13 reasons why the brain is susceptible to oxidative stress

The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how...

Full description

Saved in:
Bibliographic Details
Published in:Redox biology Vol. 15; no. C; pp. 490 - 503
Main Authors: Cobley, James Nathan, Fiorello, Maria Luisa, Bailey, Damian Miles
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-05-2018
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease. [Display omitted] •The brain deliberately produces reactive species to transmit redox signals.•Redox signalling regulates critical functions (e.g. synaptic plasticity).•The brain is susceptible to oxidative stress when redox signalling goes awry.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2018.01.008