Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis
Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpress...
Saved in:
Published in: | Oncogene Vol. 35; no. 15; pp. 1926 - 1942 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
14-04-2016
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2015.256 |