_1016_j_tips_2023_05_003 crossref_primary_10_3390_ijms242316728 crossref_primary_10_1016_j_expneurol_2022_114158 crossref_primary_10_1016_j_phrs_2020_105363 crossref_primary_10_3389_fphar_2021_806417 crossref_primary_10_1016_j_neubiorev_2024_105771 crossref_primary_10_31744_einstein_journal_2023RW0387 crossref_primary_10_1016_j_phrs_2021_105745 crossref_primary_10_1080_17460441_2022_2085684 crossref_primary_10_1177_1074248420935743 crossref_primary_10_3390_biom13040715 crossref_primary_10_4103_1673_5374_369113 crossref_primary_10_3390_life12122117 crossref_primary_10_1002_glia_24518 crossref_primary_10_1016_j_csbj_2020_09_028 crossref_primary_10_1038_s41598_021_87740_8 crossref_primary_10_1093_schbul_sbaa038 crossref_primary_10_1007_s00018_021_03761_6 crossref_primary_10_1016_j_arr_2023_101998 crossref_primary_10_1016_j_neuropharm_2023_109421 crossref_primary_10_1016_j_pharmthera_2021_107977 crossref_primary_10_3389_fphar_2022_897436 crossref_primary_10_1007_s12035_021_02656_8 crossref_primary_10_1007_s12035_020_02275_9 crossref_primary_10_3390_molecules27051489 crossref_primary_10_1016_j_celrep_2024_114278 crossref_primary_10_1016_j_phrs_2020_105253 crossref_primary_10_1016_j_phrs_2022_106322 crossref_primary_10_1002_jbio_202100172 crossref_primary_10_3390_ph17060813 |
Cites_doi | 10.1111/bph.12970 10.1016/j.neuropharm.2017.02.021 10.1016/S0166-2236(97)01096-5 10.1007/s00210-002-0617-z 10.1016/j.bbrc.2010.10.122 10.1111/j.1471-4159.2009.06282.x 10.1107/S2059798318008136 10.1126/sciadv.1601631 10.1038/nature05506 10.1038/npp.2017.12 10.1016/j.jconrel.2018.05.033 10.1523/JNEUROSCI.3574-05.2006 10.1038/s41467-018-03522-3 10.1073/pnas.0237126100 10.1016/j.sleep.2018.02.002 10.1007/s12035-018-1120-y 10.1016/j.bbrc.2010.09.110 10.1016/j.sleep.2017.04.019 10.1038/sj.npp.1301375 10.1016/S0896-6273(00)00113-6 10.1021/ac049295f 10.1016/j.neuropharm.2016.09.002 10.1186/s12915-018-0491-x 10.1523/JNEUROSCI.0448-07.2007 10.1038/nature10954 10.1016/j.tips.2015.01.002 10.1124/mol.109.058370 10.1523/JNEUROSCI.4232-04.2005 10.1126/science.285.5433.1569 10.1100/tsw.2008.136 10.1016/j.cell.2018.11.040 10.1016/bs.apha.2018.12.005 10.1124/mol.114.093096 10.1073/pnas.172393799 10.7554/eLife.35946 10.1152/jn.2001.85.1.468 10.1016/S0006-2952(00)00570-0 10.1111/jnc.13724 10.1124/mol.112.084509 10.2210/pdb5g53/pdb 10.1146/annurev.bi.56.070187.003151 10.1007/s00213-016-4212-2 10.2210/pdb6n4b/pdb 10.2210/pdb5NM4/pdb 10.1016/S1097-2765(03)00390-3 10.1016/S0166-2236(96)01015-6 10.1111/jnc.13421 10.1038/nrn1247 10.1016/j.brainres.2015.03.048 10.1007/s12035-019-1564-8 10.1038/npp.2011.181 10.1021/cb5005383 10.2210/pdb6gdg/pdb 10.1146/annurev-neuro-061010-113641 10.1074/jbc.M407593200 10.1016/j.cellbi.2007.03.025 10.1074/jbc.M302809200 10.1074/jbc.273.40.25831 10.1038/nature18966 10.2210/pdb4dkl/pdb 10.1074/jbc.M110.115634 10.1073/pnas.0509588102 10.1016/j.neuropharm.2011.05.023 10.1038/mp.2011.93 10.1016/j.cell.2018.12.011 10.1073/pnas.1507704112 10.1111/j.1476-5381.2009.00480.x 10.2210/pdb5u09/pdb 10.1002/ana.25104 10.1007/s12035-018-1413-1 10.1016/j.neuron.2010.12.001 10.1126/science.aaa5264 10.1016/j.curtheres.2007.11.001 10.1016/j.neuropharm.2019.05.003 10.1124/pr.113.008052 10.1111/j.1476-5381.2010.00723.x 10.1007/s11302-013-9364-5 10.1038/s41467-017-00630-4 10.1371/journal.pcbi.1004148 10.1038/380258a0 10.1038/nature20613 10.2210/pdb5zty/pdb 10.1038/nsmb1134 10.1038/nchembio.623 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2020 |
DBID | RCLKO NPM AAYXX CITATION IOV ISR 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PADUT PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12915-020-0739-0 |
DatabaseName | RCAAP open access repository PubMed CrossRef Gale In Context: Opposing Viewpoints Science in Context ProQuest Central (Corporate) University Readers Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database University Readers Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library Chemoreception Abstracts Research Library China ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Animal Behavior Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DissertationSchool | Repositório da Universidade de Lisboa |
EISSN | 1741-7007 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_7b04e035274446de8e3bed6703c6c493 A618722610 10_1186_s12915_020_0739_0 31973708 10451_55356 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GeographicLocations | Portugal |
GeographicLocations_xml | – name: Portugal |
GrantInformation_xml | – fundername: ; grantid: PTDC/DTP-FTO/3346/2014 and PTDC/MED-NEU/31274/2017 – fundername: ; grantid: Intramural funds – fundername: ; grantid: 2017 SGR 1604 – fundername: ; grantid: SAF2015-74627-JIN, SAF2016-77830-R, SAF2017-87349-R |
GroupedDBID | --- -A0 0R~ 123 23N 2VQ 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ 8G5 AAFWJ AAJSJ ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C24 C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IOV IPNFZ ISE ISR ITC KQ8 LK8 M1P M2O M48 M7P M~E O5R O5S OK1 P2P PADUT PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RCLKO RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB NPM AAYXX CITATION AFGXO AFPKN 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c654t-f23f1a704a042938983accd66f1d08a471d78ab72d3fb7192b344470c3f12bc83 |
IEDL.DBID | RPM |
ISSN | 1741-7007 |
IngestDate | Tue Oct 22 15:07:14 EDT 2024 Tue Sep 17 21:11:24 EDT 2024 Sat Oct 26 00:39:27 EDT 2024 Thu Oct 10 22:00:58 EDT 2024 Tue Nov 19 21:18:42 EST 2024 Tue Nov 12 23:02:03 EST 2024 Thu Aug 01 19:25:28 EDT 2024 Thu Aug 01 19:38:46 EDT 2024 Thu Nov 21 21:19:59 EST 2024 Wed Oct 16 00:46:32 EDT 2024 Fri Nov 15 15:54:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | GPCR heteromers Striatum Adenylyl cyclase Glutamate transmission Adenosine A2A receptor Cannabinoid CB1 receptor |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c654t-f23f1a704a042938983accd66f1d08a471d78ab72d3fb7192b344470c3f12bc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9030-6115 0000-0002-1747-1779 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979073/ |
PMID | 31973708 |
PQID | 2357173279 |
PQPubID | 42637 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b04e035274446de8e3bed6703c6c493 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6979073 proquest_miscellaneous_2344275165 proquest_journals_2357173279 gale_infotracmisc_A618722610 gale_infotracacademiconefile_A618722610 gale_incontextgauss_ISR_A618722610 gale_incontextgauss_IOV_A618722610 crossref_primary_10_1186_s12915_020_0739_0 pubmed_primary_31973708 rcaap_revistas_10451_55356 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-23 |
PublicationDateYYYYMMDD | 2020-01-23 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC biology |
PublicationTitleAlternate | BMC Biol |
PublicationYear | 2020 |
Publisher | Springer Nature BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: Springer Nature – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | RH Rose (739_CR35) 2010; 159 C Galés (739_CR42) 2006; 13 M Sánchez-Soto (739_CR32) 2019; 56 Y Guo (739_CR37) 2005; 280 V Chiodi (739_CR21) 2016; 136 A Nishi (739_CR56) 2003; 100 P Carriba (739_CR18) 2007; 32 J Decerce (739_CR63) 2007; 8 K Krishna Kumar (739_CR83) 2019; 176 X Guitart (739_CR31) 2014; 86 739_CR84 739_CR85 739_CR80 739_CR82 S Ferré (739_CR23) 2016; 233 X Guitart (739_CR49) 2019; 56 X Li (739_CR86) 2019; 176 BB Fredholm (739_CR22) 1999; 51 G Navarro (739_CR11) 2010; 285 RO Dror (739_CR43) 2015; 348 AM Graybiel (739_CR58) 2000; 28 R Sadana (739_CR13) 2009; 76 C Quiroz (739_CR61) 2016; 111 J Bonaventura (739_CR52) 2017; 3 M Rivera-Oliver (739_CR48) 2019; 56 S Ferré (739_CR8) 1997; 20 S Herlitze (739_CR16) 1996; 380 AC Kreitzer (739_CR27) 2007; 445 BB Fredholm (739_CR5) 2001; 1 G Navarro (739_CR6) 2018; 16 RE Stenkamp (739_CR40) 2018; 74 JE Lauckner (739_CR53) 2005; 102 T Megelin (739_CR64) 2017; 36 M Uchigashima (739_CR25) 2007; 7 CR Gerfen (739_CR28) 2011; 34 S Cristóvão-Ferreira (739_CR44) 2013; 9 J García-Nafría (739_CR79) 2018; 7 S Ferré (739_CR1) 2010; 160 CC Felder (739_CR54) 1992; 42 Z Shao (739_CR81) 2016; 540 FM Mouro (739_CR67) 2019; 155 S Ferré (739_CR62) 2019; 84 AV Kravitz (739_CR60) 2015; 1628 G Navarro (739_CR7) 2018; 9 SR Schwarze (739_CR72) 1999; 285 D Piomelli (739_CR4) 2003; 4 D Provasi (739_CR41) 2015; 11 S Ferré (739_CR69) 2015; 36 J Taura (739_CR73) 2018; 283 A Manglik (739_CR39) 2012; 485 S González (739_CR50) 2012; 17 FM Mouro (739_CR66) 2017; 117 L Albizu (739_CR34) 2011; 61 T Weinert (739_CR75) 2017; 8 F Ciruela (739_CR3) 2006; 26 M Klinger (739_CR45) 2002; 366 V Fernández-Dueñas (739_CR47) 2014; 9 CW Dessauer (739_CR15) 1998; 273 A Köfalvi (739_CR24) 2005; 25 S Ferré (739_CR68) 2014; 66 G Gerdeman (739_CR26) 2001; 85 SQ He (739_CR71) 2011; 69 LG Wu (739_CR17) 1997; 20 DO Borroto-Escuela (739_CR10) 2010; 402 B Moghaddam (739_CR59) 2012; 37 E Urizar (739_CR30) 2011; 7 I Anderie (739_CR38) 2007; 31 KA Bennett (739_CR46) 2013; 83 AG Gilman (739_CR14) 1987; 56 J Bonaventura (739_CR12) 2015; 112 C Schmidt (739_CR36) 2003; 12 MT Tebano (739_CR20) 2009; 110 SG Ferreira (739_CR19) 2015; 172 D García-Borreguero (739_CR65) 2018; 45 739_CR76 739_CR78 F Ciruela (739_CR9) 2004; 76 G Navarro (739_CR57) 2008; 8 739_CR74 RA Cunha (739_CR2) 2016; 139 Dasiel O. Borroto-Escuela (739_CR33) 2010; 401 G Yepes (739_CR51) 2017; 82 J Burgueño (739_CR70) 2003; 278 B Carpenter (739_CR77) 2016; 536 E Moreno (739_CR29) 2018; 43 S Ferré (739_CR55) 2002; 99 |
References_xml | – volume: 172 start-page: 1074 year: 2015 ident: 739_CR19 publication-title: Br J Pharmacol doi: 10.1111/bph.12970 contributor: fullname: SG Ferreira – volume: 117 start-page: 316 year: 2017 ident: 739_CR66 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2017.02.021 contributor: fullname: FM Mouro – volume: 20 start-page: 482 year: 1997 ident: 739_CR8 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(97)01096-5 contributor: fullname: S Ferré – volume: 366 start-page: 287 year: 2002 ident: 739_CR45 publication-title: Naunyn Schmiedebergs Arch Pharmacol doi: 10.1007/s00210-002-0617-z contributor: fullname: M Klinger – volume: 402 start-page: 801 year: 2010 ident: 739_CR10 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.10.122 contributor: fullname: DO Borroto-Escuela – volume: 42 start-page: 838 year: 1992 ident: 739_CR54 publication-title: Mol Pharmacol contributor: fullname: CC Felder – volume: 110 start-page: 1921 year: 2009 ident: 739_CR20 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2009.06282.x contributor: fullname: MT Tebano – volume: 74 start-page: 655 year: 2018 ident: 739_CR40 publication-title: Acta Crystallogr D Struct Biol doi: 10.1107/S2059798318008136 contributor: fullname: RE Stenkamp – volume: 3 year: 2017 ident: 739_CR52 publication-title: Sci Adv doi: 10.1126/sciadv.1601631 contributor: fullname: J Bonaventura – volume: 445 start-page: 643 year: 2007 ident: 739_CR27 publication-title: Nature doi: 10.1038/nature05506 contributor: fullname: AC Kreitzer – volume: 43 start-page: 964 year: 2018 ident: 739_CR29 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.12 contributor: fullname: E Moreno – volume: 283 start-page: 135 year: 2018 ident: 739_CR73 publication-title: J Control Release doi: 10.1016/j.jconrel.2018.05.033 contributor: fullname: J Taura – volume: 26 start-page: 2080 year: 2006 ident: 739_CR3 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3574-05.2006 contributor: fullname: F Ciruela – volume: 9 start-page: 1242 year: 2018 ident: 739_CR7 publication-title: Nat Commun doi: 10.1038/s41467-018-03522-3 contributor: fullname: G Navarro – volume: 100 start-page: 1322 year: 2003 ident: 739_CR56 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0237126100 contributor: fullname: A Nishi – volume: 45 start-page: 94 year: 2018 ident: 739_CR65 publication-title: Sleep Med doi: 10.1016/j.sleep.2018.02.002 contributor: fullname: D García-Borreguero – volume: 56 start-page: 797 year: 2019 ident: 739_CR48 publication-title: Mol Neurobiol doi: 10.1007/s12035-018-1120-y contributor: fullname: M Rivera-Oliver – volume: 401 start-page: 605 issue: 4 year: 2010 ident: 739_CR33 publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2010.09.110 contributor: fullname: Dasiel O. Borroto-Escuela – volume: 36 start-page: 182 year: 2017 ident: 739_CR64 publication-title: Sleep Med. doi: 10.1016/j.sleep.2017.04.019 contributor: fullname: T Megelin – volume: 32 start-page: 2249 year: 2007 ident: 739_CR18 publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301375 contributor: fullname: P Carriba – volume: 28 start-page: 343 year: 2000 ident: 739_CR58 publication-title: Neuron doi: 10.1016/S0896-6273(00)00113-6 contributor: fullname: AM Graybiel – volume: 76 start-page: 5354 year: 2004 ident: 739_CR9 publication-title: Anal Chem doi: 10.1021/ac049295f contributor: fullname: F Ciruela – volume: 111 start-page: 160 year: 2016 ident: 739_CR61 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2016.09.002 contributor: fullname: C Quiroz – volume: 16 start-page: 24 year: 2018 ident: 739_CR6 publication-title: BMC Biol doi: 10.1186/s12915-018-0491-x contributor: fullname: G Navarro – volume: 7 start-page: 3663 year: 2007 ident: 739_CR25 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0448-07.2007 contributor: fullname: M Uchigashima – volume: 485 start-page: 321 year: 2012 ident: 739_CR39 publication-title: Nature doi: 10.1038/nature10954 contributor: fullname: A Manglik – volume: 36 start-page: 145 year: 2015 ident: 739_CR69 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2015.01.002 contributor: fullname: S Ferré – volume: 76 start-page: 1256 year: 2009 ident: 739_CR13 publication-title: Mol Pharmacol doi: 10.1124/mol.109.058370 contributor: fullname: R Sadana – volume: 25 start-page: 2874 year: 2005 ident: 739_CR24 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4232-04.2005 contributor: fullname: A Köfalvi – volume: 285 start-page: 1569 year: 1999 ident: 739_CR72 publication-title: Science doi: 10.1126/science.285.5433.1569 contributor: fullname: SR Schwarze – volume: 8 start-page: 1088 year: 2008 ident: 739_CR57 publication-title: ScientificWorldJournal doi: 10.1100/tsw.2008.136 contributor: fullname: G Navarro – volume: 176 start-page: 448 year: 2019 ident: 739_CR83 publication-title: Cell doi: 10.1016/j.cell.2018.11.040 contributor: fullname: K Krishna Kumar – volume: 84 start-page: 3 year: 2019 ident: 739_CR62 publication-title: Adv Pharmacol doi: 10.1016/bs.apha.2018.12.005 contributor: fullname: S Ferré – volume: 86 start-page: 417 year: 2014 ident: 739_CR31 publication-title: Mol Pharmacol doi: 10.1124/mol.114.093096 contributor: fullname: X Guitart – volume: 99 start-page: 11940 year: 2002 ident: 739_CR55 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.172393799 contributor: fullname: S Ferré – volume: 7 year: 2018 ident: 739_CR79 publication-title: Elife. doi: 10.7554/eLife.35946 contributor: fullname: J García-Nafría – volume: 85 start-page: 468 year: 2001 ident: 739_CR26 publication-title: J Neurophysiol. doi: 10.1152/jn.2001.85.1.468 contributor: fullname: G Gerdeman – volume: 1 start-page: 443 year: 2001 ident: 739_CR5 publication-title: Biochem Pharmacol doi: 10.1016/S0006-2952(00)00570-0 contributor: fullname: BB Fredholm – volume: 139 start-page: 1019 issue: 6 year: 2016 ident: 739_CR2 publication-title: J Neurochem doi: 10.1111/jnc.13724 contributor: fullname: RA Cunha – volume: 83 start-page: 949 year: 2013 ident: 739_CR46 publication-title: Mol Pharmacol doi: 10.1124/mol.112.084509 contributor: fullname: KA Bennett – ident: 739_CR76 doi: 10.2210/pdb5g53/pdb – volume: 56 start-page: 615 year: 1987 ident: 739_CR14 publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.56.070187.003151 contributor: fullname: AG Gilman – volume: 233 start-page: 1963 year: 2016 ident: 739_CR23 publication-title: Psychopharmacology doi: 10.1007/s00213-016-4212-2 contributor: fullname: S Ferré – ident: 739_CR82 doi: 10.2210/pdb6n4b/pdb – ident: 739_CR74 doi: 10.2210/pdb5NM4/pdb – volume: 12 start-page: 1287 year: 2003 ident: 739_CR36 publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00390-3 contributor: fullname: C Schmidt – volume: 20 start-page: 204 year: 1997 ident: 739_CR17 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(96)01015-6 contributor: fullname: LG Wu – volume: 136 start-page: 907 year: 2016 ident: 739_CR21 publication-title: J Neurochem doi: 10.1111/jnc.13421 contributor: fullname: V Chiodi – volume: 4 start-page: 873 year: 2003 ident: 739_CR4 publication-title: Nat Rev Neurosci. doi: 10.1038/nrn1247 contributor: fullname: D Piomelli – volume: 1628 start-page: 186 year: 2015 ident: 739_CR60 publication-title: Brain Res doi: 10.1016/j.brainres.2015.03.048 contributor: fullname: AV Kravitz – volume: 56 start-page: 6756 year: 2019 ident: 739_CR49 publication-title: Mol Neurobiol doi: 10.1007/s12035-019-1564-8 contributor: fullname: X Guitart – volume: 51 start-page: 83 year: 1999 ident: 739_CR22 publication-title: Pharmacol Rev contributor: fullname: BB Fredholm – volume: 37 start-page: 4 year: 2012 ident: 739_CR59 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.181 contributor: fullname: B Moghaddam – volume: 9 start-page: 2496 year: 2014 ident: 739_CR47 publication-title: ACS Chem Biol doi: 10.1021/cb5005383 contributor: fullname: V Fernández-Dueñas – ident: 739_CR78 doi: 10.2210/pdb6gdg/pdb – volume: 34 start-page: 4414 year: 2011 ident: 739_CR28 publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-061010-113641 contributor: fullname: CR Gerfen – volume: 280 start-page: 1438 year: 2005 ident: 739_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.M407593200 contributor: fullname: Y Guo – volume: 31 start-page: 1131 year: 2007 ident: 739_CR38 publication-title: Cell Biol Int doi: 10.1016/j.cellbi.2007.03.025 contributor: fullname: I Anderie – volume: 278 start-page: 37545 year: 2003 ident: 739_CR70 publication-title: J Biol Chem doi: 10.1074/jbc.M302809200 contributor: fullname: J Burgueño – volume: 273 start-page: 25831 year: 1998 ident: 739_CR15 publication-title: J Biol Chem doi: 10.1074/jbc.273.40.25831 contributor: fullname: CW Dessauer – volume: 536 start-page: 104 year: 2016 ident: 739_CR77 publication-title: Nature doi: 10.1038/nature18966 contributor: fullname: B Carpenter – ident: 739_CR84 doi: 10.2210/pdb4dkl/pdb – volume: 285 start-page: 27346 year: 2010 ident: 739_CR11 publication-title: J Biol Chem doi: 10.1074/jbc.M110.115634 contributor: fullname: G Navarro – volume: 102 start-page: 19144 year: 2005 ident: 739_CR53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0509588102 contributor: fullname: JE Lauckner – volume: 61 start-page: 770 year: 2011 ident: 739_CR34 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.05.023 contributor: fullname: L Albizu – volume: 17 start-page: 650 year: 2012 ident: 739_CR50 publication-title: Mol Psychiatry doi: 10.1038/mp.2011.93 contributor: fullname: S González – volume: 176 start-page: 459 year: 2019 ident: 739_CR86 publication-title: Cell doi: 10.1016/j.cell.2018.12.011 contributor: fullname: X Li – volume: 112 start-page: E3609 year: 2015 ident: 739_CR12 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1507704112 contributor: fullname: J Bonaventura – volume: 159 start-page: 738 year: 2010 ident: 739_CR35 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2009.00480.x contributor: fullname: RH Rose – ident: 739_CR80 doi: 10.2210/pdb5u09/pdb – volume: 82 start-page: 951 year: 2017 ident: 739_CR51 publication-title: Ann Neurol doi: 10.1002/ana.25104 contributor: fullname: G Yepes – volume: 56 start-page: 4778 year: 2019 ident: 739_CR32 publication-title: Mol Neurobiol doi: 10.1007/s12035-018-1413-1 contributor: fullname: M Sánchez-Soto – volume: 69 start-page: 120 year: 2011 ident: 739_CR71 publication-title: Neuron doi: 10.1016/j.neuron.2010.12.001 contributor: fullname: SQ He – volume: 348 start-page: 1361 year: 2015 ident: 739_CR43 publication-title: Science doi: 10.1126/science.aaa5264 contributor: fullname: RO Dror – volume: 8 start-page: 349 year: 2007 ident: 739_CR63 publication-title: Curr Ther Res Clin Exp doi: 10.1016/j.curtheres.2007.11.001 contributor: fullname: J Decerce – volume: 155 start-page: 10 year: 2019 ident: 739_CR67 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2019.05.003 contributor: fullname: FM Mouro – volume: 66 start-page: 413 year: 2014 ident: 739_CR68 publication-title: Pharmacol Rev doi: 10.1124/pr.113.008052 contributor: fullname: S Ferré – volume: 160 start-page: 443 year: 2010 ident: 739_CR1 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2010.00723.x contributor: fullname: S Ferré – volume: 9 start-page: 433 year: 2013 ident: 739_CR44 publication-title: Purinergic Signal doi: 10.1007/s11302-013-9364-5 contributor: fullname: S Cristóvão-Ferreira – volume: 8 start-page: 542 year: 2017 ident: 739_CR75 publication-title: Nat Commun doi: 10.1038/s41467-017-00630-4 contributor: fullname: T Weinert – volume: 11 year: 2015 ident: 739_CR41 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004148 contributor: fullname: D Provasi – volume: 380 start-page: 258 year: 1996 ident: 739_CR16 publication-title: Nature doi: 10.1038/380258a0 contributor: fullname: S Herlitze – volume: 540 start-page: 602 year: 2016 ident: 739_CR81 publication-title: Nature doi: 10.1038/nature20613 contributor: fullname: Z Shao – ident: 739_CR85 doi: 10.2210/pdb5zty/pdb – volume: 13 start-page: 778 year: 2006 ident: 739_CR42 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1134 contributor: fullname: C Galés – volume: 7 start-page: 624 year: 2011 ident: 739_CR30 publication-title: Nat Chem Biol doi: 10.1038/nchembio.623 contributor: fullname: E Urizar |
SSID | ssj0025773 |
Score | 2.5249076 |
Snippet | © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License... It has been hypothesized that heteromers of adenosine A receptors (A2AR) and cannabinoid CB receptors (CB1R) localized in glutamatergic nerve terminals mediate... It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic nerve... Background It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic... Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve... BACKGROUNDIt has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve... Abstract Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed rcaap |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9 |
SubjectTerms | Activation Adenosine Adenosine A1 receptors Adenosine A2A receptor Adenosine A2A receptors Adenylate cyclase Adenylyl cyclase Agonists Biochemical characteristics Biochemistry C-Terminus Caffeine Cannabinoid CB1 receptor Cannabinoid CB1 receptors Cannabinoids Cell receptors Computational neuroscience Control Coordination compounds Depolarization Dopamine Dopamine D2 receptors Experiments Glutamate Glutamate transmission Glutamatergic transmission GPCR heteromers Guanine nucleotide-binding protein Interfaces Localization Mammals Materials Neostriatum Nerve endings Neuromodulation Neurotransmission Peptides Protein structure Proteins Quaternary structure Receptors Signaling Striatum Terminals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9ZAEF60IngRv02tEkUQhNDd7MdsjrW21IuKVfG27FfaXpLypi_Yf-9Mkr40injxlmRnIXlmdmcmO_ssY6-zTTYpnSttAlRKpaZqEt5mAblpg2lCph9uR8fw8Yd9f0A0OZujvqgmbKIHnoDbhcBVJtJOUJi5pGyzDDkZNNRoomomnk9urpKpOdXSAHJewxTW7A7o1QTtROYVrUxVfOGFRrL-P6fkaz7p93rJW6vo_fk1R3R4j92dI8hyb3rz--xG7h6w29OZkpcP2ef9qfi87NvyBM3KY0iaSzoaBf1VGS7LsYg8_8wDSfhEZOEYaZa-SyXC3HlMlfuzhD2o4KVfDY_Yt8ODr_tH1XxsQhWNVhdVW8tWeODKk7PBgMRKH2MyphWJW4_eKIH1Aeok2wAY4QWJ0AKP2K0O0crHbKvru_yUldk0NWBKFiTmXUoFvGp5rkXrQ_RG-4K9vYLRnU_sGG7MKqxxE-YOMXeEueMFe0dAbwSJ2Hp8gOp2s7rdv9RdsFekJkfUFR3Vxpz49TC4D5--uz0jLGA0KfjfhI6_LITezEJtj1qNft6PgF9OlFgLyZ2FJA7AuGy-Mhk3TwCDIxYhAbKGpmAvN83Uk4rautyvSUapGrQwumBPJgvbgIMzI0jgtmCwsL0FesuW7ux0pAc3DTSIeMG2Ryt1VC6OmcaAmlFaOK2lNtv_QxfP2J16HFKiquUO27pYrfNzdnNI6xfjaPwFwGw09A priority: 102 providerName: Directory of Open Access Journals |
Title | Control of glutamate release by complexes of adenosine and cannabinoid receptors |
URI | http://hdl.handle.net/10451/55356 https://www.ncbi.nlm.nih.gov/pubmed/31973708 https://www.proquest.com/docview/2357173279 https://search.proquest.com/docview/2344275165 https://pubmed.ncbi.nlm.nih.gov/PMC6979073 https://doaj.org/article/7b04e035274446de8e3bed6703c6c493 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RIiQuiHddSmUQEhKSG6_3ZR9LaFUOQEUBcVvtyyEStaO4kei_Z2ZjRzGIC7ckOxsnszM7M_a33xDyKpS-9FyETEirMs59lVUe3gaqQlVbWdmAN9zOL9XH7-W7U6TJEcNZmAjad3Zx3Py8Om4WPyK2cnnlpgNObHrxYSYrBTUdm07IBHLDoUTvqyyhFOsfX9JSTjsIaBQPIecZPpTKsPUbmJ1iCjtK7sSiSNn_98a8E5n-RE3eXjljljvh6Ow-udfnkenJ5vc-ILdC85Dc2XSWvHlELmYbCHra1ukcjMtAYhpSbJACUSu1N2mEkodfoUMJ45EyHPLN1DQ-BWU3BgrmduFhBsJe2lX3mHw9O_0yO8_65gmZk4JfZ3XBampUzg2GHEhLSmac81LW1OelgZjkVWmsKjyrrYI8zzLOucodTCusK9kTste0TdgnaZBVoaAwswyqL84tvKrzUNDaWGekMAl5M6hRLzccGTrWFqXUG_VrUL9G9es8IW9R0VtBpLeOH7Srue4XWSub84BMrQquJ30oA7PBS9idnHS8Ygl5icukkcCiQYTM3Ky7Tr__9E2fSFoqyClp_i-hy88jode9UN3CqjrTn0qAf47EWCPJw5EkuKEbDw8mo_ttoNPIJUQVK1SVkBfbYZyJ0LYmtGuU4bxQgkqRkKcbC9sqZzDUhKiR7Y20Nx4Bn4kk4b2PJOQgWqlG0DjUGx2sDBdUC8GEPPjvr31G7hbRpWhWsEOyd71ah-dk0vn1UbyrcRR98jeuczcf |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RVgguvB8uBQxCQkJy4_W-7GMJrVLRlooWxG21L4dI1I7iRqL_nhnbiWoQl97i7Kwj73y7MxN_-y0h70Luc89FSIS0KuHcF0nh4TJQFYrSysIG_MNtcqZOfuSf9lEmR6z2wrSkfWdnu9Wvi91q9rPlVs4v3GjFExudHo9loaCmY6MNsgXzNU1XRXpfZwmlWP8Ck-Zy1EBIo7gNOU3wtVSCh78B8BRTeKbktWjUivb_uzRfi01_8ya3Fs6Y-bWAdHD_ho_ygNzrM9B4r2t-SG6F6hG53Z1JefWYnI478npcl_EUYGkgpQ0xHq0C8S62V3FLQg-_Q4MWxqPYOGSqsal8DG6qDJTa9cxDDyTM1IvmCfl2sH8-niT9sQuJk4JfJmXGSmpUyg0GK0hocmac81KW1Ke5gWjmVW6syjwrrYIM0TLOuUoddMusy9lTslnVVXhO4iCLTEFJZxnUbZxb-FSmIaOlsc5IYSLyYTX8et6pa-i2Ksml7tymwW0a3abTiHxEB60NURi7_aJeTHU_plrZlAfUeFXwe9KHPDAbvIR1zUnHCxaRt-hejdIXFXJrpmbZNPrwy3e9J2muIBul6f-Mzr4OjN73RmUNaHCm388AT46SWgPLnYElTGA3bF5BTfcLSKNRhYgqlqkiIm_WzdgTSXFVqJdow3mmBJUiIs86ZK4HZwXwiKgBZgejN2wBiLby4j0kI7Ldolsj3RwqlQY8wwXVQjAht29829fkzuT8-EgfHZ58fkHuZu20pEnGdsjm5WIZXpKNxi9ftTP6DyfsS7s |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJhAvfH9kDAgICQkpaxw7tvM4uk2bgFExQLxZ_kqpxJKqWSX233OXpFUD4gXe2vrcKr6ffXfNL78j5FVQXnmehyQXViac-yIpPLwNVIaitKKwAf9wOzmXZ9_U4RHK5KxbfbWkfWdn-9WPi_1q9r3lVs4v3GjFExtNPoxFIaGmY6O5L0dbZAf2bJqtCvW-1sqlZP1NTKrEqIGwRvFR5DTBW1MJNoAD8Ekmsa_kRkRqhfv_PJ434tPv3MmdhTNmvhGUjm__x-XcIbf6TDQ-6Ezukmuhukeud70pr-6Tybgjscd1GU8BngZS2xBjixWIe7G9ilsyevgZGrQwHkXHIWONTeVjcFdloOSuZx5mIHGmXjQPyJfjo8_jk6Rvv5A4kfPLpMxYSY1MucGgBYmNYsY5L0RJfaoMRDUvlbEy86y0EjJFyzjnMnUwLbNOsYdku6qr8JjEQRSZhNLOMqjfOLfwqkxDRktjnRG5iciblQv0vFPZ0G11ooTuXKfBdRpdp9OIvEUnrQ1RILv9oF5Mdb-uWtqUB9R6lfB7wgcVmA1ewPnmhOMFi8hLdLFGCYwKOTZTs2waffrxqz4QVEnISmn6N6PzTwOj171RWQMinOmfa4ArR2mtgeXewBI2shsOr-Cm-4Ok0ahGRCXLZBGRF-thnInkuCrUS7ThPJM5FXlEHnXoXC_OCuQRkQPcDlZvOAIwbWXGe1hGZLdFuEbaOVQsDXiG51TnOcvF7j9_7XNyY3J4rN-fnr17Qm5m7c6kScb2yPblYhmekq3GL5-1m_oXnSZOOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+glutamate+release+by+complexes+of+adenosine+and+cannabinoid+receptors&rft.jtitle=BMC+biology&rft.date=2020-01-23&rft.pub=BioMed+Central&rft.eissn=1741-7007&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs12915-020-0739-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |