Control of glutamate release by complexes of adenosine and cannabinoid receptors

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credi...

Full description

Saved in:
Bibliographic Details
Published in:BMC biology Vol. 18; no. 1; p. 9
Main Authors: Köfalvi, Attila, Moreno, Estefanía, Cordomí, Arnau, Cai, Ning-Sheng, Fernández-Dueñas, Victor, Ferreira, Samira G., Guixà-González, Ramón, Sánchez-Soto, Marta, Yano, Hideaki, Casadó-Anguera, Verònica, Cunha, Rodrigo A., Sebastião, Ana M, Ciruela, Francisco, Pardo, Leonardo, Casadó, Vicent, Ferré, Sergi
Format: Journal Article
Language:English
Published: England Springer Nature 23-01-2020
BioMed Central Ltd
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Background: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. Work supported with the intramural funds of the National Institute on Drug Abuse, “Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/FEDER” (SAF2015-74627-JIN, SAF2016-77830-R, SAF2017-87349-R) and ISCIII/FEDER (PIE14/00034), the Catalan government (2017 SGR 1604), “Fundació la Marató de TV3” (20152031), FWO (SBO-140028), “Fundação para a Ciência e a Tecnologia” (PTDC/DTP-FTO/3346/2014 and PTDC/MED-NEU/31274/2017), FEDER (QREN) through “Programa Operacional Factores de Competitividade” (COMPETE 2020, POCI-01-0145-FEDER-007440, CENTRO-01-0145-FEDER-000012-N2323P30, and UID/NEU/04539/2019), and through “Programa Mais Centro” (CENTRO-01-0246-FEDER-000010 and CENTRO-07-ST24-FEDER-002006).
AbstractList Abstract Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
It has been hypothesized that heteromers of adenosine A receptors (A2AR) and cannabinoid CB receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A receptors or dopamine D receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A.sub.1 receptors or dopamine D.sub.2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Background: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. Work supported with the intramural funds of the National Institute on Drug Abuse, “Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/FEDER” (SAF2015-74627-JIN, SAF2016-77830-R, SAF2017-87349-R) and ISCIII/FEDER (PIE14/00034), the Catalan government (2017 SGR 1604), “Fundació la Marató de TV3” (20152031), FWO (SBO-140028), “Fundação para a Ciência e a Tecnologia” (PTDC/DTP-FTO/3346/2014 and PTDC/MED-NEU/31274/2017), FEDER (QREN) through “Programa Operacional Factores de Competitividade” (COMPETE 2020, POCI-01-0145-FEDER-007440, CENTRO-01-0145-FEDER-000012-N2323P30, and UID/NEU/04539/2019), and through “Programa Mais Centro” (CENTRO-01-0246-FEDER-000010 and CENTRO-07-ST24-FEDER-002006).
Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
Background It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A.sub.1 receptors or dopamine D.sub.2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer. Keywords: Adenosine A.sub.2A receptor, Cannabinoid CB.sub.1 receptor, GPCR heteromers, Adenylyl cyclase, Glutamate transmission, Striatum
BACKGROUNDIt has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTSUsing a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONSWe demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
ArticleNumber 9
Audience Academic
Author Yano, Hideaki
Fernández-Dueñas, Victor
Ciruela, Francisco
Sánchez-Soto, Marta
Cunha, Rodrigo A.
Sebastião, Ana M
Casadó-Anguera, Verònica
Moreno, Estefanía
Guixà-González, Ramón
Pardo, Leonardo
Casadó, Vicent
Köfalvi, Attila
Cordomí, Arnau
Cai, Ning-Sheng
Ferreira, Samira G.
Ferré, Sergi
Author_xml – sequence: 1
  fullname: Köfalvi, Attila
– sequence: 2
  fullname: Moreno, Estefanía
– sequence: 3
  fullname: Cordomí, Arnau
– sequence: 4
  fullname: Cai, Ning-Sheng
– sequence: 5
  fullname: Fernández-Dueñas, Victor
– sequence: 6
  fullname: Ferreira, Samira G.
– sequence: 7
  fullname: Guixà-González, Ramón
– sequence: 8
  fullname: Sánchez-Soto, Marta
– sequence: 9
  fullname: Yano, Hideaki
– sequence: 10
  fullname: Casadó-Anguera, Verònica
– sequence: 11
  fullname: Cunha, Rodrigo A.
– scopusid: 7004409879
  sequence: 12
  givenname: Ana M
  orcidid: 0000-0001-9030-6115
  surname: Sebastião
  fullname: Sebastião, Ana M
– sequence: 13
  fullname: Ciruela, Francisco
– sequence: 14
  fullname: Pardo, Leonardo
– sequence: 15
  fullname: Casadó, Vicent
– sequence: 16
  fullname: Ferré, Sergi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31973708$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wA9igIDawSPEj8U02SFXFY6RKRby21o19M3iUsQc7qdp_j4cppYNYIC9s2d85to_OcXHgg6eieMrZKeetep246HhTMcEqBrKr2IPiiEPNK2AMDu6tD4vjlFaMiQZAPioOJe9AAmuPio_nwU8xjGUYyuU4T7jGicpII2Gisr8pTVhvRrqmtCXQkg_JeSrR29Kg99g7H5zNCkObKcT0uHg44Jjoye18Unx99_bL-Yfq4vL94vzsojKqqadqEHLgCKxGVotOtl0r0Rir1MAta7EGbqHFHoSVQw-8E72s6xqYyTLRm1aeFIudrw240pvo1hhvdECnf22EuNQYJ2dG0tCzmphsBGQLZakl2ZNVwKRRpu5k9nqz89rM_ZqsoRwJjnum-yfefdfLcKVVB11OPhu8vDWI4cdMadJrlwyNI3oKc9IiP15Aw1WT0Rd_oaswR5-jylQDHKSA7g-1xPwB54eQ7zVbU32meAtCKM4ydfoPKg9La2dyVwaX9_cEr_YEmZnoelrinJJefP70_-zlt32W71gTQ0qRhrvsONPbqupdVXWuqt5WVW81z-6Hfqf43c0MPN8B0SBudKQrlyZM2bJuuG4a2Sj5E0IW7Hg
CitedBy_id crossref_primary_10_1016_j_bpsc_2020_07_016
crossref_primary_10_1021_acs_jmedchem_1c00484
crossref_primary_10_1093_bioinformatics_btaa117
crossref_primary_10_3390_ijms232113074
crossref_primary_10_1016_j_neuropharm_2022_109329
crossref_primary_10_1016_j_biopha_2022_113896
crossref_primary_10_1016_j_biopha_2023_114327
crossref_primary_10_3389_fncel_2021_786597
crossref_primary_10_1186_s12915_023_01685_0
crossref_primary_10_1021_acschemneuro_0c00510
crossref_primary_10_3390_pharmaceutics14010161
crossref_primary_10_1096_fj_202100672R
crossref_primary_10_1038_s41386_023_01533_3
crossref_primary_10_1016_j_tips_2023_05_003
crossref_primary_10_3390_ijms242316728
crossref_primary_10_1016_j_expneurol_2022_114158
crossref_primary_10_1016_j_phrs_2020_105363
crossref_primary_10_3389_fphar_2021_806417
crossref_primary_10_1016_j_neubiorev_2024_105771
crossref_primary_10_31744_einstein_journal_2023RW0387
crossref_primary_10_1016_j_phrs_2021_105745
crossref_primary_10_1080_17460441_2022_2085684
crossref_primary_10_1177_1074248420935743
crossref_primary_10_3390_biom13040715
crossref_primary_10_4103_1673_5374_369113
crossref_primary_10_3390_life12122117
crossref_primary_10_1002_glia_24518
crossref_primary_10_1016_j_csbj_2020_09_028
crossref_primary_10_1038_s41598_021_87740_8
crossref_primary_10_1093_schbul_sbaa038
crossref_primary_10_1007_s00018_021_03761_6
crossref_primary_10_1016_j_arr_2023_101998
crossref_primary_10_1016_j_neuropharm_2023_109421
crossref_primary_10_1016_j_pharmthera_2021_107977
crossref_primary_10_3389_fphar_2022_897436
crossref_primary_10_1007_s12035_021_02656_8
crossref_primary_10_1007_s12035_020_02275_9
crossref_primary_10_3390_molecules27051489
crossref_primary_10_1016_j_celrep_2024_114278
crossref_primary_10_1016_j_phrs_2020_105253
crossref_primary_10_1016_j_phrs_2022_106322
crossref_primary_10_1002_jbio_202100172
crossref_primary_10_3390_ph17060813
Cites_doi 10.1111/bph.12970
10.1016/j.neuropharm.2017.02.021
10.1016/S0166-2236(97)01096-5
10.1007/s00210-002-0617-z
10.1016/j.bbrc.2010.10.122
10.1111/j.1471-4159.2009.06282.x
10.1107/S2059798318008136
10.1126/sciadv.1601631
10.1038/nature05506
10.1038/npp.2017.12
10.1016/j.jconrel.2018.05.033
10.1523/JNEUROSCI.3574-05.2006
10.1038/s41467-018-03522-3
10.1073/pnas.0237126100
10.1016/j.sleep.2018.02.002
10.1007/s12035-018-1120-y
10.1016/j.bbrc.2010.09.110
10.1016/j.sleep.2017.04.019
10.1038/sj.npp.1301375
10.1016/S0896-6273(00)00113-6
10.1021/ac049295f
10.1016/j.neuropharm.2016.09.002
10.1186/s12915-018-0491-x
10.1523/JNEUROSCI.0448-07.2007
10.1038/nature10954
10.1016/j.tips.2015.01.002
10.1124/mol.109.058370
10.1523/JNEUROSCI.4232-04.2005
10.1126/science.285.5433.1569
10.1100/tsw.2008.136
10.1016/j.cell.2018.11.040
10.1016/bs.apha.2018.12.005
10.1124/mol.114.093096
10.1073/pnas.172393799
10.7554/eLife.35946
10.1152/jn.2001.85.1.468
10.1016/S0006-2952(00)00570-0
10.1111/jnc.13724
10.1124/mol.112.084509
10.2210/pdb5g53/pdb
10.1146/annurev.bi.56.070187.003151
10.1007/s00213-016-4212-2
10.2210/pdb6n4b/pdb
10.2210/pdb5NM4/pdb
10.1016/S1097-2765(03)00390-3
10.1016/S0166-2236(96)01015-6
10.1111/jnc.13421
10.1038/nrn1247
10.1016/j.brainres.2015.03.048
10.1007/s12035-019-1564-8
10.1038/npp.2011.181
10.1021/cb5005383
10.2210/pdb6gdg/pdb
10.1146/annurev-neuro-061010-113641
10.1074/jbc.M407593200
10.1016/j.cellbi.2007.03.025
10.1074/jbc.M302809200
10.1074/jbc.273.40.25831
10.1038/nature18966
10.2210/pdb4dkl/pdb
10.1074/jbc.M110.115634
10.1073/pnas.0509588102
10.1016/j.neuropharm.2011.05.023
10.1038/mp.2011.93
10.1016/j.cell.2018.12.011
10.1073/pnas.1507704112
10.1111/j.1476-5381.2009.00480.x
10.2210/pdb5u09/pdb
10.1002/ana.25104
10.1007/s12035-018-1413-1
10.1016/j.neuron.2010.12.001
10.1126/science.aaa5264
10.1016/j.curtheres.2007.11.001
10.1016/j.neuropharm.2019.05.003
10.1124/pr.113.008052
10.1111/j.1476-5381.2010.00723.x
10.1007/s11302-013-9364-5
10.1038/s41467-017-00630-4
10.1371/journal.pcbi.1004148
10.1038/380258a0
10.1038/nature20613
10.2210/pdb5zty/pdb
10.1038/nsmb1134
10.1038/nchembio.623
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2020
DBID RCLKO
NPM
AAYXX
CITATION
IOV
ISR
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12915-020-0739-0
DatabaseName RCAAP open access repository
PubMed
CrossRef
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
University Readers
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
Chemoreception Abstracts
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed



Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DissertationSchool Repositório da Universidade de Lisboa
EISSN 1741-7007
EndPage 9
ExternalDocumentID oai_doaj_org_article_7b04e035274446de8e3bed6703c6c493
A618722610
10_1186_s12915_020_0739_0
31973708
10451_55356
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GrantInformation_xml – fundername: ;
  grantid: PTDC/DTP-FTO/3346/2014 and PTDC/MED-NEU/31274/2017
– fundername: ;
  grantid: Intramural funds
– fundername: ;
  grantid: 2017 SGR 1604
– fundername: ;
  grantid: SAF2015-74627-JIN, SAF2016-77830-R, SAF2017-87349-R
GroupedDBID ---
-A0
0R~
123
23N
2VQ
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
IPNFZ
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
P2P
PADUT
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RCLKO
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
NPM
AAYXX
CITATION
AFGXO
AFPKN
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c654t-f23f1a704a042938983accd66f1d08a471d78ab72d3fb7192b344470c3f12bc83
IEDL.DBID RPM
ISSN 1741-7007
IngestDate Tue Oct 22 15:07:14 EDT 2024
Tue Sep 17 21:11:24 EDT 2024
Sat Oct 26 00:39:27 EDT 2024
Thu Oct 10 22:00:58 EDT 2024
Tue Nov 19 21:18:42 EST 2024
Tue Nov 12 23:02:03 EST 2024
Thu Aug 01 19:25:28 EDT 2024
Thu Aug 01 19:38:46 EDT 2024
Thu Nov 21 21:19:59 EST 2024
Wed Oct 16 00:46:32 EDT 2024
Fri Nov 15 15:54:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GPCR heteromers
Striatum
Adenylyl cyclase
Glutamate transmission
Adenosine A2A receptor
Cannabinoid CB1 receptor
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c654t-f23f1a704a042938983accd66f1d08a471d78ab72d3fb7192b344470c3f12bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9030-6115
0000-0002-1747-1779
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979073/
PMID 31973708
PQID 2357173279
PQPubID 42637
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_7b04e035274446de8e3bed6703c6c493
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6979073
proquest_miscellaneous_2344275165
proquest_journals_2357173279
gale_infotracmisc_A618722610
gale_infotracacademiconefile_A618722610
gale_incontextgauss_ISR_A618722610
gale_incontextgauss_IOV_A618722610
crossref_primary_10_1186_s12915_020_0739_0
pubmed_primary_31973708
rcaap_revistas_10451_55356
PublicationCentury 2000
PublicationDate 2020-01-23
PublicationDateYYYYMMDD 2020-01-23
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2020
Publisher Springer Nature
BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: Springer Nature
– name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References RH Rose (739_CR35) 2010; 159
C Galés (739_CR42) 2006; 13
M Sánchez-Soto (739_CR32) 2019; 56
Y Guo (739_CR37) 2005; 280
V Chiodi (739_CR21) 2016; 136
A Nishi (739_CR56) 2003; 100
P Carriba (739_CR18) 2007; 32
J Decerce (739_CR63) 2007; 8
K Krishna Kumar (739_CR83) 2019; 176
X Guitart (739_CR31) 2014; 86
739_CR84
739_CR85
739_CR80
739_CR82
S Ferré (739_CR23) 2016; 233
X Guitart (739_CR49) 2019; 56
X Li (739_CR86) 2019; 176
BB Fredholm (739_CR22) 1999; 51
G Navarro (739_CR11) 2010; 285
RO Dror (739_CR43) 2015; 348
AM Graybiel (739_CR58) 2000; 28
R Sadana (739_CR13) 2009; 76
C Quiroz (739_CR61) 2016; 111
J Bonaventura (739_CR52) 2017; 3
M Rivera-Oliver (739_CR48) 2019; 56
S Ferré (739_CR8) 1997; 20
S Herlitze (739_CR16) 1996; 380
AC Kreitzer (739_CR27) 2007; 445
BB Fredholm (739_CR5) 2001; 1
G Navarro (739_CR6) 2018; 16
RE Stenkamp (739_CR40) 2018; 74
JE Lauckner (739_CR53) 2005; 102
T Megelin (739_CR64) 2017; 36
M Uchigashima (739_CR25) 2007; 7
CR Gerfen (739_CR28) 2011; 34
S Cristóvão-Ferreira (739_CR44) 2013; 9
J García-Nafría (739_CR79) 2018; 7
