Formation of One-Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxaline-Fused [7]Carbohelicenes in the Crystal
A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the cr...
Saved in:
Published in: | Chemistry : a European journal Vol. 20; no. 32; pp. 10099 - 10109 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
04-08-2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH⋅⋅⋅N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units.
π‐Stacked helices: Quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) were designed and synthesized to evaluate their structural and photophysical properties in the crystal state. A racemic HeQu derivative formed one‐dimensional helical columns in the crystal and showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units (see figure). |
---|---|
AbstractList | A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light-emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited-state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7V. The steady-state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single-crystal analysis. Introduction of appropriate substituents (i.e., 4-methoxyphenyl) in the HeQu unit enabled the construction of one-dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn pi -stacking between two neighboring [7]carbohelicenes and intercolumn CHN interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time-resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. pi -Stacked helices: Quinoxaline-fused [7]carbohelicenes (HeQu derivatives) were designed and synthesized to evaluate their structural and photophysical properties in the crystal state. A racemic HeQu derivative formed one-dimensional helical columns in the crystal and showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units (see figure). A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light-emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited-state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady-state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single-crystal analysis. Introduction of appropriate substituents (i.e., 4-methoxyphenyl) in the HeQu unit enabled the construction of one-dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π-stacking between two neighboring [7]carbohelicenes and intercolumn CH⋅⋅⋅N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time-resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH ⋅⋅⋅ N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light-emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited-state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7V. The steady-state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single-crystal analysis. Introduction of appropriate substituents (i.e., 4-methoxyphenyl) in the HeQu unit enabled the construction of one-dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π-stacking between two neighboring [7]carbohelicenes and intercolumn CHN interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time-resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH⋅⋅⋅N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. π‐Stacked helices: Quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) were designed and synthesized to evaluate their structural and photophysical properties in the crystal state. A racemic HeQu derivative formed one‐dimensional helical columns in the crystal and showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units (see figure). |
Author | Araki, Yasuyuki Wada, Takehiko Hasobe, Taku Takenobu, Taishi Shinto, Sho Sakanoue, Tomo Sakai, Hayato |
Author_xml | – sequence: 1 givenname: Hayato surname: Sakai fullname: Sakai, Hayato organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522 (Japan), Fax: (+81) 45-566-1697 – sequence: 2 givenname: Sho surname: Shinto fullname: Shinto, Sho organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522 (Japan), Fax: (+81) 45-566-1697 – sequence: 3 givenname: Yasuyuki surname: Araki fullname: Araki, Yasuyuki email: araki@tagen.tohoku.ac.jp organization: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan), Fax: (+81) 22-217-5608 – sequence: 4 givenname: Takehiko surname: Wada fullname: Wada, Takehiko organization: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan), Fax: (+81) 22-217-5608 – sequence: 5 givenname: Tomo surname: Sakanoue fullname: Sakanoue, Tomo organization: Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-2981 – sequence: 6 givenname: Taishi surname: Takenobu fullname: Takenobu, Taishi email: takenobu@waseda.jp organization: Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-2981 – sequence: 7 givenname: Taku surname: Hasobe fullname: Hasobe, Taku email: hasobe@chem.keio.ac.jp organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522 (Japan), Fax: (+81) 45-566-1697 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25042705$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNPCliUaiQ2bCbbHP_ESTZMGKVARQEggZHmcO4rbGbvYMyJ5BN4ah5QKsenqWtb5juz7naETHzwg9JzgKcGYvrZb6KcUE4Ypo-IRmhBOSVlJwU_QBCsmS8ErdYrOUrrGGCtRVU_QKeWYUYn5BP1ahNibwQVfhLa48lBeuB58yhemK5bQOZtnHbqx96kwflPMdzYTsXM38Oc8wKb4OJgBUtHsi7Wx0DtbfBidDzvTuWxcjCkz3-T32sQmbA9O8Bl3vhi2UNRxnwbTPUWPW9MleHY3z9HnxfxTvSxXV5dv6zer0gqORdlQi2eVmbWMKyxYK1S7EYRKoQQxeEZow1rbtiZ_tGoaQZWAZtawDRgJrRWmOkevjt7bGH6MkAbdu2Sh64yHMCZNpJRKcc7owyjnJO-dMJLRl_-h12GMeYcHiikqczsyU9MjZWNIKUKrb6PrTdxrgvWhT33oU9_3mQMv7rRj08PmHv9bYAbUEfjpOtg_oNP1cv7uX3l5zLo0wO4-a-KNzm-VXH95f6kryb5eiPVar6rf21e9fA |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1039_C6OB00937A crossref_primary_10_1039_D1CC01631H crossref_primary_10_1039_C5RA12577D crossref_primary_10_1021_acs_jpcc_6b01344 crossref_primary_10_1002_chem_201603591 crossref_primary_10_1002_hlca_202100016 crossref_primary_10_1021_acs_jpcc_6b01123 crossref_primary_10_1002_anie_202012213 crossref_primary_10_1021_acs_jpca_2c00432 crossref_primary_10_1002_ejoc_202101533 crossref_primary_10_1021_acs_jpca_2c08474 crossref_primary_10_1021_acsami_8b16601 crossref_primary_10_1002_chem_201504484 crossref_primary_10_1070_RCR4887 crossref_primary_10_1021_acs_orglett_0c01190 crossref_primary_10_3390_catal11101200 crossref_primary_10_1021_acs_joc_9b02895 crossref_primary_10_1002_ange_202012213 crossref_primary_10_1021_acs_jpcc_5b03386 crossref_primary_10_1021_acs_joc_0c01837 crossref_primary_10_1039_C9TC06689F crossref_primary_10_1002_ejoc_202201373 crossref_primary_10_1002_chem_201504048 crossref_primary_10_1021_acs_jpca_8b05612 crossref_primary_10_1002_ejoc_202200764 crossref_primary_10_1021_acs_joc_4c00135 |
Cites_doi | 10.1021/ja110858k 10.1021/ja401214t 10.1021/ja055414c 10.1021/jp206617e 10.1002/hlca.19770600228 10.1021/ja310372f 10.1039/c0jm04449k 10.1021/jp304576g 10.1073/pnas.0711308105 10.1021/jp207136k 10.1016/j.molstruc.2012.12.037 10.1002/chem.200600514 10.1016/j.eurpolymj.2005.11.022 10.1021/jp409557g 10.1039/c2cp42957h 10.1021/ja300278e 10.1039/c3sm51896e 10.1021/ja308519b 10.1021/ja400493e 10.1039/c2jm30620d 10.1021/jp805202y 10.1021/cm010093z 10.1021/jp0766104 10.1021/ja303513f 10.1039/c2cc30756a 10.1039/c3nr01967e 10.1021/ja035626e 10.1039/p29820000789 10.1021/ja064554z 10.1039/c3ce41022f 10.1002/ange.200504287 10.1002/chem.200601295 10.1021/ja407315f 10.1039/c2dt32234j 10.1002/anie.200504287 10.1107/S0567740881006122 10.1039/b920220j 10.1021/ja303204m 10.1039/C0CE00547A 10.1021/ja002072w 10.1002/ange.201006448 10.1021/ja203206g 10.1021/ol006366y 10.1038/nchem.1231 10.1002/ange.19740862003 10.1021/jz402615n 10.1021/cg201182p 10.1107/S0365110X58002310 10.1002/anie.201006448 10.1021/cg060849c 10.1038/ncomms2756 10.1039/c2dt30414g 10.1039/c2cc35438a 10.1016/0009-2614(76)80750-6 10.1021/ja404198h 10.1021/jp2064968 10.1016/0009-2614(68)80041-7 10.1039/C1CS15201G 10.1021/cr00071a001 10.1021/cg800137e 10.1002/ejic.201000358 10.1002/anie.197406491 10.1038/171737a0 10.1016/S0009-2614(98)00629-0 10.1021/jo9002147 10.1021/ja4062135 10.1002/chem.201103518 10.1002/chem.201001596 10.1021/cg401166v 10.1021/ja906377q 10.1021/cm2028788 10.1021/ar040012f 10.1021/jp400381h 10.1039/C2TC00742H 10.1021/jz4005152 10.1039/c2cs35242g 10.1002/anie.201106157 10.1002/adma.201203155 10.1016/j.tetlet.2011.12.082 10.1002/chem.201303123 10.1021/ic202467f 10.1021/cr990120t 10.1002/chir.20562 10.1002/ange.201106157 10.1021/jp075129a 10.1039/c1cc10220f 10.1016/0009-2614(75)85698-3 10.1073/pnas.37.4.205 10.1039/C2SM25997D 10.1039/c0cc03011b 10.1021/ja4055228 10.1039/B910564F 10.1021/ja0462530 10.1021/ja400160j 10.1021/ma201998z 10.1021/ja3086005 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201402426 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 10109 |
ExternalDocumentID | 3386595641 10_1002_chem_201402426 25042705 CHEM201402426 ark_67375_WNG_374ZD6RR_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Grant‐in‐Aid for Scientific Research funderid: 23108721; 23681025 – fundername: Mitsubishi Foundation – fundername: MEXT |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c6506-b2c083a8f459064f69fd61276961a0812b4fcffa6333bb6296eb8b4dea7efc6a3 |
IEDL.DBID | 33P |
ISSN | 0947-6539 |
IngestDate | Thu Aug 15 22:39:16 EDT 2024 Fri Aug 16 09:13:35 EDT 2024 Tue Nov 19 06:21:49 EST 2024 Thu Nov 21 23:20:44 EST 2024 Sat Sep 28 08:05:09 EDT 2024 Sat Aug 24 00:58:44 EDT 2024 Wed Oct 30 09:51:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | stacking interactions electrochemistry fluorescence supramolecular chemistry helical structures |
Language | English |
License | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6506-b2c083a8f459064f69fd61276961a0812b4fcffa6333bb6296eb8b4dea7efc6a3 |
Notes | MEXT Mitsubishi Foundation istex:52867CB2E9D0A740EF8C2BE3D47A74B5090BA21E ArticleID:CHEM201402426 ark:/67375/WNG-374ZD6RR-L Grant-in-Aid for Scientific Research - No. 23108721; No. 23681025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25042705 |
PQID | 1549274267 |
PQPubID | 986340 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1777995542 proquest_miscellaneous_1551024141 proquest_journals_1549274267 crossref_primary_10_1002_chem_201402426 pubmed_primary_25042705 wiley_primary_10_1002_chem_201402426_CHEM201402426 istex_primary_ark_67375_WNG_374ZD6RR_L |
PublicationCentury | 2000 |
PublicationDate | August 4, 2014 |
PublicationDateYYYYMMDD | 2014-08-04 |
PublicationDate_xml | – month: 08 year: 2014 text: August 4, 2014 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Z. Zhao, S. Chen, J. W. Y. Lam, Z. Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y. Ma, H. S. Kwok, B. Z. Tang, J. Mater. Chem. 2011, 21, 7210-7216 M. A. Fourati, T. Maris, W. G. Skene, C. G. Bazuin, R. E. Prud′homme, J. Phys. Chem. B 2011, 115, 12362-12369 T. Grancha, C. Tourbillon, J. Ferrando-Soria, M. Julve, F. Lloret, J. Pasan, C. Ruiz-Perez, O. Fabelo, E. Pardo, CrystEngComm 2013, 15, 9312-9315 J. D. Watson, F. H. C. Crick, Nature 1953, 171, 737-738 Angew. Chem. Int. Ed. 2006, 45, 2242-2245. H. Maeda, Y. Bando, K. Shimomura, I. Yamada, M. Naito, K. Nobusawa, H. Tsumatori, T. Kawai, J. Am. Chem. Soc. 2011, 133, 9266-9269. M. K. Lakshman, P. L. Kole, S. Chaturvedi, J. H. Saugier, H. J. C. Yeh, J. P. Glusker, H. L. Carrell, A. K. Katz, C. E. Afshar, W. M. Dashwood, G. Kenniston, W. M. Baird, J. Am. Chem. Soc. 2000, 122, 12629-12636. Y. Nakai, T. Mori, Y. Inoue, J. Phys. Chem. A 2012, 116, 7372-7385 D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893-4012. T. Sakuma, H. Sakai, T. Hasobe, Chem. Commun. 2012, 48, 4441-4443 N. J. Turro, Modern Molecular Photochemistry, University Science Books, Sausalito, 1991, pp. 105-109. D. Chen, C. Zhu, H. Wang, J. E. Maclennan, M. A. Glaser, E. Korblova, D. M. Walba, J. A. Rego, E. A. Soto-Bustamante, N. A. Clark, Soft Matter 2013, 9, 462-471. T. Hasobe, Phys. Chem. Chem. Phys. 2012, 14, 15975-15987 R. M. Ho, M. C. Li, S. C. Lin, H. F. Wang, Y. D. Lee, H. Hasegawa, E. L. Thomas, J. Am. Chem. Soc. 2012, 134, 10974-10986 R. J. Kumar, J. M. MacDonald, T. B. Singh, L. J. Waddington, A. B. Holmes, J. Am. Chem. Soc. 2011, 133, 8564-8573 T. Seko, K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama, J. Tanaka, Chem. Phys. Lett. 1998, 291, 438-444 G. Zhang, G. Yang, S. Wang, Q. Chen, J. S. Ma, Chem. Eur. J. 2007, 13, 3630-3635 L. Pauling, R. B. Corey, H. R. Branson, Proc. Natl. Acad. Sci. USA 1951, 37, 205-211 A. S. D. Sandanayaka, Y. Araki, T. Wada, T. Hasobe, J. Phys. Chem. C 2008, 112, 19209-19216 G.-S. Liou, H.-Y. Lin, Eur. Polym. J. 2006, 42, 1051-1058. J. Kumar, T. Nakashima, H. Tsumatori, T. Kawai, J. Phys. Chem. Lett. 2014, 5, 316-321 T. Hatakeyama, S. Hashimoto, T. Oba, M. Nakamura, J. Am. Chem. Soc. 2012, 134, 19600-19603 K. Nakano, H. Oyama, Y. Nishimura, S. Nakasako, K. Nozaki, Angew. Chem. 2012, 124, 719-723 T. Miyabe, H. Iida, M. Banno, T. Yamaguchi, E. Yashima, Macromolecules 2011, 44, 8687-8692 A. Shchyrba, M. T. Nguyen, C. Wackerlin, S. Martens, S. Nowakowska, T. Ivas, J. Roose, T. Nijs, S. Boz, M. Schar, M. Stohr, C. A. Pignedoli, C. Thilgen, F. Diederich, D. Passerone, T. A. Jung, J. Am. Chem. Soc. 2013, 135, 15270-15273. T. Hasobe, H. Sakai, K. Mase, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. C 2013, 117, 4441-4449. K. Watanabe, H. Iida, K. Akagi, Adv. Mater. 2012, 24, 6451-6456 Y. Sonoda, M. Goto, S. Tsuzuki, N. Tamaoki, J. Phys. Chem. A 2007, 111, 13441-13451 S. Yagai, M. Yamauchi, A. Kobayashi, T. Karatsu, A. Kitamura, T. Ohba, Y. Kikkawa, J. Am. Chem. Soc. 2012, 134, 18205-18208 L. Aboshyan-Sorgho, M. Cantuel, G. Bernardinelli, C. Piguet, Dalton Trans. 2012, 41, 7218-7226 M. Joly, N. Defay, R. H. Martin, J. P. Declerq, G. Germain, B. Soubrier-Payen, M. Van Meerssche, Helv. Chim. Acta 1977, 60, 537-560 R. Glaser, Chirality 2008, 20, 910-918 M. Sugino, Y. Araki, K. Hatanaka, I. Hisaki, M. Miyata, N. Tohnai, Cryst. Growth Des. 2013, 13, 4986-4992 R. Custelcean, D.-e. Jiang, B. P. Hay, W. Luo, B. Gu, Cryst. Growth Des. 2008, 8, 1909-1915 L. Chen, K. S. Mali, S. R. Puniredd, M. Baumgarten, K. Parvez, W. Pisula, S. De Feyter, K. Mullen, J. Am. Chem. Soc. 2013, 135, 13531-13537. B. Willis, L. M. Eubanks, M. R. Wood, K. D. Janda, T. J. Dickerson, R. A. Lerner, Proc. Natl. Acad. Sci. USA 2008, 105, 1416-1419 Y. Wei, K. Wu, J. He, W. Zheng, X. Xiao, CrystEngComm 2011, 13, 52-54 C. Zhao, B. Bai, H. Wang, S. Qu, G. Xiao, T. Tian, M. Li, J. Mol. Struct. 2013, 1037, 130-135. X.-K. Chen, J.-F. Guo, L.-Y. Zou, A.-M. Ren, J.-X. Fan, J. Phys. Chem. C 2011, 115, 21416-21428 M. J. Fuchter, M. Weimar, X. Yang, D. K. Judge, A. J. P. White, Tetrahedron Lett. 2012, 53, 1108-1111. T. Hinoue, Y. Shigenoi, M. Sugino, Y. Mizobe, I. Hisaki, M. Miyata, N. Tohnai, Chem. Eur. J. 2012, 18, 4634-4643 W. Z. Yuan, F. Mahtab, Y. Y. Gong, Z. Q. Yu, P. Lu, Y. H. Tang, J. W. Y. Lam, C. Z. Zhu, B. Z. Tang, J. Mater. Chem. 2012, 22, 10472-10479 Y. Huang, J. Hu, W. Kuang, Z. Wei, C. F. J. Faul, Chem. Commun. 2011, 47, 5554-5556 M. Miyasaka, A. Rajca, M. Pink, S. Rajca, J. Am. Chem. Soc. 2005, 127, 13806-13807 X. Lu, Z. Guo, C. Sun, H. Tian, W. Zhu, J. Phys. Chem. B 2011, 115, 10871-10876 T. Caronna, M. Catellani, S. Luzzati, L. Malpezzi, S. V. Meille, A. Mele, C. Richter, R. Sinisi, Chem. Mater. 2001, 13, 3906-3914. J. Lu, L. Wu, J. Jiang, X. Zhang, Eur. J. Inorg. Chem. 2010, 2010, 4000-4008 J. C. Dewan, Acta Crystallogr. 1981, 37, 1421-1424 T. Hasobe, J. Phys. Chem. Lett. 2013, 4, 1771-1780 T. Hasobe, Phys. Chem. Chem. Phys. 2010, 12, 44-57. A. Rajca, M. Miyasaka, M. Pink, H. Wang, S. Rajca, J. Am. Chem. Soc. 2004, 126, 15211-15222. Y. Shinozaki, G. Richards, K. Ogawa, A. Yamano, K. Ohara, K. Yamaguchi, S.-i. Kawano, K. Tanaka, Y. Araki, T. Wada, J. Otsuki, J. Am. Chem. Soc. 2013, 135, 5262-5265 J. Wang, G. Yang, H. Jiang, G. Zou, Q. Zhang, Soft Matter 2013, 9, 9785-9791. Angew. Chem. Int. Ed. Engl. 1974, 13, 649-660 K. Watanabe, I. Osaka, S. Yorozuya, K. Akagi, Chem. Mater. 2012, 24, 1011-1024 E. Vander Donckt, J. Nasielski, J. R. Greenleaf, J. B. Birks, Chem. Phys. Lett. 1968, 2, 409-410. T. Hahn, Acta Crystallographica 1958, 11, 825-825. K. Kodama, Y. Kobayashi, K. Saigo, Chem. Eur. J. 2007, 13, 2144-2152 Angew. Chem. Int. Ed. 2011, 50, 2850-2853 E. Murguly, R. McDonald, N. R. Branda, Org. Lett. 2000, 2, 3169-3172. H. J. Son, W. S. Han, D. H. Yoo, K. T. Min, S. N. Kwon, J. Ko, S. O. Kang, J. Org. Chem. 2009, 74, 3175-3178. J. Chen, A. Neels, K. M. Fromm, Chem. Commun. 2010, 46, 8282-8284 H. Nakade, B. J. Jordan, H. Xu, G. Han, S. Srivastava, R. R. Arvizo, G. Cooke, V. M. Rotello, J. Am. Chem. Soc. 2006, 128, 14924-14929 R. H. Martin, Angew. Chem. 1974, 86, 727-738 K. E. Maly, Cryst. Growth Des. 2011, 11, 5628-5633. K. Kodama, Y. Kobayashi, K. Saigo, Cryst. Growth Des. 2007, 7, 935-939 D. C. Harrowven, I. L. Guy, L. Nanson, Angew. Chem. 2006, 118, 2300-2303 R. Kuroda, J. Chem. Soc. Perkin Trans. 2 1982, 789-794 M. Banno, T. Yamaguchi, K. Nagai, C. Kaiser, S. Hecht, E. Yashima, J. Am. Chem. Soc. 2012, 134, 8718-8728 F. Aparicio, F. Garcia, G. Fernandez, E. Matesanz, L. Sanchez, Chem. Eur. J. 2011, 17, 2769-2776 B. Narayan, C. Kulkarni, S. J. George, J. Mater. Chem. C 2013, 1, 626 F. D′Souza, O. Ito, Chem. Soc. Rev. 2012, 41, 86-96. M. Albrecht, E. Isaak, M. Baumert, V. Gossen, G. Raabe, R. Frohlich, Angew. Chem. 2011, 123, 2903-2906 M. Sapir, E. V. Donckt, Chem. Phys. Lett. 1975, 36, 108-110. S. Pieraccini, S. Bonacchi, S. Lena, S. Masiero, M. Montalti, N. Zaccheroni, G. P. Spada, Org. Biomol. Chem. 2010, 8, 774-781 J. B. Birks, D. J. S. Birch, E. Cordemans, E. Vander Donckt, Chem. Phys. Lett. 1976, 43, 33-36. H. Shao, T. Nguyen, N. C. Romano, D. A. Modarelli, J. R. Parquette, J. Am. Chem. Soc. 2009, 131, 16374-16376 S. Manchineella, V. Prathyusha, U. D. Priyakumar, T. Govindaraju, Chem. Eur. J. 2013, 19, 16615-16624 L. RulíŠek, O. Exner, L. Cwiklik, P. Jungwirth, I. Starý, L. PospíŠil, Z. Havlas, J. Phys. Chem. C 2007, 111, 14948-14955. C.-S. Chen, X.-D. Xu, S.-Y. Li, R.-X. Zhuo, X.-Z. Zhang, Nanoscale 2013, 5, 6270-6274 S. J. George, R. de Bruijn, Ž. Tomović, B. Van Averbeke, D. Beljonne, R. Lazzaroni, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2012, 134, 17789-17796 L. Wang, W. Li, J. Lu, Y.-X. Zhao, G. Fan, J.-P. Zhang, H. Wang, J. Phys. Chem. C 2013, 117, 26811-26820 M. Kumar, N. Jonnalagadda, S. J. George, Chem. Commun. 2012, 48, 10948-10950 Y. Sawada, S. Furumi, A. Takai, M. Takeuchi, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2012, 134, 4080-4083. H.-G. Jin, X.-J. Hong, J. Li, Y.-Z. Yan, Y.-T. Liu, S.-H. Xu, Y.-P. Cai, Dalton Trans. 2012, 41, 14239-14243 J. E. Field, G. Muller, J. P. Riehl, D. Venkataraman, J. Am. Chem. Soc. 2003, 125, 11808-11809 S. Shin, S. Lim, Y. Kim, T. Kim, T. L. Choi, M. Lee, J. Am. Chem. Soc. 2013, 135, 2156-2159 K. Nagura, S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa, H. Sato, Y. Shimoikeda, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 10322-10325. R. Carr, N. H. Evans, D. Parker, Chem. Soc. Rev. 2012, 41, 7673-7686 J. P. Riehl, F. S. Richardson, Chem. Rev. 1986, 86, 1-16 J. R. Aldrich-Wright, Nat. Chem. 2011, 4, 10-11 J. W. Lam, B. Z. Tang, Acc. Chem. Res. 2005, 38, 745-754. T. Harada, H. Tsumatori, K. Nishiyama, J. Yuasa, Y. Hasegawa, T. Kawai, Inorg. Chem. 2012, 51, 6476-6485 C. T. Chen, C. H. Chen, T. G. Ong, J. Am. Chem. Soc. 2013, 135, 5294-5297 C. Yuan, S. Saito, C. Camacho, S. Irle, I. Hisaki, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 8842-8845 T. Sasaki, I. Hisaki, T. Miyano, N. Tohnai, K. Morimoto, H. Sato, S. Tsuzuki, M. Miyata, Nat. Commun. 2013, 4, 1787. Angew. Chem. Int. Ed. 2012, 51, 695-699. 2010; 12 2011; 115 2001; 101 2013; 4 2004; 126 2013; 1 1968; 2 1958; 11 2011; 11 2008; 8 2008; 105 2011; 13 2012; 18 2000; 2 2011 2011; 123 50 2011; 17 2012; 14 2013; 5 2006 2006; 118 45 2012; 53 2013; 9 1977; 60 2012; 51 2013; 19 1998; 291 2013; 15 2014; 5 2012; 134 1986; 86 2013; 13 2013; 117 2007; 7 2011; 21 1981; 37 1982 1951; 37 2000; 122 2008; 20 1974 1974; 86 13 2008; 112 2012; 24 2005; 38 2003; 125 2001; 13 2006; 128 2012; 22 2010; 8 1976; 43 2013; 1037 2010; 2010 1975; 36 2009; 131 1991 2011; 4 1953; 171 2007; 13 2011; 133 2009; 74 2006; 42 2010; 46 2007; 111 2005; 127 2011; 44 2013; 135 2012 2012; 124 51 2012; 48 2011; 47 2012; 116 2012; 41 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_95_2 e_1_2_6_30_2 e_1_2_6_91_2 e_1_2_6_19_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_76_3 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_99_2 e_1_2_6_102_2 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_106_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_87_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_96_2 e_1_2_6_31_2 e_1_2_6_92_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_42_2 e_1_2_6_105_2 e_1_2_6_80_2 e_1_2_6_109_2 Turro N. J. (e_1_2_6_110_2) 1991 e_1_2_6_101_2 e_1_2_6_6_3 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_46_2 e_1_2_6_51_2 e_1_2_6_97_2 e_1_2_6_74_2 e_1_2_6_93_2 e_1_2_6_70_2 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_36_2 e_1_2_6_78_2 e_1_2_6_62_2 e_1_2_6_104_2 e_1_2_6_85_2 e_1_2_6_104_3 e_1_2_6_20_2 e_1_2_6_108_2 e_1_2_6_81_2 e_1_2_6_100_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_89_2 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_94_2 e_1_2_6_94_3 e_1_2_6_71_2 e_1_2_6_90_2 e_1_2_6_111_2 e_1_2_6_18_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_98_2 e_1_2_6_103_2 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_107_2 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 |
References_xml | – volume: 9 start-page: 462 year: 2013 end-page: 471 publication-title: Soft Matter – volume: 13 start-page: 52 year: 2011 end-page: 54 publication-title: CrystEngComm – volume: 24 start-page: 6451 year: 2012 end-page: 6456 publication-title: Adv. Mater. – volume: 13 start-page: 4986 year: 2013 end-page: 4992 publication-title: Cryst. Growth Des. – volume: 124 51 start-page: 719 695 year: 2012 2012 end-page: 723 699 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 48 start-page: 4441 year: 2012 end-page: 4443 publication-title: Chem. Commun. – volume: 111 start-page: 13441 year: 2007 end-page: 13451 publication-title: J. Phys. Chem. A – volume: 4 start-page: 10 year: 2011 end-page: 11 publication-title: Nat. Chem. – volume: 18 start-page: 4634 year: 2012 end-page: 4643 publication-title: Chem. Eur. J. – volume: 37 start-page: 1421 year: 1981 end-page: 1424 publication-title: Acta Crystallogr. – volume: 74 start-page: 3175 year: 2009 end-page: 3178 publication-title: J. Org. Chem. – volume: 38 start-page: 745 year: 2005 end-page: 754 publication-title: Acc. Chem. Res. – volume: 4 start-page: 1771 year: 2013 end-page: 1780 publication-title: J. Phys. Chem. Lett. – start-page: 789 year: 1982 end-page: 794 publication-title: J. Chem. Soc. Perkin Trans. 2 – volume: 24 start-page: 1011 year: 2012 end-page: 1024 publication-title: Chem. Mater. – volume: 135 start-page: 8842 year: 2013 end-page: 8845 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 774 year: 2010 end-page: 781 publication-title: Org. Biomol. Chem. – volume: 11 start-page: 825 year: 1958 end-page: 825 publication-title: Acta Crystallographica – volume: 4 start-page: 1787 year: 2013 publication-title: Nat. Commun. – volume: 20 start-page: 910 year: 2008 end-page: 918 publication-title: Chirality – volume: 19 start-page: 16615 year: 2013 end-page: 16624 publication-title: Chem. Eur. J. – volume: 112 start-page: 19209 year: 2008 end-page: 19216 publication-title: J. Phys. Chem. C – volume: 125 start-page: 11808 year: 2003 end-page: 11809 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 5294 year: 2013 end-page: 5297 publication-title: J. Am. Chem. Soc. – volume: 118 45 start-page: 2300 2242 year: 2006 2006 end-page: 2303 2245 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 123 50 start-page: 2903 2850 year: 2011 2011 end-page: 2906 2853 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 7 start-page: 935 year: 2007 end-page: 939 publication-title: Cryst. Growth Des. – volume: 134 start-page: 17789 year: 2012 end-page: 17796 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 108 year: 1975 end-page: 110 publication-title: Chem. Phys. Lett. – volume: 128 start-page: 14924 year: 2006 end-page: 14929 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 33 year: 1976 end-page: 36 publication-title: Chem. Phys. Lett. – volume: 86 13 start-page: 727 649 year: 1974 1974 end-page: 738 660 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl. – volume: 1037 start-page: 130 year: 2013 end-page: 135 publication-title: J. Mol. Struct. – volume: 37 start-page: 205 year: 1951 end-page: 211 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 2144 year: 2007 end-page: 2152 publication-title: Chem. Eur. J. – volume: 126 start-page: 15211 year: 2004 end-page: 15222 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 5554 year: 2011 end-page: 5556 publication-title: Chem. Commun. – volume: 117 start-page: 4441 year: 2013 end-page: 4449 publication-title: J. Phys. Chem. C – volume: 53 start-page: 1108 year: 2012 end-page: 1111 publication-title: Tetrahedron Lett. – volume: 17 start-page: 2769 year: 2011 end-page: 2776 publication-title: Chem. Eur. J. – volume: 41 start-page: 86 year: 2012 end-page: 96 publication-title: Chem. Soc. Rev. – volume: 171 start-page: 737 year: 1953 end-page: 738 publication-title: Nature – volume: 135 start-page: 13531 year: 2013 end-page: 13537 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 3169 year: 2000 end-page: 3172 publication-title: Org. Lett. – volume: 8 start-page: 1909 year: 2008 end-page: 1915 publication-title: Cryst. Growth Des. – volume: 41 start-page: 7673 year: 2012 end-page: 7686 publication-title: Chem. Soc. Rev. – volume: 86 start-page: 1 year: 1986 end-page: 16 publication-title: Chem. Rev. – volume: 51 start-page: 6476 year: 2012 end-page: 6485 publication-title: Inorg. Chem. – volume: 46 start-page: 8282 year: 2010 end-page: 8284 publication-title: Chem. Commun. – volume: 116 start-page: 7372 year: 2012 end-page: 7385 publication-title: J. Phys. Chem. A – volume: 41 start-page: 7218 year: 2012 end-page: 7226 publication-title: Dalton Trans. – volume: 1 start-page: 626 year: 2013 publication-title: J. Mater. Chem. C – volume: 14 start-page: 15975 year: 2012 end-page: 15987 publication-title: Phys. Chem. Chem. Phys. – start-page: 105 year: 1991 end-page: 109 – volume: 135 start-page: 2156 year: 2013 end-page: 2159 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 19600 year: 2012 end-page: 19603 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 10871 year: 2011 end-page: 10876 publication-title: J. Phys. Chem. B – volume: 133 start-page: 8564 year: 2011 end-page: 8573 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 7210 year: 2011 end-page: 7216 publication-title: J. Mater. Chem. – volume: 134 start-page: 4080 year: 2012 end-page: 4083 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 316 year: 2014 end-page: 321 publication-title: J. Phys. Chem. Lett. – volume: 115 start-page: 12362 year: 2011 end-page: 12369 publication-title: J. Phys. Chem. B – volume: 101 start-page: 3893 year: 2001 end-page: 4012 publication-title: Chem. Rev. – volume: 131 start-page: 16374 year: 2009 end-page: 16376 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6270 year: 2013 end-page: 6274 publication-title: Nanoscale – volume: 9 start-page: 9785 year: 2013 end-page: 9791 publication-title: Soft Matter – volume: 134 start-page: 8718 year: 2012 end-page: 8728 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 10322 year: 2013 end-page: 10325 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 10974 year: 2012 end-page: 10986 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 10472 year: 2012 end-page: 10479 publication-title: J. Mater. Chem. – volume: 115 start-page: 21416 year: 2011 end-page: 21428 publication-title: J. Phys. Chem. C – volume: 13 start-page: 3906 year: 2001 end-page: 3914 publication-title: Chem. Mater. – volume: 117 start-page: 26811 year: 2013 end-page: 26820 publication-title: J. Phys. Chem. C – volume: 13 start-page: 3630 year: 2007 end-page: 3635 publication-title: Chem. Eur. J. – volume: 41 start-page: 14239 year: 2012 end-page: 14243 publication-title: Dalton Trans. – volume: 2010 start-page: 4000 year: 2010 end-page: 4008 publication-title: Eur. J. Inorg. Chem. – volume: 122 start-page: 12629 year: 2000 end-page: 12636 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 9312 year: 2013 end-page: 9315 publication-title: CrystEngComm – volume: 48 start-page: 10948 year: 2012 end-page: 10950 publication-title: Chem. Commun. – volume: 135 start-page: 15270 year: 2013 end-page: 15273 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 18205 year: 2012 end-page: 18208 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 5262 year: 2013 end-page: 5265 publication-title: J. Am. Chem. Soc. – volume: 291 start-page: 438 year: 1998 end-page: 444 publication-title: Chem. Phys. Lett. – volume: 42 start-page: 1051 year: 2006 end-page: 1058 publication-title: Eur. Polym. J. – volume: 12 start-page: 44 year: 2010 end-page: 57 publication-title: Phys. Chem. Chem. Phys. – volume: 133 start-page: 9266 year: 2011 end-page: 9269 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 409 year: 1968 end-page: 410 publication-title: Chem. Phys. Lett. – volume: 127 start-page: 13806 year: 2005 end-page: 13807 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 14948 year: 2007 end-page: 14955 publication-title: J. Phys. Chem. C – volume: 105 start-page: 1416 year: 2008 end-page: 1419 publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 8687 year: 2011 end-page: 8692 publication-title: Macromolecules – volume: 60 start-page: 537 year: 1977 end-page: 560 publication-title: Helv. Chim. Acta – volume: 11 start-page: 5628 year: 2011 end-page: 5633 publication-title: Cryst. Growth Des. – ident: e_1_2_6_19_2 – ident: e_1_2_6_31_2 doi: 10.1021/ja110858k – ident: e_1_2_6_24_2 doi: 10.1021/ja401214t – ident: e_1_2_6_83_2 – ident: e_1_2_6_97_2 doi: 10.1021/ja055414c – ident: e_1_2_6_102_2 doi: 10.1021/jp206617e – ident: e_1_2_6_91_2 doi: 10.1002/hlca.19770600228 – ident: e_1_2_6_96_2 doi: 10.1021/ja310372f – ident: e_1_2_6_65_2 doi: 10.1039/c0jm04449k – ident: e_1_2_6_80_2 doi: 10.1021/jp304576g – ident: e_1_2_6_16_2 doi: 10.1073/pnas.0711308105 – ident: e_1_2_6_72_2 doi: 10.1021/jp207136k – ident: e_1_2_6_44_2 doi: 10.1016/j.molstruc.2012.12.037 – ident: e_1_2_6_69_2 doi: 10.1002/chem.200600514 – ident: e_1_2_6_105_2 doi: 10.1016/j.eurpolymj.2005.11.022 – ident: e_1_2_6_73_2 doi: 10.1021/jp409557g – ident: e_1_2_6_61_2 doi: 10.1039/c2cp42957h – ident: e_1_2_6_81_2 doi: 10.1021/ja300278e – ident: e_1_2_6_27_2 doi: 10.1039/c3sm51896e – ident: e_1_2_6_39_2 doi: 10.1021/ja308519b – ident: e_1_2_6_54_2 doi: 10.1021/ja400493e – ident: e_1_2_6_30_2 doi: 10.1039/c2jm30620d – ident: e_1_2_6_40_2 doi: 10.1021/jp805202y – ident: e_1_2_6_77_2 doi: 10.1021/cm010093z – ident: e_1_2_6_66_2 doi: 10.1021/jp0766104 – ident: e_1_2_6_15_2 doi: 10.1021/ja303513f – ident: e_1_2_6_57_2 doi: 10.1039/c2cc30756a – ident: e_1_2_6_26_2 doi: 10.1039/c3nr01967e – ident: e_1_2_6_36_2 – ident: e_1_2_6_79_2 doi: 10.1021/ja035626e – ident: e_1_2_6_92_2 doi: 10.1039/p29820000789 – ident: e_1_2_6_12_2 doi: 10.1021/ja064554z – ident: e_1_2_6_56_2 doi: 10.1039/c3ce41022f – ident: e_1_2_6_104_2 doi: 10.1002/ange.200504287 – ident: e_1_2_6_11_2 doi: 10.1002/chem.200601295 – ident: e_1_2_6_13_2 doi: 10.1021/ja407315f – ident: e_1_2_6_25_2 doi: 10.1039/c2dt32234j – ident: e_1_2_6_104_3 doi: 10.1002/anie.200504287 – ident: e_1_2_6_95_2 – ident: e_1_2_6_90_2 doi: 10.1107/S0567740881006122 – ident: e_1_2_6_20_2 doi: 10.1039/b920220j – ident: e_1_2_6_48_2 doi: 10.1021/ja303204m – ident: e_1_2_6_55_2 doi: 10.1039/C0CE00547A – ident: e_1_2_6_93_2 doi: 10.1021/ja002072w – ident: e_1_2_6_6_2 doi: 10.1002/ange.201006448 – ident: e_1_2_6_51_2 – ident: e_1_2_6_45_2 – ident: e_1_2_6_42_2 – ident: e_1_2_6_88_2 doi: 10.1021/ja203206g – ident: e_1_2_6_98_2 doi: 10.1021/ol006366y – ident: e_1_2_6_52_2 doi: 10.1038/nchem.1231 – ident: e_1_2_6_76_2 doi: 10.1002/ange.19740862003 – ident: e_1_2_6_87_2 doi: 10.1021/jz402615n – ident: e_1_2_6_103_2 doi: 10.1021/cg201182p – ident: e_1_2_6_4_2 doi: 10.1107/S0365110X58002310 – ident: e_1_2_6_6_3 doi: 10.1002/anie.201006448 – ident: e_1_2_6_10_2 doi: 10.1021/cg060849c – ident: e_1_2_6_50_2 doi: 10.1038/ncomms2756 – ident: e_1_2_6_1_2 – ident: e_1_2_6_53_2 doi: 10.1039/c2dt30414g – ident: e_1_2_6_7_2 doi: 10.1039/c2cc35438a – ident: e_1_2_6_89_2 – ident: e_1_2_6_109_2 doi: 10.1016/0009-2614(76)80750-6 – ident: e_1_2_6_67_2 doi: 10.1021/ja404198h – ident: e_1_2_6_47_2 doi: 10.1021/jp2064968 – ident: e_1_2_6_108_2 doi: 10.1016/0009-2614(68)80041-7 – ident: e_1_2_6_41_2 doi: 10.1039/C1CS15201G – ident: e_1_2_6_85_2 doi: 10.1021/cr00071a001 – ident: e_1_2_6_17_2 doi: 10.1021/cg800137e – ident: e_1_2_6_43_2 doi: 10.1002/ejic.201000358 – ident: e_1_2_6_76_3 doi: 10.1002/anie.197406491 – ident: e_1_2_6_3_2 doi: 10.1038/171737a0 – ident: e_1_2_6_70_2 doi: 10.1016/S0009-2614(98)00629-0 – ident: e_1_2_6_100_2 doi: 10.1021/jo9002147 – ident: e_1_2_6_33_2 doi: 10.1021/ja4062135 – ident: e_1_2_6_71_2 doi: 10.1002/chem.201103518 – ident: e_1_2_6_21_2 doi: 10.1002/chem.201001596 – ident: e_1_2_6_64_2 doi: 10.1021/cg401166v – ident: e_1_2_6_32_2 doi: 10.1021/ja906377q – ident: e_1_2_6_37_2 doi: 10.1021/cm2028788 – ident: e_1_2_6_28_2 – ident: e_1_2_6_14_2 – ident: e_1_2_6_35_2 doi: 10.1021/ar040012f – ident: e_1_2_6_58_2 doi: 10.1021/jp400381h – ident: e_1_2_6_38_2 doi: 10.1039/C2TC00742H – start-page: 105 volume-title: Modern Molecular Photochemistry year: 1991 ident: e_1_2_6_110_2 contributor: fullname: Turro N. J. – ident: e_1_2_6_60_2 doi: 10.1021/jz4005152 – ident: e_1_2_6_84_2 doi: 10.1039/c2cs35242g – ident: e_1_2_6_94_3 doi: 10.1002/anie.201106157 – ident: e_1_2_6_5_2 – ident: e_1_2_6_29_2 doi: 10.1002/adma.201203155 – ident: e_1_2_6_107_2 doi: 10.1016/j.tetlet.2011.12.082 – ident: e_1_2_6_23_2 doi: 10.1002/chem.201303123 – ident: e_1_2_6_86_2 doi: 10.1021/ic202467f – ident: e_1_2_6_63_2 – ident: e_1_2_6_34_2 doi: 10.1021/cr990120t – ident: e_1_2_6_8_2 doi: 10.1002/chir.20562 – ident: e_1_2_6_94_2 doi: 10.1002/ange.201106157 – ident: e_1_2_6_106_2 doi: 10.1021/jp075129a – ident: e_1_2_6_46_2 doi: 10.1039/c1cc10220f – ident: e_1_2_6_82_2 doi: 10.1016/0009-2614(75)85698-3 – ident: e_1_2_6_2_2 doi: 10.1073/pnas.37.4.205 – ident: e_1_2_6_18_2 doi: 10.1039/C2SM25997D – ident: e_1_2_6_111_2 – ident: e_1_2_6_68_2 doi: 10.1039/c0cc03011b – ident: e_1_2_6_101_2 – ident: e_1_2_6_74_2 doi: 10.1021/ja4055228 – ident: e_1_2_6_62_2 doi: 10.1039/B910564F – ident: e_1_2_6_99_2 doi: 10.1021/ja0462530 – ident: e_1_2_6_59_2 – ident: e_1_2_6_22_2 doi: 10.1021/ja400160j – ident: e_1_2_6_75_2 – ident: e_1_2_6_9_2 doi: 10.1021/ma201998z – ident: e_1_2_6_78_2 – ident: e_1_2_6_49_2 doi: 10.1021/ja3086005 |
SSID | ssj0009633 |
Score | 2.315722 |
Snippet | A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in... A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10099 |
SubjectTerms | Chemistry Circular Dichroism Columns (structural) Crystal structure Crystallography, X-Ray Crystals Derivatives Electrochemical Techniques electrochemistry Excitation spectra Fluorescence Helical helical structures Models, Molecular Molecular orbitals Quinoxalines - chemistry Spectrometry, Fluorescence Spectrum analysis stacking interactions supramolecular chemistry |
Title | Formation of One-Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxaline-Fused [7]Carbohelicenes in the Crystal |
URI | https://api.istex.fr/ark:/67375/WNG-374ZD6RR-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201402426 https://www.ncbi.nlm.nih.gov/pubmed/25042705 https://www.proquest.com/docview/1549274267 https://search.proquest.com/docview/1551024141 https://search.proquest.com/docview/1777995542 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHOBC-S0pLTISglPUrePYybHK7sIBFVhAIBCy7NgWq1YJShppe-sLIPGMPAkzzibVSggkuDnKxLI94_Fnx_MNIU84T1NptY-510nMGTexAVgQe5Y6AMiZ1zocXbyVxx-z6QxpcsYo_p4fYjxww5kR_DVOcG3ag0vSUOgTRpLDBgFXGXDCUAoxHMnrS9Zdsc4lz2WMHKwDa-OEHWx-vrEqXcMBXv0Ocm4i2LAEzbf_v_G3yM01_KRHvb3cJldcdYdcL4asb3fJ9_kQzUhrT19V7ufFjylmAOjZOygsU6hWWqBXq1qqK0tnqxIkmtPliQtlALG0B7HUnNOFLvECPn3TLat6pbHtUOe8a0Hqs_xS6MbUX7FW9Lp0WVGApLRozgG2nt4j7-ezd8WLeJ2yIS4B6onYsBIwnc48T3MAO17k3gKGkiIXhxrQBzPcl95r0EtijGC5cCYz3DotnS-FTu6Traqu3ANCc7ChREptxcRw2GTpzHHJvExtCaDU2og8G1SmvvXMHKrnYGYKh1eNwxuRp0Gjo5huTvA-m0zVh-PnKpH801QsFuplRPYGlav1VG5V4LCTUI2MyOPxNWgF_6zoytUdyoBrAyzED_8gIyWS76WcRWSnN6exQcgjx-QkjQgLVvOXDimkyxifdv_lo4fkBpbDVUa-R7bOms7tk6ut7R6FKfQLKqYcdA |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R9lAuvB-BAkZCcIq6dRw7OVbZXYpYFliKQCBk2YktVq0StEuk7Y0_gMRv5Jcwk2xSrYRAQtzymIxsz9jz2bG_AXgkRByrwvhQeBOFggsbWoQFoeexQ4CceGOapYs3avo-GY6IJuewOwvT8kP0C27UM5rxmjo4LUjvn7OGYqXoKDnOECjMbMGOkKicTnFEr855d-U6m7xQIbGwdryNA76_-f1GXNqhJl79DnRuYtgmCI0v_4fiX4FLawTKDluXuQoXXHkNdrMu8dt1-D7uDjSyyrOXpfv57ceQkgC0BB4MIxVZlmU0sJVLZsqCjVY5SixO5yeuuUYcy1ocy-wZm5mc9uCz1_W8rFaGCo86x_USpT6qT5lZ2OozaaWBl81LhqiUZYszRK6nN-DteHScHYXrrA1hjmhPhpbnCOtM4kWcIt7xMvUFwiglU3lgEIBwK3zuvUHDRNZKnkpnEysKZ5TzuTTRTdguq9LdBpaiG0VKmUIOrMB5lkmcUNyruMgRlxZFAE86m-kvLTmHbmmYuabm1X3zBvC4MWkvZhYntKVNxfrd9KmOlPgwlLOZngSw19lcr3vzUjc0dgrVqAAe9q_RKvRzxZSuqkkGRzeEQ-LgDzJKEf9eLHgAt1p_6gtEVHJcDeIAeOM2f6mQJsaM_u7Ov3z0AHaPjl9M9OTZ9PlduEjPm52NYg-2vy5qdw-2lkV9v-lPvwAUQyCc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD64u6C-eL9UV40g-lR2Nk2b9lE6UxWXcR0VRZGQNAkOu7RLx8Lsm39A8Df6SzynnekyIAr61stpSHIu-ZIm3wF4JEQcS6t9KLyOQsGFCQ3CgtDz2CFATr3W3dLFGzn9kI4nRJMznOLv-SGGBTfyjC5ek4OfWL93RhqKbaKT5DhBoFFmC3YEYnFiz4-iwzPa3WSVTF7IkEhY17SNI763-f3GsLRDPbz8HebchLDdGFRc_v_aX4FLK_zJnvYGcxXOueoaXMjXad-uw_difZyR1Z69qtzPbz_GlAKgp-9gOE6RXllOYa1aMF1ZNlmWKNEcz49cd40olvUolplTNtMl7cBnr9t5VS811R3LLNoFSn2Sn3PdmPoLlUphl80rhpiU5c0p4tbjG_CumLzNn4ernA1hiVgvCQ0vEdTp1Is4Q3X4JPMWQZRMsmRfI_zgRvjSe416iYxJeJY4kxphnZbOl4mObsJ2VVfuNrAMjSiSUttkZATOsnTqhORexrZEVGptAE_WKlMnPTWH6kmYuaLuVUP3BvC40-ggppsj2tAmY_V--kxFUnwcJ7OZOghgd61ytfLlhepI7CQWIwN4OLxGrdCvFV25uiUZjG0IhsT-H2SkJPa9WPAAbvXmNFSIiOS4HMUB8M5q_tIgRXwZw92df_noAZw_HBfq4MX05V24SI-7bY1iF7a_Nq27B1sL297vvOkXc0EfQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+One%E2%80%90Dimensional+Helical+Columns+and+Excimerlike+Excited+States+by+Racemic+Quinoxaline%E2%80%90Fused+%5B7%5DCarbohelicenes+in+the+Crystal&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Sakai%2C+Hayato&rft.au=Shinto%2C+Sho&rft.au=Araki%2C+Yasuyuki&rft.au=Wada%2C+Takehiko&rft.date=2014-08-04&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=32&rft.spage=10099&rft.epage=10109&rft_id=info:doi/10.1002%2Fchem.201402426&rft.externalDBID=10.1002%252Fchem.201402426&rft.externalDocID=CHEM201402426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |