Formation of One-Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxaline-Fused [7]Carbohelicenes in the Crystal

A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the cr...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal Vol. 20; no. 32; pp. 10099 - 10109
Main Authors: Sakai, Hayato, Shinto, Sho, Araki, Yasuyuki, Wada, Takehiko, Sakanoue, Tomo, Takenobu, Taishi, Hasobe, Taku
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 04-08-2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH⋅⋅⋅N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. π‐Stacked helices: Quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) were designed and synthesized to evaluate their structural and photophysical properties in the crystal state. A racemic HeQu derivative formed one‐dimensional helical columns in the crystal and showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units (see figure).
AbstractList A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light-emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited-state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7V. The steady-state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single-crystal analysis. Introduction of appropriate substituents (i.e., 4-methoxyphenyl) in the HeQu unit enabled the construction of one-dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn pi -stacking between two neighboring [7]carbohelicenes and intercolumn CHN interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time-resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. pi -Stacked helices: Quinoxaline-fused [7]carbohelicenes (HeQu derivatives) were designed and synthesized to evaluate their structural and photophysical properties in the crystal state. A racemic HeQu derivative formed one-dimensional helical columns in the crystal and showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units (see figure).
A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light-emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited-state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady-state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single-crystal analysis. Introduction of appropriate substituents (i.e., 4-methoxyphenyl) in the HeQu unit enabled the construction of one-dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π-stacking between two neighboring [7]carbohelicenes and intercolumn CH⋅⋅⋅N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time-resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units.
A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH ⋅⋅⋅ N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units.
A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light-emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited-state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7V. The steady-state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single-crystal analysis. Introduction of appropriate substituents (i.e., 4-methoxyphenyl) in the HeQu unit enabled the construction of one-dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π-stacking between two neighboring [7]carbohelicenes and intercolumn CHN interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time-resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units.
A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH⋅⋅⋅N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. π‐Stacked helices: Quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) were designed and synthesized to evaluate their structural and photophysical properties in the crystal state. A racemic HeQu derivative formed one‐dimensional helical columns in the crystal and showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units (see figure).
Author Araki, Yasuyuki
Wada, Takehiko
Hasobe, Taku
Takenobu, Taishi
Shinto, Sho
Sakanoue, Tomo
Sakai, Hayato
Author_xml – sequence: 1
  givenname: Hayato
  surname: Sakai
  fullname: Sakai, Hayato
  organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522 (Japan), Fax: (+81) 45-566-1697
– sequence: 2
  givenname: Sho
  surname: Shinto
  fullname: Shinto, Sho
  organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522 (Japan), Fax: (+81) 45-566-1697
– sequence: 3
  givenname: Yasuyuki
  surname: Araki
  fullname: Araki, Yasuyuki
  email: araki@tagen.tohoku.ac.jp
  organization: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan), Fax: (+81) 22-217-5608
– sequence: 4
  givenname: Takehiko
  surname: Wada
  fullname: Wada, Takehiko
  organization: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan), Fax: (+81) 22-217-5608
– sequence: 5
  givenname: Tomo
  surname: Sakanoue
  fullname: Sakanoue, Tomo
  organization: Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-2981
– sequence: 6
  givenname: Taishi
  surname: Takenobu
  fullname: Takenobu, Taishi
  email: takenobu@waseda.jp
  organization: Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-2981
– sequence: 7
  givenname: Taku
  surname: Hasobe
  fullname: Hasobe, Taku
  email: hasobe@chem.keio.ac.jp
  organization: Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522 (Japan), Fax: (+81) 45-566-1697
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25042705$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCliUaiQ2bCbbHP_ESTZMGKVARQEggZHmcO4rbGbvYMyJ5BN4ah5QKsenqWtb5juz7naETHzwg9JzgKcGYvrZb6KcUE4Ypo-IRmhBOSVlJwU_QBCsmS8ErdYrOUrrGGCtRVU_QKeWYUYn5BP1ahNibwQVfhLa48lBeuB58yhemK5bQOZtnHbqx96kwflPMdzYTsXM38Oc8wKb4OJgBUtHsi7Wx0DtbfBidDzvTuWxcjCkz3-T32sQmbA9O8Bl3vhi2UNRxnwbTPUWPW9MleHY3z9HnxfxTvSxXV5dv6zer0gqORdlQi2eVmbWMKyxYK1S7EYRKoQQxeEZow1rbtiZ_tGoaQZWAZtawDRgJrRWmOkevjt7bGH6MkAbdu2Sh64yHMCZNpJRKcc7owyjnJO-dMJLRl_-h12GMeYcHiikqczsyU9MjZWNIKUKrb6PrTdxrgvWhT33oU9_3mQMv7rRj08PmHv9bYAbUEfjpOtg_oNP1cv7uX3l5zLo0wO4-a-KNzm-VXH95f6kryb5eiPVar6rf21e9fA
CODEN CEUJED
CitedBy_id crossref_primary_10_1039_C6OB00937A
crossref_primary_10_1039_D1CC01631H
crossref_primary_10_1039_C5RA12577D
crossref_primary_10_1021_acs_jpcc_6b01344
crossref_primary_10_1002_chem_201603591
crossref_primary_10_1002_hlca_202100016
crossref_primary_10_1021_acs_jpcc_6b01123
crossref_primary_10_1002_anie_202012213
crossref_primary_10_1021_acs_jpca_2c00432
crossref_primary_10_1002_ejoc_202101533
crossref_primary_10_1021_acs_jpca_2c08474
crossref_primary_10_1021_acsami_8b16601
crossref_primary_10_1002_chem_201504484
crossref_primary_10_1070_RCR4887
crossref_primary_10_1021_acs_orglett_0c01190
crossref_primary_10_3390_catal11101200
crossref_primary_10_1021_acs_joc_9b02895
crossref_primary_10_1002_ange_202012213
crossref_primary_10_1021_acs_jpcc_5b03386
crossref_primary_10_1021_acs_joc_0c01837
crossref_primary_10_1039_C9TC06689F
crossref_primary_10_1002_ejoc_202201373
crossref_primary_10_1002_chem_201504048
crossref_primary_10_1021_acs_jpca_8b05612
crossref_primary_10_1002_ejoc_202200764
crossref_primary_10_1021_acs_joc_4c00135
Cites_doi 10.1021/ja110858k
10.1021/ja401214t
10.1021/ja055414c
10.1021/jp206617e
10.1002/hlca.19770600228
10.1021/ja310372f
10.1039/c0jm04449k
10.1021/jp304576g
10.1073/pnas.0711308105
10.1021/jp207136k
10.1016/j.molstruc.2012.12.037
10.1002/chem.200600514
10.1016/j.eurpolymj.2005.11.022
10.1021/jp409557g
10.1039/c2cp42957h
10.1021/ja300278e
10.1039/c3sm51896e
10.1021/ja308519b
10.1021/ja400493e
10.1039/c2jm30620d
10.1021/jp805202y
10.1021/cm010093z
10.1021/jp0766104
10.1021/ja303513f
10.1039/c2cc30756a
10.1039/c3nr01967e
10.1021/ja035626e
10.1039/p29820000789
10.1021/ja064554z
10.1039/c3ce41022f
10.1002/ange.200504287
10.1002/chem.200601295
10.1021/ja407315f
10.1039/c2dt32234j
10.1002/anie.200504287
10.1107/S0567740881006122
10.1039/b920220j
10.1021/ja303204m
10.1039/C0CE00547A
10.1021/ja002072w
10.1002/ange.201006448
10.1021/ja203206g
10.1021/ol006366y
10.1038/nchem.1231
10.1002/ange.19740862003
10.1021/jz402615n
10.1021/cg201182p
10.1107/S0365110X58002310
10.1002/anie.201006448
10.1021/cg060849c
10.1038/ncomms2756
10.1039/c2dt30414g
10.1039/c2cc35438a
10.1016/0009-2614(76)80750-6
10.1021/ja404198h
10.1021/jp2064968
10.1016/0009-2614(68)80041-7
10.1039/C1CS15201G
10.1021/cr00071a001
10.1021/cg800137e
10.1002/ejic.201000358
10.1002/anie.197406491
10.1038/171737a0
10.1016/S0009-2614(98)00629-0
10.1021/jo9002147
10.1021/ja4062135
10.1002/chem.201103518
10.1002/chem.201001596
10.1021/cg401166v
10.1021/ja906377q
10.1021/cm2028788
10.1021/ar040012f
10.1021/jp400381h
10.1039/C2TC00742H
10.1021/jz4005152
10.1039/c2cs35242g
10.1002/anie.201106157
10.1002/adma.201203155
10.1016/j.tetlet.2011.12.082
10.1002/chem.201303123
10.1021/ic202467f
10.1021/cr990120t
10.1002/chir.20562
10.1002/ange.201106157
10.1021/jp075129a
10.1039/c1cc10220f
10.1016/0009-2614(75)85698-3
10.1073/pnas.37.4.205
10.1039/C2SM25997D
10.1039/c0cc03011b
10.1021/ja4055228
10.1039/B910564F
10.1021/ja0462530
10.1021/ja400160j
10.1021/ma201998z
10.1021/ja3086005
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201402426
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 10109
ExternalDocumentID 3386595641
10_1002_chem_201402426
25042705
CHEM201402426
ark_67375_WNG_374ZD6RR_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Grant‐in‐Aid for Scientific Research
  funderid: 23108721; 23681025
– fundername: Mitsubishi Foundation
– fundername: MEXT
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c6506-b2c083a8f459064f69fd61276961a0812b4fcffa6333bb6296eb8b4dea7efc6a3
IEDL.DBID 33P
ISSN 0947-6539
IngestDate Thu Aug 15 22:39:16 EDT 2024
Fri Aug 16 09:13:35 EDT 2024
Tue Nov 19 06:21:49 EST 2024
Thu Nov 21 23:20:44 EST 2024
Sat Sep 28 08:05:09 EDT 2024
Sat Aug 24 00:58:44 EDT 2024
Wed Oct 30 09:51:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords stacking interactions
electrochemistry
fluorescence
supramolecular chemistry
helical structures
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6506-b2c083a8f459064f69fd61276961a0812b4fcffa6333bb6296eb8b4dea7efc6a3
Notes MEXT
Mitsubishi Foundation
istex:52867CB2E9D0A740EF8C2BE3D47A74B5090BA21E
ArticleID:CHEM201402426
ark:/67375/WNG-374ZD6RR-L
Grant-in-Aid for Scientific Research - No. 23108721; No. 23681025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25042705
PQID 1549274267
PQPubID 986340
PageCount 11
ParticipantIDs proquest_miscellaneous_1777995542
proquest_miscellaneous_1551024141
proquest_journals_1549274267
crossref_primary_10_1002_chem_201402426
pubmed_primary_25042705
wiley_primary_10_1002_chem_201402426_CHEM201402426
istex_primary_ark_67375_WNG_374ZD6RR_L
PublicationCentury 2000
PublicationDate August 4, 2014
PublicationDateYYYYMMDD 2014-08-04
PublicationDate_xml – month: 08
  year: 2014
  text: August 4, 2014
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Z. Zhao, S. Chen, J. W. Y. Lam, Z. Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y. Ma, H. S. Kwok, B. Z. Tang, J. Mater. Chem. 2011, 21, 7210-7216
M. A. Fourati, T. Maris, W. G. Skene, C. G. Bazuin, R. E. Prud′homme, J. Phys. Chem. B 2011, 115, 12362-12369
T. Grancha, C. Tourbillon, J. Ferrando-Soria, M. Julve, F. Lloret, J. Pasan, C. Ruiz-Perez, O. Fabelo, E. Pardo, CrystEngComm 2013, 15, 9312-9315
J. D. Watson, F. H. C. Crick, Nature 1953, 171, 737-738
Angew. Chem. Int. Ed. 2006, 45, 2242-2245.
H. Maeda, Y. Bando, K. Shimomura, I. Yamada, M. Naito, K. Nobusawa, H. Tsumatori, T. Kawai, J. Am. Chem. Soc. 2011, 133, 9266-9269.
M. K. Lakshman, P. L. Kole, S. Chaturvedi, J. H. Saugier, H. J. C. Yeh, J. P. Glusker, H. L. Carrell, A. K. Katz, C. E. Afshar, W. M. Dashwood, G. Kenniston, W. M. Baird, J. Am. Chem. Soc. 2000, 122, 12629-12636.
Y. Nakai, T. Mori, Y. Inoue, J. Phys. Chem. A 2012, 116, 7372-7385
D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893-4012.
T. Sakuma, H. Sakai, T. Hasobe, Chem. Commun. 2012, 48, 4441-4443
N. J. Turro, Modern Molecular Photochemistry, University Science Books, Sausalito, 1991, pp. 105-109.
D. Chen, C. Zhu, H. Wang, J. E. Maclennan, M. A. Glaser, E. Korblova, D. M. Walba, J. A. Rego, E. A. Soto-Bustamante, N. A. Clark, Soft Matter 2013, 9, 462-471.
T. Hasobe, Phys. Chem. Chem. Phys. 2012, 14, 15975-15987
R. M. Ho, M. C. Li, S. C. Lin, H. F. Wang, Y. D. Lee, H. Hasegawa, E. L. Thomas, J. Am. Chem. Soc. 2012, 134, 10974-10986
R. J. Kumar, J. M. MacDonald, T. B. Singh, L. J. Waddington, A. B. Holmes, J. Am. Chem. Soc. 2011, 133, 8564-8573
T. Seko, K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama, J. Tanaka, Chem. Phys. Lett. 1998, 291, 438-444
G. Zhang, G. Yang, S. Wang, Q. Chen, J. S. Ma, Chem. Eur. J. 2007, 13, 3630-3635
L. Pauling, R. B. Corey, H. R. Branson, Proc. Natl. Acad. Sci. USA 1951, 37, 205-211
A. S. D. Sandanayaka, Y. Araki, T. Wada, T. Hasobe, J. Phys. Chem. C 2008, 112, 19209-19216
G.-S. Liou, H.-Y. Lin, Eur. Polym. J. 2006, 42, 1051-1058.
J. Kumar, T. Nakashima, H. Tsumatori, T. Kawai, J. Phys. Chem. Lett. 2014, 5, 316-321
T. Hatakeyama, S. Hashimoto, T. Oba, M. Nakamura, J. Am. Chem. Soc. 2012, 134, 19600-19603
K. Nakano, H. Oyama, Y. Nishimura, S. Nakasako, K. Nozaki, Angew. Chem. 2012, 124, 719-723
T. Miyabe, H. Iida, M. Banno, T. Yamaguchi, E. Yashima, Macromolecules 2011, 44, 8687-8692
A. Shchyrba, M. T. Nguyen, C. Wackerlin, S. Martens, S. Nowakowska, T. Ivas, J. Roose, T. Nijs, S. Boz, M. Schar, M. Stohr, C. A. Pignedoli, C. Thilgen, F. Diederich, D. Passerone, T. A. Jung, J. Am. Chem. Soc. 2013, 135, 15270-15273.
T. Hasobe, H. Sakai, K. Mase, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. C 2013, 117, 4441-4449.
K. Watanabe, H. Iida, K. Akagi, Adv. Mater. 2012, 24, 6451-6456
Y. Sonoda, M. Goto, S. Tsuzuki, N. Tamaoki, J. Phys. Chem. A 2007, 111, 13441-13451
S. Yagai, M. Yamauchi, A. Kobayashi, T. Karatsu, A. Kitamura, T. Ohba, Y. Kikkawa, J. Am. Chem. Soc. 2012, 134, 18205-18208
L. Aboshyan-Sorgho, M. Cantuel, G. Bernardinelli, C. Piguet, Dalton Trans. 2012, 41, 7218-7226
M. Joly, N. Defay, R. H. Martin, J. P. Declerq, G. Germain, B. Soubrier-Payen, M. Van Meerssche, Helv. Chim. Acta 1977, 60, 537-560
R. Glaser, Chirality 2008, 20, 910-918
M. Sugino, Y. Araki, K. Hatanaka, I. Hisaki, M. Miyata, N. Tohnai, Cryst. Growth Des. 2013, 13, 4986-4992
R. Custelcean, D.-e. Jiang, B. P. Hay, W. Luo, B. Gu, Cryst. Growth Des. 2008, 8, 1909-1915
L. Chen, K. S. Mali, S. R. Puniredd, M. Baumgarten, K. Parvez, W. Pisula, S. De Feyter, K. Mullen, J. Am. Chem. Soc. 2013, 135, 13531-13537.
B. Willis, L. M. Eubanks, M. R. Wood, K. D. Janda, T. J. Dickerson, R. A. Lerner, Proc. Natl. Acad. Sci. USA 2008, 105, 1416-1419
Y. Wei, K. Wu, J. He, W. Zheng, X. Xiao, CrystEngComm 2011, 13, 52-54
C. Zhao, B. Bai, H. Wang, S. Qu, G. Xiao, T. Tian, M. Li, J. Mol. Struct. 2013, 1037, 130-135.
X.-K. Chen, J.-F. Guo, L.-Y. Zou, A.-M. Ren, J.-X. Fan, J. Phys. Chem. C 2011, 115, 21416-21428
M. J. Fuchter, M. Weimar, X. Yang, D. K. Judge, A. J. P. White, Tetrahedron Lett. 2012, 53, 1108-1111.
T. Hinoue, Y. Shigenoi, M. Sugino, Y. Mizobe, I. Hisaki, M. Miyata, N. Tohnai, Chem. Eur. J. 2012, 18, 4634-4643
W. Z. Yuan, F. Mahtab, Y. Y. Gong, Z. Q. Yu, P. Lu, Y. H. Tang, J. W. Y. Lam, C. Z. Zhu, B. Z. Tang, J. Mater. Chem. 2012, 22, 10472-10479
Y. Huang, J. Hu, W. Kuang, Z. Wei, C. F. J. Faul, Chem. Commun. 2011, 47, 5554-5556
M. Miyasaka, A. Rajca, M. Pink, S. Rajca, J. Am. Chem. Soc. 2005, 127, 13806-13807
X. Lu, Z. Guo, C. Sun, H. Tian, W. Zhu, J. Phys. Chem. B 2011, 115, 10871-10876
T. Caronna, M. Catellani, S. Luzzati, L. Malpezzi, S. V. Meille, A. Mele, C. Richter, R. Sinisi, Chem. Mater. 2001, 13, 3906-3914.
J. Lu, L. Wu, J. Jiang, X. Zhang, Eur. J. Inorg. Chem. 2010, 2010, 4000-4008
J. C. Dewan, Acta Crystallogr. 1981, 37, 1421-1424
T. Hasobe, J. Phys. Chem. Lett. 2013, 4, 1771-1780
T. Hasobe, Phys. Chem. Chem. Phys. 2010, 12, 44-57.
A. Rajca, M. Miyasaka, M. Pink, H. Wang, S. Rajca, J. Am. Chem. Soc. 2004, 126, 15211-15222.
Y. Shinozaki, G. Richards, K. Ogawa, A. Yamano, K. Ohara, K. Yamaguchi, S.-i. Kawano, K. Tanaka, Y. Araki, T. Wada, J. Otsuki, J. Am. Chem. Soc. 2013, 135, 5262-5265
J. Wang, G. Yang, H. Jiang, G. Zou, Q. Zhang, Soft Matter 2013, 9, 9785-9791.
Angew. Chem. Int. Ed. Engl. 1974, 13, 649-660
K. Watanabe, I. Osaka, S. Yorozuya, K. Akagi, Chem. Mater. 2012, 24, 1011-1024
E. Vander Donckt, J. Nasielski, J. R. Greenleaf, J. B. Birks, Chem. Phys. Lett. 1968, 2, 409-410.
T. Hahn, Acta Crystallographica 1958, 11, 825-825.
K. Kodama, Y. Kobayashi, K. Saigo, Chem. Eur. J. 2007, 13, 2144-2152
Angew. Chem. Int. Ed. 2011, 50, 2850-2853
E. Murguly, R. McDonald, N. R. Branda, Org. Lett. 2000, 2, 3169-3172.
H. J. Son, W. S. Han, D. H. Yoo, K. T. Min, S. N. Kwon, J. Ko, S. O. Kang, J. Org. Chem. 2009, 74, 3175-3178.
J. Chen, A. Neels, K. M. Fromm, Chem. Commun. 2010, 46, 8282-8284
H. Nakade, B. J. Jordan, H. Xu, G. Han, S. Srivastava, R. R. Arvizo, G. Cooke, V. M. Rotello, J. Am. Chem. Soc. 2006, 128, 14924-14929
R. H. Martin, Angew. Chem. 1974, 86, 727-738
K. E. Maly, Cryst. Growth Des. 2011, 11, 5628-5633.
K. Kodama, Y. Kobayashi, K. Saigo, Cryst. Growth Des. 2007, 7, 935-939
D. C. Harrowven, I. L. Guy, L. Nanson, Angew. Chem. 2006, 118, 2300-2303
R. Kuroda, J. Chem. Soc. Perkin Trans. 2 1982, 789-794
M. Banno, T. Yamaguchi, K. Nagai, C. Kaiser, S. Hecht, E. Yashima, J. Am. Chem. Soc. 2012, 134, 8718-8728
F. Aparicio, F. Garcia, G. Fernandez, E. Matesanz, L. Sanchez, Chem. Eur. J. 2011, 17, 2769-2776
B. Narayan, C. Kulkarni, S. J. George, J. Mater. Chem. C 2013, 1, 626
F. D′Souza, O. Ito, Chem. Soc. Rev. 2012, 41, 86-96.
M. Albrecht, E. Isaak, M. Baumert, V. Gossen, G. Raabe, R. Frohlich, Angew. Chem. 2011, 123, 2903-2906
M. Sapir, E. V. Donckt, Chem. Phys. Lett. 1975, 36, 108-110.
S. Pieraccini, S. Bonacchi, S. Lena, S. Masiero, M. Montalti, N. Zaccheroni, G. P. Spada, Org. Biomol. Chem. 2010, 8, 774-781
J. B. Birks, D. J. S. Birch, E. Cordemans, E. Vander Donckt, Chem. Phys. Lett. 1976, 43, 33-36.
H. Shao, T. Nguyen, N. C. Romano, D. A. Modarelli, J. R. Parquette, J. Am. Chem. Soc. 2009, 131, 16374-16376
S. Manchineella, V. Prathyusha, U. D. Priyakumar, T. Govindaraju, Chem. Eur. J. 2013, 19, 16615-16624
L. RulíŠek, O. Exner, L. Cwiklik, P. Jungwirth, I. Starý, L. PospíŠil, Z. Havlas, J. Phys. Chem. C 2007, 111, 14948-14955.
C.-S. Chen, X.-D. Xu, S.-Y. Li, R.-X. Zhuo, X.-Z. Zhang, Nanoscale 2013, 5, 6270-6274
S. J. George, R. de Bruijn, Ž. Tomović, B. Van Averbeke, D. Beljonne, R. Lazzaroni, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2012, 134, 17789-17796
L. Wang, W. Li, J. Lu, Y.-X. Zhao, G. Fan, J.-P. Zhang, H. Wang, J. Phys. Chem. C 2013, 117, 26811-26820
M. Kumar, N. Jonnalagadda, S. J. George, Chem. Commun. 2012, 48, 10948-10950
Y. Sawada, S. Furumi, A. Takai, M. Takeuchi, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2012, 134, 4080-4083.
H.-G. Jin, X.-J. Hong, J. Li, Y.-Z. Yan, Y.-T. Liu, S.-H. Xu, Y.-P. Cai, Dalton Trans. 2012, 41, 14239-14243
J. E. Field, G. Muller, J. P. Riehl, D. Venkataraman, J. Am. Chem. Soc. 2003, 125, 11808-11809
S. Shin, S. Lim, Y. Kim, T. Kim, T. L. Choi, M. Lee, J. Am. Chem. Soc. 2013, 135, 2156-2159
K. Nagura, S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa, H. Sato, Y. Shimoikeda, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 10322-10325.
R. Carr, N. H. Evans, D. Parker, Chem. Soc. Rev. 2012, 41, 7673-7686
J. P. Riehl, F. S. Richardson, Chem. Rev. 1986, 86, 1-16
J. R. Aldrich-Wright, Nat. Chem. 2011, 4, 10-11
J. W. Lam, B. Z. Tang, Acc. Chem. Res. 2005, 38, 745-754.
T. Harada, H. Tsumatori, K. Nishiyama, J. Yuasa, Y. Hasegawa, T. Kawai, Inorg. Chem. 2012, 51, 6476-6485
C. T. Chen, C. H. Chen, T. G. Ong, J. Am. Chem. Soc. 2013, 135, 5294-5297
C. Yuan, S. Saito, C. Camacho, S. Irle, I. Hisaki, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 8842-8845
T. Sasaki, I. Hisaki, T. Miyano, N. Tohnai, K. Morimoto, H. Sato, S. Tsuzuki, M. Miyata, Nat. Commun. 2013, 4, 1787.
Angew. Chem. Int. Ed. 2012, 51, 695-699.
2010; 12
2011; 115
2001; 101
2013; 4
2004; 126
2013; 1
1968; 2
1958; 11
2011; 11
2008; 8
2008; 105
2011; 13
2012; 18
2000; 2
2011 2011; 123 50
2011; 17
2012; 14
2013; 5
2006 2006; 118 45
2012; 53
2013; 9
1977; 60
2012; 51
2013; 19
1998; 291
2013; 15
2014; 5
2012; 134
1986; 86
2013; 13
2013; 117
2007; 7
2011; 21
1981; 37
1982
1951; 37
2000; 122
2008; 20
1974 1974; 86 13
2008; 112
2012; 24
2005; 38
2003; 125
2001; 13
2006; 128
2012; 22
2010; 8
1976; 43
2013; 1037
2010; 2010
1975; 36
2009; 131
1991
2011; 4
1953; 171
2007; 13
2011; 133
2009; 74
2006; 42
2010; 46
2007; 111
2005; 127
2011; 44
2013; 135
2012 2012; 124 51
2012; 48
2011; 47
2012; 116
2012; 41
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_30_2
e_1_2_6_91_2
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_76_3
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_99_2
e_1_2_6_102_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_106_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_2
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_105_2
e_1_2_6_80_2
e_1_2_6_109_2
Turro N. J. (e_1_2_6_110_2) 1991
e_1_2_6_101_2
e_1_2_6_6_3
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_46_2
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_74_2
e_1_2_6_93_2
e_1_2_6_70_2
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_104_2
e_1_2_6_85_2
e_1_2_6_104_3
e_1_2_6_20_2
e_1_2_6_108_2
e_1_2_6_81_2
e_1_2_6_100_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_89_2
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_94_2
e_1_2_6_94_3
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_111_2
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_98_2
e_1_2_6_103_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_107_2
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – volume: 9
  start-page: 462
  year: 2013
  end-page: 471
  publication-title: Soft Matter
– volume: 13
  start-page: 52
  year: 2011
  end-page: 54
  publication-title: CrystEngComm
– volume: 24
  start-page: 6451
  year: 2012
  end-page: 6456
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4986
  year: 2013
  end-page: 4992
  publication-title: Cryst. Growth Des.
– volume: 124 51
  start-page: 719 695
  year: 2012 2012
  end-page: 723 699
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 48
  start-page: 4441
  year: 2012
  end-page: 4443
  publication-title: Chem. Commun.
– volume: 111
  start-page: 13441
  year: 2007
  end-page: 13451
  publication-title: J. Phys. Chem. A
– volume: 4
  start-page: 10
  year: 2011
  end-page: 11
  publication-title: Nat. Chem.
– volume: 18
  start-page: 4634
  year: 2012
  end-page: 4643
  publication-title: Chem. Eur. J.
– volume: 37
  start-page: 1421
  year: 1981
  end-page: 1424
  publication-title: Acta Crystallogr.
– volume: 74
  start-page: 3175
  year: 2009
  end-page: 3178
  publication-title: J. Org. Chem.
– volume: 38
  start-page: 745
  year: 2005
  end-page: 754
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 1771
  year: 2013
  end-page: 1780
  publication-title: J. Phys. Chem. Lett.
– start-page: 789
  year: 1982
  end-page: 794
  publication-title: J. Chem. Soc. Perkin Trans. 2
– volume: 24
  start-page: 1011
  year: 2012
  end-page: 1024
  publication-title: Chem. Mater.
– volume: 135
  start-page: 8842
  year: 2013
  end-page: 8845
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 774
  year: 2010
  end-page: 781
  publication-title: Org. Biomol. Chem.
– volume: 11
  start-page: 825
  year: 1958
  end-page: 825
  publication-title: Acta Crystallographica
– volume: 4
  start-page: 1787
  year: 2013
  publication-title: Nat. Commun.
– volume: 20
  start-page: 910
  year: 2008
  end-page: 918
  publication-title: Chirality
– volume: 19
  start-page: 16615
  year: 2013
  end-page: 16624
  publication-title: Chem. Eur. J.
– volume: 112
  start-page: 19209
  year: 2008
  end-page: 19216
  publication-title: J. Phys. Chem. C
– volume: 125
  start-page: 11808
  year: 2003
  end-page: 11809
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 5294
  year: 2013
  end-page: 5297
  publication-title: J. Am. Chem. Soc.
– volume: 118 45
  start-page: 2300 2242
  year: 2006 2006
  end-page: 2303 2245
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 123 50
  start-page: 2903 2850
  year: 2011 2011
  end-page: 2906 2853
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 7
  start-page: 935
  year: 2007
  end-page: 939
  publication-title: Cryst. Growth Des.
– volume: 134
  start-page: 17789
  year: 2012
  end-page: 17796
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 108
  year: 1975
  end-page: 110
  publication-title: Chem. Phys. Lett.
– volume: 128
  start-page: 14924
  year: 2006
  end-page: 14929
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 33
  year: 1976
  end-page: 36
  publication-title: Chem. Phys. Lett.
– volume: 86 13
  start-page: 727 649
  year: 1974 1974
  end-page: 738 660
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl.
– volume: 1037
  start-page: 130
  year: 2013
  end-page: 135
  publication-title: J. Mol. Struct.
– volume: 37
  start-page: 205
  year: 1951
  end-page: 211
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 2144
  year: 2007
  end-page: 2152
  publication-title: Chem. Eur. J.
– volume: 126
  start-page: 15211
  year: 2004
  end-page: 15222
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 5554
  year: 2011
  end-page: 5556
  publication-title: Chem. Commun.
– volume: 117
  start-page: 4441
  year: 2013
  end-page: 4449
  publication-title: J. Phys. Chem. C
– volume: 53
  start-page: 1108
  year: 2012
  end-page: 1111
  publication-title: Tetrahedron Lett.
– volume: 17
  start-page: 2769
  year: 2011
  end-page: 2776
  publication-title: Chem. Eur. J.
– volume: 41
  start-page: 86
  year: 2012
  end-page: 96
  publication-title: Chem. Soc. Rev.
– volume: 171
  start-page: 737
  year: 1953
  end-page: 738
  publication-title: Nature
– volume: 135
  start-page: 13531
  year: 2013
  end-page: 13537
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 3169
  year: 2000
  end-page: 3172
  publication-title: Org. Lett.
– volume: 8
  start-page: 1909
  year: 2008
  end-page: 1915
  publication-title: Cryst. Growth Des.
– volume: 41
  start-page: 7673
  year: 2012
  end-page: 7686
  publication-title: Chem. Soc. Rev.
– volume: 86
  start-page: 1
  year: 1986
  end-page: 16
  publication-title: Chem. Rev.
– volume: 51
  start-page: 6476
  year: 2012
  end-page: 6485
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 8282
  year: 2010
  end-page: 8284
  publication-title: Chem. Commun.
– volume: 116
  start-page: 7372
  year: 2012
  end-page: 7385
  publication-title: J. Phys. Chem. A
– volume: 41
  start-page: 7218
  year: 2012
  end-page: 7226
  publication-title: Dalton Trans.
– volume: 1
  start-page: 626
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 15975
  year: 2012
  end-page: 15987
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 105
  year: 1991
  end-page: 109
– volume: 135
  start-page: 2156
  year: 2013
  end-page: 2159
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 19600
  year: 2012
  end-page: 19603
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 10871
  year: 2011
  end-page: 10876
  publication-title: J. Phys. Chem. B
– volume: 133
  start-page: 8564
  year: 2011
  end-page: 8573
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 7210
  year: 2011
  end-page: 7216
  publication-title: J. Mater. Chem.
– volume: 134
  start-page: 4080
  year: 2012
  end-page: 4083
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 316
  year: 2014
  end-page: 321
  publication-title: J. Phys. Chem. Lett.
– volume: 115
  start-page: 12362
  year: 2011
  end-page: 12369
  publication-title: J. Phys. Chem. B
– volume: 101
  start-page: 3893
  year: 2001
  end-page: 4012
  publication-title: Chem. Rev.
– volume: 131
  start-page: 16374
  year: 2009
  end-page: 16376
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6270
  year: 2013
  end-page: 6274
  publication-title: Nanoscale
– volume: 9
  start-page: 9785
  year: 2013
  end-page: 9791
  publication-title: Soft Matter
– volume: 134
  start-page: 8718
  year: 2012
  end-page: 8728
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 10322
  year: 2013
  end-page: 10325
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 10974
  year: 2012
  end-page: 10986
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 10472
  year: 2012
  end-page: 10479
  publication-title: J. Mater. Chem.
– volume: 115
  start-page: 21416
  year: 2011
  end-page: 21428
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 3906
  year: 2001
  end-page: 3914
  publication-title: Chem. Mater.
– volume: 117
  start-page: 26811
  year: 2013
  end-page: 26820
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 3630
  year: 2007
  end-page: 3635
  publication-title: Chem. Eur. J.
– volume: 41
  start-page: 14239
  year: 2012
  end-page: 14243
  publication-title: Dalton Trans.
– volume: 2010
  start-page: 4000
  year: 2010
  end-page: 4008
  publication-title: Eur. J. Inorg. Chem.
– volume: 122
  start-page: 12629
  year: 2000
  end-page: 12636
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 9312
  year: 2013
  end-page: 9315
  publication-title: CrystEngComm
– volume: 48
  start-page: 10948
  year: 2012
  end-page: 10950
  publication-title: Chem. Commun.
– volume: 135
  start-page: 15270
  year: 2013
  end-page: 15273
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 18205
  year: 2012
  end-page: 18208
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 5262
  year: 2013
  end-page: 5265
  publication-title: J. Am. Chem. Soc.
– volume: 291
  start-page: 438
  year: 1998
  end-page: 444
  publication-title: Chem. Phys. Lett.
– volume: 42
  start-page: 1051
  year: 2006
  end-page: 1058
  publication-title: Eur. Polym. J.
– volume: 12
  start-page: 44
  year: 2010
  end-page: 57
  publication-title: Phys. Chem. Chem. Phys.
– volume: 133
  start-page: 9266
  year: 2011
  end-page: 9269
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 409
  year: 1968
  end-page: 410
  publication-title: Chem. Phys. Lett.
– volume: 127
  start-page: 13806
  year: 2005
  end-page: 13807
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 14948
  year: 2007
  end-page: 14955
  publication-title: J. Phys. Chem. C
– volume: 105
  start-page: 1416
  year: 2008
  end-page: 1419
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 8687
  year: 2011
  end-page: 8692
  publication-title: Macromolecules
– volume: 60
  start-page: 537
  year: 1977
  end-page: 560
  publication-title: Helv. Chim. Acta
– volume: 11
  start-page: 5628
  year: 2011
  end-page: 5633
  publication-title: Cryst. Growth Des.
– ident: e_1_2_6_19_2
– ident: e_1_2_6_31_2
  doi: 10.1021/ja110858k
– ident: e_1_2_6_24_2
  doi: 10.1021/ja401214t
– ident: e_1_2_6_83_2
– ident: e_1_2_6_97_2
  doi: 10.1021/ja055414c
– ident: e_1_2_6_102_2
  doi: 10.1021/jp206617e
– ident: e_1_2_6_91_2
  doi: 10.1002/hlca.19770600228
– ident: e_1_2_6_96_2
  doi: 10.1021/ja310372f
– ident: e_1_2_6_65_2
  doi: 10.1039/c0jm04449k
– ident: e_1_2_6_80_2
  doi: 10.1021/jp304576g
– ident: e_1_2_6_16_2
  doi: 10.1073/pnas.0711308105
– ident: e_1_2_6_72_2
  doi: 10.1021/jp207136k
– ident: e_1_2_6_44_2
  doi: 10.1016/j.molstruc.2012.12.037
– ident: e_1_2_6_69_2
  doi: 10.1002/chem.200600514
– ident: e_1_2_6_105_2
  doi: 10.1016/j.eurpolymj.2005.11.022
– ident: e_1_2_6_73_2
  doi: 10.1021/jp409557g
– ident: e_1_2_6_61_2
  doi: 10.1039/c2cp42957h
– ident: e_1_2_6_81_2
  doi: 10.1021/ja300278e
– ident: e_1_2_6_27_2
  doi: 10.1039/c3sm51896e
– ident: e_1_2_6_39_2
  doi: 10.1021/ja308519b
– ident: e_1_2_6_54_2
  doi: 10.1021/ja400493e
– ident: e_1_2_6_30_2
  doi: 10.1039/c2jm30620d
– ident: e_1_2_6_40_2
  doi: 10.1021/jp805202y
– ident: e_1_2_6_77_2
  doi: 10.1021/cm010093z
– ident: e_1_2_6_66_2
  doi: 10.1021/jp0766104
– ident: e_1_2_6_15_2
  doi: 10.1021/ja303513f
– ident: e_1_2_6_57_2
  doi: 10.1039/c2cc30756a
– ident: e_1_2_6_26_2
  doi: 10.1039/c3nr01967e
– ident: e_1_2_6_36_2
– ident: e_1_2_6_79_2
  doi: 10.1021/ja035626e
– ident: e_1_2_6_92_2
  doi: 10.1039/p29820000789
– ident: e_1_2_6_12_2
  doi: 10.1021/ja064554z
– ident: e_1_2_6_56_2
  doi: 10.1039/c3ce41022f
– ident: e_1_2_6_104_2
  doi: 10.1002/ange.200504287
– ident: e_1_2_6_11_2
  doi: 10.1002/chem.200601295
– ident: e_1_2_6_13_2
  doi: 10.1021/ja407315f
– ident: e_1_2_6_25_2
  doi: 10.1039/c2dt32234j
– ident: e_1_2_6_104_3
  doi: 10.1002/anie.200504287
– ident: e_1_2_6_95_2
– ident: e_1_2_6_90_2
  doi: 10.1107/S0567740881006122
– ident: e_1_2_6_20_2
  doi: 10.1039/b920220j
– ident: e_1_2_6_48_2
  doi: 10.1021/ja303204m
– ident: e_1_2_6_55_2
  doi: 10.1039/C0CE00547A
– ident: e_1_2_6_93_2
  doi: 10.1021/ja002072w
– ident: e_1_2_6_6_2
  doi: 10.1002/ange.201006448
– ident: e_1_2_6_51_2
– ident: e_1_2_6_45_2
– ident: e_1_2_6_42_2
– ident: e_1_2_6_88_2
  doi: 10.1021/ja203206g
– ident: e_1_2_6_98_2
  doi: 10.1021/ol006366y
– ident: e_1_2_6_52_2
  doi: 10.1038/nchem.1231
– ident: e_1_2_6_76_2
  doi: 10.1002/ange.19740862003
– ident: e_1_2_6_87_2
  doi: 10.1021/jz402615n
– ident: e_1_2_6_103_2
  doi: 10.1021/cg201182p
– ident: e_1_2_6_4_2
  doi: 10.1107/S0365110X58002310
– ident: e_1_2_6_6_3
  doi: 10.1002/anie.201006448
– ident: e_1_2_6_10_2
  doi: 10.1021/cg060849c
– ident: e_1_2_6_50_2
  doi: 10.1038/ncomms2756
– ident: e_1_2_6_1_2
– ident: e_1_2_6_53_2
  doi: 10.1039/c2dt30414g
– ident: e_1_2_6_7_2
  doi: 10.1039/c2cc35438a
– ident: e_1_2_6_89_2
– ident: e_1_2_6_109_2
  doi: 10.1016/0009-2614(76)80750-6
– ident: e_1_2_6_67_2
  doi: 10.1021/ja404198h
– ident: e_1_2_6_47_2
  doi: 10.1021/jp2064968
– ident: e_1_2_6_108_2
  doi: 10.1016/0009-2614(68)80041-7
– ident: e_1_2_6_41_2
  doi: 10.1039/C1CS15201G
– ident: e_1_2_6_85_2
  doi: 10.1021/cr00071a001
– ident: e_1_2_6_17_2
  doi: 10.1021/cg800137e
– ident: e_1_2_6_43_2
  doi: 10.1002/ejic.201000358
– ident: e_1_2_6_76_3
  doi: 10.1002/anie.197406491
– ident: e_1_2_6_3_2
  doi: 10.1038/171737a0
– ident: e_1_2_6_70_2
  doi: 10.1016/S0009-2614(98)00629-0
– ident: e_1_2_6_100_2
  doi: 10.1021/jo9002147
– ident: e_1_2_6_33_2
  doi: 10.1021/ja4062135
– ident: e_1_2_6_71_2
  doi: 10.1002/chem.201103518
– ident: e_1_2_6_21_2
  doi: 10.1002/chem.201001596
– ident: e_1_2_6_64_2
  doi: 10.1021/cg401166v
– ident: e_1_2_6_32_2
  doi: 10.1021/ja906377q
– ident: e_1_2_6_37_2
  doi: 10.1021/cm2028788
– ident: e_1_2_6_28_2
– ident: e_1_2_6_14_2
– ident: e_1_2_6_35_2
  doi: 10.1021/ar040012f
– ident: e_1_2_6_58_2
  doi: 10.1021/jp400381h
– ident: e_1_2_6_38_2
  doi: 10.1039/C2TC00742H
– start-page: 105
  volume-title: Modern Molecular Photochemistry
  year: 1991
  ident: e_1_2_6_110_2
  contributor:
    fullname: Turro N. J.
– ident: e_1_2_6_60_2
  doi: 10.1021/jz4005152
– ident: e_1_2_6_84_2
  doi: 10.1039/c2cs35242g
– ident: e_1_2_6_94_3
  doi: 10.1002/anie.201106157
– ident: e_1_2_6_5_2
– ident: e_1_2_6_29_2
  doi: 10.1002/adma.201203155
– ident: e_1_2_6_107_2
  doi: 10.1016/j.tetlet.2011.12.082
– ident: e_1_2_6_23_2
  doi: 10.1002/chem.201303123
– ident: e_1_2_6_86_2
  doi: 10.1021/ic202467f
– ident: e_1_2_6_63_2
– ident: e_1_2_6_34_2
  doi: 10.1021/cr990120t
– ident: e_1_2_6_8_2
  doi: 10.1002/chir.20562
– ident: e_1_2_6_94_2
  doi: 10.1002/ange.201106157
– ident: e_1_2_6_106_2
  doi: 10.1021/jp075129a
– ident: e_1_2_6_46_2
  doi: 10.1039/c1cc10220f
– ident: e_1_2_6_82_2
  doi: 10.1016/0009-2614(75)85698-3
– ident: e_1_2_6_2_2
  doi: 10.1073/pnas.37.4.205
– ident: e_1_2_6_18_2
  doi: 10.1039/C2SM25997D
– ident: e_1_2_6_111_2
– ident: e_1_2_6_68_2
  doi: 10.1039/c0cc03011b
– ident: e_1_2_6_101_2
– ident: e_1_2_6_74_2
  doi: 10.1021/ja4055228
– ident: e_1_2_6_62_2
  doi: 10.1039/B910564F
– ident: e_1_2_6_99_2
  doi: 10.1021/ja0462530
– ident: e_1_2_6_59_2
– ident: e_1_2_6_22_2
  doi: 10.1021/ja400160j
– ident: e_1_2_6_75_2
– ident: e_1_2_6_9_2
  doi: 10.1021/ma201998z
– ident: e_1_2_6_78_2
– ident: e_1_2_6_49_2
  doi: 10.1021/ja3086005
SSID ssj0009633
Score 2.315722
Snippet A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in...
A series of quinoxaline-fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 10099
SubjectTerms Chemistry
Circular Dichroism
Columns (structural)
Crystal structure
Crystallography, X-Ray
Crystals
Derivatives
Electrochemical Techniques
electrochemistry
Excitation spectra
Fluorescence
Helical
helical structures
Models, Molecular
Molecular orbitals
Quinoxalines - chemistry
Spectrometry, Fluorescence
Spectrum analysis
stacking interactions
supramolecular chemistry
Title Formation of One-Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxaline-Fused [7]Carbohelicenes in the Crystal
URI https://api.istex.fr/ark:/67375/WNG-374ZD6RR-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201402426
https://www.ncbi.nlm.nih.gov/pubmed/25042705
https://www.proquest.com/docview/1549274267
https://search.proquest.com/docview/1551024141
https://search.proquest.com/docview/1777995542
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHOBC-S0pLTISglPUrePYybHK7sIBFVhAIBCy7NgWq1YJShppe-sLIPGMPAkzzibVSggkuDnKxLI94_Fnx_MNIU84T1NptY-510nMGTexAVgQe5Y6AMiZ1zocXbyVxx-z6QxpcsYo_p4fYjxww5kR_DVOcG3ag0vSUOgTRpLDBgFXGXDCUAoxHMnrS9Zdsc4lz2WMHKwDa-OEHWx-vrEqXcMBXv0Ocm4i2LAEzbf_v_G3yM01_KRHvb3cJldcdYdcL4asb3fJ9_kQzUhrT19V7ufFjylmAOjZOygsU6hWWqBXq1qqK0tnqxIkmtPliQtlALG0B7HUnNOFLvECPn3TLat6pbHtUOe8a0Hqs_xS6MbUX7FW9Lp0WVGApLRozgG2nt4j7-ezd8WLeJ2yIS4B6onYsBIwnc48T3MAO17k3gKGkiIXhxrQBzPcl95r0EtijGC5cCYz3DotnS-FTu6Traqu3ANCc7ChREptxcRw2GTpzHHJvExtCaDU2og8G1SmvvXMHKrnYGYKh1eNwxuRp0Gjo5huTvA-m0zVh-PnKpH801QsFuplRPYGlav1VG5V4LCTUI2MyOPxNWgF_6zoytUdyoBrAyzED_8gIyWS76WcRWSnN6exQcgjx-QkjQgLVvOXDimkyxifdv_lo4fkBpbDVUa-R7bOms7tk6ut7R6FKfQLKqYcdA
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R9lAuvB-BAkZCcIq6dRw7OVbZXYpYFliKQCBk2YktVq0StEuk7Y0_gMRv5Jcwk2xSrYRAQtzymIxsz9jz2bG_AXgkRByrwvhQeBOFggsbWoQFoeexQ4CceGOapYs3avo-GY6IJuewOwvT8kP0C27UM5rxmjo4LUjvn7OGYqXoKDnOECjMbMGOkKicTnFEr855d-U6m7xQIbGwdryNA76_-f1GXNqhJl79DnRuYtgmCI0v_4fiX4FLawTKDluXuQoXXHkNdrMu8dt1-D7uDjSyyrOXpfv57ceQkgC0BB4MIxVZlmU0sJVLZsqCjVY5SixO5yeuuUYcy1ocy-wZm5mc9uCz1_W8rFaGCo86x_USpT6qT5lZ2OozaaWBl81LhqiUZYszRK6nN-DteHScHYXrrA1hjmhPhpbnCOtM4kWcIt7xMvUFwiglU3lgEIBwK3zuvUHDRNZKnkpnEysKZ5TzuTTRTdguq9LdBpaiG0VKmUIOrMB5lkmcUNyruMgRlxZFAE86m-kvLTmHbmmYuabm1X3zBvC4MWkvZhYntKVNxfrd9KmOlPgwlLOZngSw19lcr3vzUjc0dgrVqAAe9q_RKvRzxZSuqkkGRzeEQ-LgDzJKEf9eLHgAt1p_6gtEVHJcDeIAeOM2f6mQJsaM_u7Ov3z0AHaPjl9M9OTZ9PlduEjPm52NYg-2vy5qdw-2lkV9v-lPvwAUQyCc
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD64u6C-eL9UV40g-lR2Nk2b9lE6UxWXcR0VRZGQNAkOu7RLx8Lsm39A8Df6SzynnekyIAr61stpSHIu-ZIm3wF4JEQcS6t9KLyOQsGFCQ3CgtDz2CFATr3W3dLFGzn9kI4nRJMznOLv-SGGBTfyjC5ek4OfWL93RhqKbaKT5DhBoFFmC3YEYnFiz4-iwzPa3WSVTF7IkEhY17SNI763-f3GsLRDPbz8HebchLDdGFRc_v_aX4FLK_zJnvYGcxXOueoaXMjXad-uw_difZyR1Z69qtzPbz_GlAKgp-9gOE6RXllOYa1aMF1ZNlmWKNEcz49cd40olvUolplTNtMl7cBnr9t5VS811R3LLNoFSn2Sn3PdmPoLlUphl80rhpiU5c0p4tbjG_CumLzNn4ernA1hiVgvCQ0vEdTp1Is4Q3X4JPMWQZRMsmRfI_zgRvjSe416iYxJeJY4kxphnZbOl4mObsJ2VVfuNrAMjSiSUttkZATOsnTqhORexrZEVGptAE_WKlMnPTWH6kmYuaLuVUP3BvC40-ggppsj2tAmY_V--kxFUnwcJ7OZOghgd61ytfLlhepI7CQWIwN4OLxGrdCvFV25uiUZjG0IhsT-H2SkJPa9WPAAbvXmNFSIiOS4HMUB8M5q_tIgRXwZw92df_noAZw_HBfq4MX05V24SI-7bY1iF7a_Nq27B1sL297vvOkXc0EfQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+One%E2%80%90Dimensional+Helical+Columns+and+Excimerlike+Excited+States+by+Racemic+Quinoxaline%E2%80%90Fused+%5B7%5DCarbohelicenes+in+the+Crystal&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Sakai%2C+Hayato&rft.au=Shinto%2C+Sho&rft.au=Araki%2C+Yasuyuki&rft.au=Wada%2C+Takehiko&rft.date=2014-08-04&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=20&rft.issue=32&rft.spage=10099&rft.epage=10109&rft_id=info:doi/10.1002%2Fchem.201402426&rft.externalDBID=10.1002%252Fchem.201402426&rft.externalDocID=CHEM201402426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon