Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective
Sulfur belongs among H 2 O, CO 2 , and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ 34 S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope com...
Saved in:
Published in: | Nature communications Vol. 11; no. 1; p. 514 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
24-01-2020
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sulfur belongs among H
2
O, CO
2
, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ
34
S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ
34
S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ
34
S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver
34
S-enriched sulfur to produce the positive δ
34
S signature in arc settings. Most sulfur has negative δ
34
S and is subducted into the deep mantle, which could cause a long-term increase in the δ
34
S of Earth surface reservoirs.
Sulfur is one of the key volatiles in Earth’s chemical cycles; however, sulfur speciation, isotopic composition, and flux during the subduction cycle remain unclear. Here, the authors provide direct constraints on subduction zone sulfur recycling from high-pressure rocks and explore implications for arc magmatism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-14110-4 |