S Ferré (739_CR1) 2010; 160
CC Felder (739_CR54) 1992; 42
Z Shao (739_CR81) 2016; 540
FM Mouro (739_CR67) 2019; 155
S Ferré (739_CR62) 2019; 84
AV Kravitz (739_CR60) 2015; 1628
G Navarro (739_CR7) 2018; 9
SR Schwarze (739_CR72) 1999; 285
D Piomelli (739_CR4) 2003; 4
D Provasi (739_CR41) 2015; 11
S Ferré (739_CR69) 2015; 36
J Taura (739_CR73) 2018; 283
A Manglik (739_CR39) 2012; 485
S González (739_CR50) 2012; 17
FM Mouro (739_CR66) 2017; 117
L Albizu (739_CR34) 2011; 61
T Weinert (739_CR75) 2017; 8
F Ciruela (739_CR3) 2006; 26
M Klinger (739_CR45) 2002; 366
V Fernández-Dueñas (739_CR47) 2014; 9
CW Dessauer (739_CR15) 1998; 273
A Köfalvi (739_CR24) 2005; 25
S Ferré (739_CR68) 2014; 66
G Gerdeman (739_CR26) 2001; 85
SQ He (739_CR71) 2011; 69
LG Wu (739_CR17) 1997; 20
DO Borroto-Escuela (739_CR10) 2010; 402
B Moghaddam (739_CR59) 2012; 37
E Urizar (739_CR30) 2011; 7
I Anderie (739_CR38) 2007; 31
KA Bennett (739_CR46) 2013; 83
AG Gilman (739_CR14) 1987; 56
J Bonaventura (739_CR12) 2015; 112
C Schmidt (739_CR36) 2003; 12
MT Tebano (739_CR20) 2009; 110
SG Ferreira (739_CR19) 2015; 172
D García-Borreguero (739_CR65) 2018; 45
739_CR76
739_CR78
F Ciruela (739_CR9) 2004; 76
G Navarro (739_CR57) 2008; 8
739_CR74
RA Cunha (739_CR2) 2016; 139
Dasiel O. Borroto-Escuela (739_CR33) 2010; 401
G Yepes (739_CR51) 2017; 82
J Burgueño (739_CR70) 2003; 278
B Carpenter (739_CR77) 2016; 536
E Moreno (739_CR29) 2018; 43
S Ferré (739_CR55) 2002; 99
References_xml – volume: 172
  start-page: 1074
  year: 2015
  ident: 739_CR19
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.12970
  contributor:
    fullname: SG Ferreira
– volume: 117
  start-page: 316
  year: 2017
  ident: 739_CR66
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2017.02.021
  contributor:
    fullname: FM Mouro
– volume: 20
  start-page: 482
  year: 1997
  ident: 739_CR8
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(97)01096-5
  contributor:
    fullname: S Ferré
– volume: 366
  start-page: 287
  year: 2002
  ident: 739_CR45
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
  doi: 10.1007/s00210-002-0617-z
  contributor:
    fullname: M Klinger
– volume: 402
  start-page: 801
  year: 2010
  ident: 739_CR10
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.10.122
  contributor:
    fullname: DO Borroto-Escuela
– volume: 42
  start-page: 838
  year: 1992
  ident: 739_CR54
  publication-title: Mol Pharmacol
  contributor:
    fullname: CC Felder
– volume: 110
  start-page: 1921
  year: 2009
  ident: 739_CR20
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2009.06282.x
  contributor:
    fullname: MT Tebano
– volume: 74
  start-page: 655
  year: 2018
  ident: 739_CR40
  publication-title: Acta Crystallogr D Struct Biol
  doi: 10.1107/S2059798318008136
  contributor:
    fullname: RE Stenkamp
– volume: 3
  year: 2017
  ident: 739_CR52
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1601631
  contributor:
    fullname: J Bonaventura
– volume: 445
  start-page: 643
  year: 2007
  ident: 739_CR27
  publication-title: Nature
  doi: 10.1038/nature05506
  contributor:
    fullname: AC Kreitzer
– volume: 43
  start-page: 964
  year: 2018
  ident: 739_CR29
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.12
  contributor:
    fullname: E Moreno
– volume: 283
  start-page: 135
  year: 2018
  ident: 739_CR73
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2018.05.033
  contributor:
    fullname: J Taura
– volume: 26
  start-page: 2080
  year: 2006
  ident: 739_CR3
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3574-05.2006
  contributor:
    fullname: F Ciruela
– volume: 9
  start-page: 1242
  year: 2018
  ident: 739_CR7
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03522-3
  contributor:
    fullname: G Navarro
– volume: 100
  start-page: 1322
  year: 2003
  ident: 739_CR56
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0237126100
  contributor:
    fullname: A Nishi
– volume: 45
  start-page: 94
  year: 2018
  ident: 739_CR65
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2018.02.002
  contributor:
    fullname: D García-Borreguero
– volume: 56
  start-page: 797
  year: 2019
  ident: 739_CR48
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-018-1120-y
  contributor:
    fullname: M Rivera-Oliver
– volume: 401
  start-page: 605
  issue: 4
  year: 2010
  ident: 739_CR33
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2010.09.110
  contributor:
    fullname: Dasiel O. Borroto-Escuela
– volume: 36
  start-page: 182
  year: 2017
  ident: 739_CR64
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2017.04.019
  contributor:
    fullname: T Megelin
– volume: 32
  start-page: 2249
  year: 2007
  ident: 739_CR18
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301375
  contributor:
    fullname: P Carriba
– volume: 28
  start-page: 343
  year: 2000
  ident: 739_CR58
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00113-6
  contributor:
    fullname: AM Graybiel
– volume: 76
  start-page: 5354
  year: 2004
  ident: 739_CR9
  publication-title: Anal Chem
  doi: 10.1021/ac049295f
  contributor:
    fullname: F Ciruela
– volume: 111
  start-page: 160
  year: 2016
  ident: 739_CR61
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2016.09.002
  contributor:
    fullname: C Quiroz
– volume: 16
  start-page: 24
  year: 2018
  ident: 739_CR6
  publication-title: BMC Biol
  doi: 10.1186/s12915-018-0491-x
  contributor:
    fullname: G Navarro
– volume: 7
  start-page: 3663
  year: 2007
  ident: 739_CR25
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0448-07.2007
  contributor:
    fullname: M Uchigashima
– volume: 485
  start-page: 321
  year: 2012
  ident: 739_CR39
  publication-title: Nature
  doi: 10.1038/nature10954
  contributor:
    fullname: A Manglik
– volume: 36
  start-page: 145
  year: 2015
  ident: 739_CR69
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2015.01.002
  contributor:
    fullname: S Ferré
– volume: 76
  start-page: 1256
  year: 2009
  ident: 739_CR13
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.109.058370
  contributor:
    fullname: R Sadana
– volume: 25
  start-page: 2874
  year: 2005
  ident: 739_CR24
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4232-04.2005
  contributor:
    fullname: A Köfalvi
– volume: 285
  start-page: 1569
  year: 1999
  ident: 739_CR72
  publication-title: Science
  doi: 10.1126/science.285.5433.1569
  contributor:
    fullname: SR Schwarze
– volume: 8
  start-page: 1088
  year: 2008
  ident: 739_CR57
  publication-title: ScientificWorldJournal
  doi: 10.1100/tsw.2008.136
  contributor:
    fullname: G Navarro
– volume: 176
  start-page: 448
  year: 2019
  ident: 739_CR83
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.040
  contributor:
    fullname: K Krishna Kumar
– volume: 84
  start-page: 3
  year: 2019
  ident: 739_CR62
  publication-title: Adv Pharmacol
  doi: 10.1016/bs.apha.2018.12.005
  contributor:
    fullname: S Ferré
– volume: 86
  start-page: 417
  year: 2014
  ident: 739_CR31
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.114.093096
  contributor:
    fullname: X Guitart
– volume: 99
  start-page: 11940
  year: 2002
  ident: 739_CR55
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.172393799
  contributor:
    fullname: S Ferré
– volume: 7
  year: 2018
  ident: 739_CR79
  publication-title: Elife.
  doi: 10.7554/eLife.35946
  contributor:
    fullname: J García-Nafría
– volume: 85
  start-page: 468
  year: 2001
  ident: 739_CR26
  publication-title: J Neurophysiol.
  doi: 10.1152/jn.2001.85.1.468
  contributor:
    fullname: G Gerdeman
– volume: 1
  start-page: 443
  year: 2001
  ident: 739_CR5
  publication-title: Biochem Pharmacol
  doi: 10.1016/S0006-2952(00)00570-0
  contributor:
    fullname: BB Fredholm
– volume: 139
  start-page: 1019
  issue: 6
  year: 2016
  ident: 739_CR2
  publication-title: J Neurochem
  doi: 10.1111/jnc.13724
  contributor:
    fullname: RA Cunha
– volume: 83
  start-page: 949
  year: 2013
  ident: 739_CR46
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.112.084509
  contributor:
    fullname: KA Bennett
– ident: 739_CR76
  doi: 10.2210/pdb5g53/pdb
– volume: 56
  start-page: 615
  year: 1987
  ident: 739_CR14
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.56.070187.003151
  contributor:
    fullname: AG Gilman
– volume: 233
  start-page: 1963
  year: 2016
  ident: 739_CR23
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-016-4212-2
  contributor:
    fullname: S Ferré
– ident: 739_CR82
  doi: 10.2210/pdb6n4b/pdb
– ident: 739_CR74
  doi: 10.2210/pdb5NM4/pdb
– volume: 12
  start-page: 1287
  year: 2003
  ident: 739_CR36
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00390-3
  contributor:
    fullname: C Schmidt
– volume: 20
  start-page: 204
  year: 1997
  ident: 739_CR17
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(96)01015-6
  contributor:
    fullname: LG Wu
– volume: 136
  start-page: 907
  year: 2016
  ident: 739_CR21
  publication-title: J Neurochem
  doi: 10.1111/jnc.13421
  contributor:
    fullname: V Chiodi
– volume: 4
  start-page: 873
  year: 2003
  ident: 739_CR4
  publication-title: Nat Rev Neurosci.
  doi: 10.1038/nrn1247
  contributor:
    fullname: D Piomelli
– volume: 1628
  start-page: 186
  year: 2015
  ident: 739_CR60
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2015.03.048
  contributor:
    fullname: AV Kravitz
– volume: 56
  start-page: 6756
  year: 2019
  ident: 739_CR49
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-019-1564-8
  contributor:
    fullname: X Guitart
– volume: 51
  start-page: 83
  year: 1999
  ident: 739_CR22
  publication-title: Pharmacol Rev
  contributor:
    fullname: BB Fredholm
– volume: 37
  start-page: 4
  year: 2012
  ident: 739_CR59
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2011.181
  contributor:
    fullname: B Moghaddam
– volume: 9
  start-page: 2496
  year: 2014
  ident: 739_CR47
  publication-title: ACS Chem Biol
  doi: 10.1021/cb5005383
  contributor:
    fullname: V Fernández-Dueñas
– ident: 739_CR78
  doi: 10.2210/pdb6gdg/pdb
– volume: 34
  start-page: 4414
  year: 2011
  ident: 739_CR28
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-061010-113641
  contributor:
    fullname: CR Gerfen
– volume: 280
  start-page: 1438
  year: 2005
  ident: 739_CR37
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M407593200
  contributor:
    fullname: Y Guo
– volume: 31
  start-page: 1131
  year: 2007
  ident: 739_CR38
  publication-title: Cell Biol Int
  doi: 10.1016/j.cellbi.2007.03.025
  contributor:
    fullname: I Anderie
– volume: 278
  start-page: 37545
  year: 2003
  ident: 739_CR70
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M302809200
  contributor:
    fullname: J Burgueño
– volume: 273
  start-page: 25831
  year: 1998
  ident: 739_CR15
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.40.25831
  contributor:
    fullname: CW Dessauer
– volume: 536
  start-page: 104
  year: 2016
  ident: 739_CR77
  publication-title: Nature
  doi: 10.1038/nature18966
  contributor:
    fullname: B Carpenter
– ident: 739_CR84
  doi: 10.2210/pdb4dkl/pdb
– volume: 285
  start-page: 27346
  year: 2010
  ident: 739_CR11
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.115634
  contributor:
    fullname: G Navarro
– volume: 102
  start-page: 19144
  year: 2005
  ident: 739_CR53
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0509588102
  contributor:
    fullname: JE Lauckner
– volume: 61
  start-page: 770
  year: 2011
  ident: 739_CR34
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.05.023
  contributor:
    fullname: L Albizu
– volume: 17
  start-page: 650
  year: 2012
  ident: 739_CR50
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2011.93
  contributor:
    fullname: S González
– volume: 176
  start-page: 459
  year: 2019
  ident: 739_CR86
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.011
  contributor:
    fullname: X Li
– volume: 112
  start-page: E3609
  year: 2015
  ident: 739_CR12
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1507704112
  contributor:
    fullname: J Bonaventura
– volume: 159
  start-page: 738
  year: 2010
  ident: 739_CR35
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2009.00480.x
  contributor:
    fullname: RH Rose
– ident: 739_CR80
  doi: 10.2210/pdb5u09/pdb
– volume: 82
  start-page: 951
  year: 2017
  ident: 739_CR51
  publication-title: Ann Neurol
  doi: 10.1002/ana.25104
  contributor:
    fullname: G Yepes
– volume: 56
  start-page: 4778
  year: 2019
  ident: 739_CR32
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-018-1413-1
  contributor:
    fullname: M Sánchez-Soto
– volume: 69
  start-page: 120
  year: 2011
  ident: 739_CR71
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.12.001
  contributor:
    fullname: SQ He
– volume: 348
  start-page: 1361
  year: 2015
  ident: 739_CR43
  publication-title: Science
  doi: 10.1126/science.aaa5264
  contributor:
    fullname: RO Dror
– volume: 8
  start-page: 349
  year: 2007
  ident: 739_CR63
  publication-title: Curr Ther Res Clin Exp
  doi: 10.1016/j.curtheres.2007.11.001
  contributor:
    fullname: J Decerce
– volume: 155
  start-page: 10
  year: 2019
  ident: 739_CR67
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2019.05.003
  contributor:
    fullname: FM Mouro
– volume: 66
  start-page: 413
  year: 2014
  ident: 739_CR68
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.113.008052
  contributor:
    fullname: S Ferré
– volume: 160
  start-page: 443
  year: 2010
  ident: 739_CR1
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2010.00723.x
  contributor:
    fullname: S Ferré
– volume: 9
  start-page: 433
  year: 2013
  ident: 739_CR44
  publication-title: Purinergic Signal
  doi: 10.1007/s11302-013-9364-5
  contributor:
    fullname: S Cristóvão-Ferreira
– volume: 8
  start-page: 542
  year: 2017
  ident: 739_CR75
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00630-4
  contributor:
    fullname: T Weinert
– volume: 11
  year: 2015
  ident: 739_CR41
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004148
  contributor:
    fullname: D Provasi
– volume: 380
  start-page: 258
  year: 1996
  ident: 739_CR16
  publication-title: Nature
  doi: 10.1038/380258a0
  contributor:
    fullname: S Herlitze
– volume: 540
  start-page: 602
  year: 2016
  ident: 739_CR81
  publication-title: Nature
  doi: 10.1038/nature20613
  contributor:
    fullname: Z Shao
– ident: 739_CR85
  doi: 10.2210/pdb5zty/pdb
– volume: 13
  start-page: 778
  year: 2006
  ident: 739_CR42
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1134
  contributor:
    fullname: C Galés
– volume: 7
  start-page: 624
  year: 2011
  ident: 739_CR30
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.623
  contributor:
    fullname: E Urizar
SSID ssj0025773
Score 2.5249076
Snippet © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License...
It has been hypothesized that heteromers of adenosine A receptors (A2AR) and cannabinoid CB receptors (CB1R) localized in glutamatergic nerve terminals mediate...
It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic nerve...
Background It has been hypothesized that heteromers of adenosine A.sub.2A receptors (A2AR) and cannabinoid CB.sub.1 receptors (CB1R) localized in glutamatergic...
Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve...
BACKGROUNDIt has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve...
Abstract Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
rcaap
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9
SubjectTerms Activation
Adenosine
Adenosine A1 receptors
Adenosine A2A receptor
Adenosine A2A receptors
Adenylate cyclase
Adenylyl cyclase
Agonists
Biochemical characteristics
Biochemistry
C-Terminus
Caffeine
Cannabinoid CB1 receptor
Cannabinoid CB1 receptors
Cannabinoids
Cell receptors
Computational neuroscience
Control
Coordination compounds
Depolarization
Dopamine
Dopamine D2 receptors
Experiments
Glutamate
Glutamate transmission
Glutamatergic transmission
GPCR heteromers
Guanine nucleotide-binding protein
Interfaces
Localization
Mammals
Materials
Neostriatum
Nerve endings
Neuromodulation
Neurotransmission
Peptides
Protein structure
Proteins
Quaternary structure
Receptors
Signaling
Striatum
Terminals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9ZAEF60IngRv02tEkUQhNDd7MdsjrW21IuKVfG27FfaXpLypi_Yf-9Mkr40injxlmRnIXlmdmcmO_ssY6-zTTYpnSttAlRKpaZqEt5mAblpg2lCph9uR8fw8Yd9f0A0OZujvqgmbKIHnoDbhcBVJtJOUJi5pGyzDDkZNNRoomomnk9urpKpOdXSAHJewxTW7A7o1QTtROYVrUxVfOGFRrL-P6fkaz7p93rJW6vo_fk1R3R4j92dI8hyb3rz--xG7h6w29OZkpcP2ef9qfi87NvyBM3KY0iaSzoaBf1VGS7LsYg8_8wDSfhEZOEYaZa-SyXC3HlMlfuzhD2o4KVfDY_Yt8ODr_tH1XxsQhWNVhdVW8tWeODKk7PBgMRKH2MyphWJW4_eKIH1Aeok2wAY4QWJ0AKP2K0O0crHbKvru_yUldk0NWBKFiTmXUoFvGp5rkXrQ_RG-4K9vYLRnU_sGG7MKqxxE-YOMXeEueMFe0dAbwSJ2Hp8gOp2s7rdv9RdsFekJkfUFR3Vxpz49TC4D5--uz0jLGA0KfjfhI6_LITezEJtj1qNft6PgF9OlFgLyZ2FJA7AuGy-Mhk3TwCDIxYhAbKGpmAvN83Uk4rautyvSUapGrQwumBPJgvbgIMzI0jgtmCwsL0FesuW7ux0pAc3DTSIeMG2Ryt1VC6OmcaAmlFaOK2lNtv_QxfP2J16HFKiquUO27pYrfNzdnNI6xfjaPwFwGw09A
  priority: 102
  providerName: Directory of Open Access Journals
Title Control of glutamate release by complexes of adenosine and cannabinoid receptors
URI http://hdl.handle.net/10451/55356
https://www.ncbi.nlm.nih.gov/pubmed/31973708
https://www.proquest.com/docview/2357173279
https://search.proquest.com/docview/2344275165
https://pubmed.ncbi.nlm.nih.gov/PMC6979073
https://doaj.org/article/7b04e035274446de8e3bed6703c6c493
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RIiQuiHddSmUQEhKSG6_3ZR9LaFUOQEUBcVvtyyEStaO4kei_Z2ZjRzGIC7ckOxsnszM7M_a33xDyKpS-9FyETEirMs59lVUe3gaqQlVbWdmAN9zOL9XH7-W7U6TJEcNZmAjad3Zx3Py8Om4WPyK2cnnlpgNObHrxYSYrBTUdm07IBHLDoUTvqyyhFOsfX9JSTjsIaBQPIecZPpTKsPUbmJ1iCjtK7sSiSNn_98a8E5n-RE3eXjljljvh6Ow-udfnkenJ5vc-ILdC85Dc2XSWvHlELmYbCHra1ukcjMtAYhpSbJACUSu1N2mEkodfoUMJ45EyHPLN1DQ-BWU3BgrmduFhBsJe2lX3mHw9O_0yO8_65gmZk4JfZ3XBampUzg2GHEhLSmac81LW1OelgZjkVWmsKjyrrYI8zzLOucodTCusK9kTste0TdgnaZBVoaAwswyqL84tvKrzUNDaWGekMAl5M6hRLzccGTrWFqXUG_VrUL9G9es8IW9R0VtBpLeOH7Srue4XWSub84BMrQquJ30oA7PBS9idnHS8Ygl5icukkcCiQYTM3Ky7Tr__9E2fSFoqyClp_i-hy88jode9UN3CqjrTn0qAf47EWCPJw5EkuKEbDw8mo_ttoNPIJUQVK1SVkBfbYZyJ0LYmtGuU4bxQgkqRkKcbC9sqZzDUhKiR7Y20Nx4Bn4kk4b2PJOQgWqlG0DjUGx2sDBdUC8GEPPjvr31G7hbRpWhWsEOyd71ah-dk0vn1UbyrcRR98jeuczcf
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RVgguvB8uBQxCQkJy4_W-7GMJrVLRlooWxG21L4dI1I7iRqL_nhnbiWoQl97i7Kwj73y7MxN_-y0h70Luc89FSIS0KuHcF0nh4TJQFYrSysIG_MNtcqZOfuSf9lEmR6z2wrSkfWdnu9Wvi91q9rPlVs4v3GjFExudHo9loaCmY6MNsgXzNU1XRXpfZwmlWP8Ck-Zy1EBIo7gNOU3wtVSCh78B8BRTeKbktWjUivb_uzRfi01_8ya3Fs6Y-bWAdHD_ho_ygNzrM9B4r2t-SG6F6hG53Z1JefWYnI478npcl_EUYGkgpQ0xHq0C8S62V3FLQg-_Q4MWxqPYOGSqsal8DG6qDJTa9cxDDyTM1IvmCfl2sH8-niT9sQuJk4JfJmXGSmpUyg0GK0hocmac81KW1Ke5gWjmVW6syjwrrYIM0TLOuUoddMusy9lTslnVVXhO4iCLTEFJZxnUbZxb-FSmIaOlsc5IYSLyYTX8et6pa-i2Ksml7tymwW0a3abTiHxEB60NURi7_aJeTHU_plrZlAfUeFXwe9KHPDAbvIR1zUnHCxaRt-hejdIXFXJrpmbZNPrwy3e9J2muIBul6f-Mzr4OjN73RmUNaHCm388AT46SWgPLnYElTGA3bF5BTfcLSKNRhYgqlqkiIm_WzdgTSXFVqJdow3mmBJUiIs86ZK4HZwXwiKgBZgejN2wBiLby4j0kI7Ldolsj3RwqlQY8wwXVQjAht29829fkzuT8-EgfHZ58fkHuZu20pEnGdsjm5WIZXpKNxi9ftTP6DyfsS7s
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJhAvfH9kDAgICQkpaxw7tvM4uk2bgFExQLxZ_kqpxJKqWSX233OXpFUD4gXe2vrcKr6ffXfNL78j5FVQXnmehyQXViac-yIpPLwNVIaitKKwAf9wOzmXZ9_U4RHK5KxbfbWkfWdn-9WPi_1q9r3lVs4v3GjFExtNPoxFIaGmY6O5L0dbZAf2bJqtCvW-1sqlZP1NTKrEqIGwRvFR5DTBW1MJNoAD8Ekmsa_kRkRqhfv_PJ434tPv3MmdhTNmvhGUjm__x-XcIbf6TDQ-6Ezukmuhukeud70pr-6Tybgjscd1GU8BngZS2xBjixWIe7G9ilsyevgZGrQwHkXHIWONTeVjcFdloOSuZx5mIHGmXjQPyJfjo8_jk6Rvv5A4kfPLpMxYSY1MucGgBYmNYsY5L0RJfaoMRDUvlbEy86y0EjJFyzjnMnUwLbNOsYdku6qr8JjEQRSZhNLOMqjfOLfwqkxDRktjnRG5iciblQv0vFPZ0G11ooTuXKfBdRpdp9OIvEUnrQ1RILv9oF5Mdb-uWtqUB9R6lfB7wgcVmA1ewPnmhOMFi8hLdLFGCYwKOTZTs2waffrxqz4QVEnISmn6N6PzTwOj171RWQMinOmfa4ArR2mtgeXewBI2shsOr-Cm-4Ok0ahGRCXLZBGRF-thnInkuCrUS7ThPJM5FXlEHnXoXC_OCuQRkQPcDlZvOAIwbWXGe1hGZLdFuEbaOVQsDXiG51TnOcvF7j9_7XNyY3J4rN-fnr17Qm5m7c6kScb2yPblYhmekq3GL5-1m_oXnSZOOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+glutamate+release+by+complexes+of+adenosine+and+cannabinoid+receptors&rft.jtitle=BMC+biology&rft.date=2020-01-23&rft.pub=BioMed+Central&rft.eissn=1741-7007&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs12915-020-0739-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon