Proliferation deficiency of multipotent hematopoietic progenitors in ribosomal protein S19 (RPS19)-deficient diamond–Blackfan anemia improves following RPS19 gene transfer
Diamond–Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by a specific deficiency in erythroid progenitors. Since some patients with DBA develop a reduction in thrombocytes and granulocytes with age, we asked whether multipotent hematopoietic progenitors from DBA pati...
Saved in:
Published in: | Molecular therapy Vol. 7; no. 5; pp. 613 - 622 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-05-2003
Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diamond–Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by a specific deficiency in erythroid progenitors. Since some patients with DBA develop a reduction in thrombocytes and granulocytes with age, we asked whether multipotent hematopoietic progenitors from DBA patients had normal proliferative capacity in liquid expansion cultures. CD34+ cells derived from DBA patients showed deficient proliferation in liquid culture containing IL-3, IL-6, and SCF. Single CD34+ CD38− cells from DBA patients exhibited deficient proliferation recruitment in a limiting dilution assay containing IL-3, IL-6, SCF, Tpo, FL, and G-CSF or containing IL-3, IL-6, and SCF. Our findings suggest that the underlying hematopoietic defect in DBA may not be limited to the erythroid lineage. Since a fraction of DBA patients have a deficiency in ribosomal protein S19 (RPS19), we constructed lentiviral vectors containing the RPS19 gene for overexpression in hematopoietic progenitors from RPS19-deficient DBA patients. Enforced expression of the RPS19 transgene improved the proliferation of CD34+ cells from DBA patients with RPS19 mutation. Similarly, enforced expression of RPS19 improved erythroid development of RPS19-deficient hematopoietic progenitors as determined by colony assays and erythroid differentiation cultures. These findings suggest that gene therapy for RPS19-deficient DBA is feasible. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-0016 1525-0024 1525-0024 |
DOI: | 10.1016/S1525-0016(03)00091-1 |