Most Earth-surface calcites precipitate out of isotopic equilibrium
Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that 18 O/ 16 O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. Howe...
Saved in:
Published in: | Nature communications Vol. 10; no. 1; p. 429 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
25-01-2019
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that
18
O/
16
O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. However, after decades of research, there is no consensus on the true equilibrium
18
O/
16
O fractionation between calcite and water (
18
α
cc/w
). Here, we constrain the equilibrium relations linking temperature,
18
α
cc/w
, and clumped isotopes (
Δ
47
) based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto Basso (Corchia Cave). Equilibrium
18
α
cc/w
values are systematically ~1.5‰ greater than those in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equilibrium. We further demonstrate that subtle disequilibria also affect
Δ
47
in biogenic calcite. These observations provide evidence that most Earth-surface calcites fail to achieve isotopic equilibrium, highlighting the need to improve our quantitative understanding of non-equilibrium isotope fractionation effects instead of relying on phenomenological calibrations.
Isotopic thermometry of carbonate minerals postulates that their composition reflects thermodynamic equilibrium constants. Here the authors constrain equilibrium relationships between temperature,
18
O/
16
O and clumped isotopes and find that most natural calcites form out of isotopic equilibrium. |
---|---|
AbstractList | Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that 18 O/ 16 O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. However, after decades of research, there is no consensus on the true equilibrium 18 O/ 16 O fractionation between calcite and water (18 α cc/w). Here, we constrain the equilibrium relations linking temperature, 18 α cc/w , and clumped isotopes (Δ 47) based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto Basso (Corchia Cave). Equilibrium 18 α cc/w values are systematically~1.5‰ greater than those in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equilibrium. We further demonstrate that subtle disequilibria also affect Δ 47 in biogenic calcite. These observations provide evidence that most Earth-surface calcites fail to achieve isotopic equilibrium, highlighting the need to improve our quantitative understanding of non-equilibrium isotope fractionation effects instead of relying on phenomenological calibrations. Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that 18 O/ 16 O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. However, after decades of research, there is no consensus on the true equilibrium 18 O/ 16 O fractionation between calcite and water ( 18 α cc/w ). Here, we constrain the equilibrium relations linking temperature, 18 α cc/w , and clumped isotopes ( Δ 47 ) based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto Basso (Corchia Cave). Equilibrium 18 α cc/w values are systematically ~1.5‰ greater than those in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equilibrium. We further demonstrate that subtle disequilibria also affect Δ 47 in biogenic calcite. These observations provide evidence that most Earth-surface calcites fail to achieve isotopic equilibrium, highlighting the need to improve our quantitative understanding of non-equilibrium isotope fractionation effects instead of relying on phenomenological calibrations. Isotopic thermometry of carbonate minerals postulates that their composition reflects thermodynamic equilibrium constants. Here the authors constrain equilibrium relationships between temperature, 18 O/ 16 O and clumped isotopes and find that most natural calcites form out of isotopic equilibrium. Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that O/ O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. However, after decades of research, there is no consensus on the true equilibrium O/ O fractionation between calcite and water ( α ). Here, we constrain the equilibrium relations linking temperature, α , and clumped isotopes (Δ ) based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto Basso (Corchia Cave). Equilibrium α values are systematically ~1.5‰ greater than those in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equilibrium. We further demonstrate that subtle disequilibria also affect Δ in biogenic calcite. These observations provide evidence that most Earth-surface calcites fail to achieve isotopic equilibrium, highlighting the need to improve our quantitative understanding of non-equilibrium isotope fractionation effects instead of relying on phenomenological calibrations. Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that 18O/16O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. However, after decades of research, there is no consensus on the true equilibrium 18O/16O fractionation between calcite and water (18αcc/w). Here, we constrain the equilibrium relations linking temperature, 18αcc/w, and clumped isotopes (Δ47) based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto Basso (Corchia Cave). Equilibrium 18αcc/w values are systematically ~1.5‰ greater than those in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equilibrium. We further demonstrate that subtle disequilibria also affect Δ47 in biogenic calcite. These observations provide evidence that most Earth-surface calcites fail to achieve isotopic equilibrium, highlighting the need to improve our quantitative understanding of non-equilibrium isotope fractionation effects instead of relying on phenomenological calibrations.Isotopic thermometry of carbonate minerals postulates that their composition reflects thermodynamic equilibrium constants. Here the authors constrain equilibrium relationships between temperature, 18O/16O and clumped isotopes and find that most natural calcites form out of isotopic equilibrium. Isotopic thermometry of carbonate minerals postulates that their composition reflects thermodynamic equilibrium constants. Here the authors constrain equilibrium relationships between temperature, 18O/16O and clumped isotopes and find that most natural calcites form out of isotopic equilibrium. Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical foundations rest on the assumption that 18 O/ 16 O partitioning among water and carbonate minerals primarily reflects thermodynamic equilibrium. However, after decades of research, there is no consensus on the true equilibrium 18 O/ 16 O fractionation between calcite and water ( 18 α cc/w ). Here, we constrain the equilibrium relations linking temperature, 18 α cc/w , and clumped isotopes ( Δ 47 ) based on the composition of extremely slow-growing calcites from Devils Hole and Laghetto Basso (Corchia Cave). Equilibrium 18 α cc/w values are systematically ~1.5‰ greater than those in biogenic and synthetic calcite traditionally considered to approach oxygen-isotope equilibrium. We further demonstrate that subtle disequilibria also affect Δ 47 in biogenic calcite. These observations provide evidence that most Earth-surface calcites fail to achieve isotopic equilibrium, highlighting the need to improve our quantitative understanding of non-equilibrium isotope fractionation effects instead of relying on phenomenological calibrations. |
ArticleNumber | 429 |
Author | Daëron, M. Peral, M. Coplen, T. B. Lartaud, F. Blamart, D. Huyghe, D. Zanchetta, G. Drysdale, R. N. |
Author_xml | – sequence: 1 givenname: M. surname: Daëron fullname: Daëron, M. email: daeron@lsce.ipsl.fr organization: Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay – sequence: 2 givenname: R. N. surname: Drysdale fullname: Drysdale, R. N. organization: School of Geography, The University of Melbourne, EDYTEM UMR CNRS 5204, Bâtiment “Pôle Montagne”, Université Savoie Mont Blanc – sequence: 3 givenname: M. surname: Peral fullname: Peral, M. organization: Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay – sequence: 4 givenname: D. surname: Huyghe fullname: Huyghe, D. organization: Laboratoire d’Ecogéochimie des Environnements Benthiques, LECOB, Sorbonne Université, CNRS, Géosciences Environnement Toulouse, UMR 5563 CNRS, UR 234 IRD, UM 97 UPS, Observatoire Midi-Pyrénées, CNES, Centre de Géosciences, MINES ParisTech, PSL University – sequence: 5 givenname: D. surname: Blamart fullname: Blamart, D. organization: Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay – sequence: 6 givenname: T. B. surname: Coplen fullname: Coplen, T. B. organization: U.S. Geological Survey – sequence: 7 givenname: F. surname: Lartaud fullname: Lartaud, F. organization: Laboratoire d’Ecogéochimie des Environnements Benthiques, LECOB, Sorbonne Université, CNRS – sequence: 8 givenname: G. surname: Zanchetta fullname: Zanchetta, G. organization: Dipartimento di Scienze della Terra, Università di Pisa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30683869$$D View this record in MEDLINE/PubMed https://hal.science/hal-02396547$$DView record in HAL |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAInGBQ8BjO_64IFWr0lZaxAXOluPYu15l49R2KvHv8TZtaXvAF1szz7wzY71vq6MxjLaq3gP6AoiIr4kCZbxBIBskCGFN-6o6wYhCAxyToyfv4-ospR0qh0gQlL6pjgligggmT6rVj5ByfaFj3jZpjk4bWxs9GJ9tqqdojZ981tnWYc51cLVPIYfJm9rezH7wXfTz_l312ukh2bP7-7T6_f3i1-qqWf-8vF6drxvDKMqN7nqHuMGuNCEdUEyNE470XGvCQIDWUvedBdELRjWRTmjAjlvaE4cRMHJaXS-6fdA7NUW_1_GPCtqru0CIG1X28GawijsOXcdY2ZjRXgjZ9i3DbdcS2VPZ6aL1bdGa5m5ve2PHHPXwTPR5ZvRbtQm3ihHKGeFF4PMisH1RdnW-VocYwkSylvJbKOyn-2Yx3Mw2ZbX3ydhh0KMNc1IYuKQgAUhBP75Ad2GOY_nWAwUgJAJaKLxQJoaUonWPEwBSB3uoxR6q2EPd2UO1pejD05UfSx7MUACyAKmkxo2N_3r_R_YvNjDGlA |
CitedBy_id | crossref_primary_10_1016_j_epsl_2022_117474 crossref_primary_10_1016_j_gca_2020_02_032 crossref_primary_10_1007_s12517_021_06650_1 crossref_primary_10_1016_j_chemgeo_2020_120051 crossref_primary_10_1016_j_gca_2021_07_012 crossref_primary_10_1111_gbi_12386 crossref_primary_10_3390_w12123464 crossref_primary_10_1016_j_quascirev_2023_108355 crossref_primary_10_1016_j_apgeochem_2024_105925 crossref_primary_10_1177_09596836231211874 crossref_primary_10_1016_j_quascirev_2021_106856 crossref_primary_10_1016_j_chemgeo_2021_120213 crossref_primary_10_1016_j_epsl_2024_118717 crossref_primary_10_3389_fenvs_2023_1213239 crossref_primary_10_1016_j_gca_2022_06_041 crossref_primary_10_1038_s43247_024_01491_8 crossref_primary_10_5194_bg_19_2759_2022 crossref_primary_10_1016_j_epsl_2023_118458 crossref_primary_10_1002_dep2_139 crossref_primary_10_1029_2021GC010200 crossref_primary_10_1016_j_quascirev_2019_105998 crossref_primary_10_1016_j_palaeo_2022_111275 crossref_primary_10_3390_min11121406 crossref_primary_10_1016_j_palaeo_2023_111576 crossref_primary_10_3389_fmars_2022_1072068 crossref_primary_10_1130_G50244_1 crossref_primary_10_1016_j_epsl_2020_116401 crossref_primary_10_1029_2022GC010458 crossref_primary_10_1016_j_gca_2021_09_019 crossref_primary_10_1038_s41467_020_14490_y crossref_primary_10_3389_feart_2024_1355693 crossref_primary_10_1029_2021GC009730 crossref_primary_10_1016_j_chemgeo_2021_120228 crossref_primary_10_1016_j_scitotenv_2021_147181 crossref_primary_10_1016_j_gca_2019_10_016 crossref_primary_10_1016_j_chemgeo_2024_122059 crossref_primary_10_1016_j_ecss_2020_106777 crossref_primary_10_1038_s41598_020_73422_4 crossref_primary_10_1016_j_epsl_2021_116840 crossref_primary_10_1016_j_margeo_2021_106513 crossref_primary_10_3389_feart_2021_792858 crossref_primary_10_1016_j_palaeo_2019_109252 crossref_primary_10_1038_s41467_020_18083_7 crossref_primary_10_1038_s41467_023_40880_z crossref_primary_10_5194_cp_15_1557_2019 crossref_primary_10_1016_j_gca_2019_09_032 crossref_primary_10_1016_j_quascirev_2020_106663 crossref_primary_10_1016_j_quascirev_2020_106784 crossref_primary_10_1016_j_chemgeo_2021_120317 crossref_primary_10_1016_j_gloplacha_2022_103795 crossref_primary_10_1016_j_jseaes_2022_105338 crossref_primary_10_1016_j_chemgeo_2021_120676 crossref_primary_10_1371_journal_pone_0245621 crossref_primary_10_1016_j_gca_2021_01_041 crossref_primary_10_1016_j_palaeo_2021_110224 crossref_primary_10_1016_j_quascirev_2022_107399 crossref_primary_10_1016_j_quascirev_2024_108564 crossref_primary_10_1016_j_gca_2019_07_028 crossref_primary_10_1016_j_gca_2021_03_026 crossref_primary_10_1016_j_scitotenv_2020_137140 crossref_primary_10_1016_j_gca_2020_12_024 crossref_primary_10_1364_OE_447172 crossref_primary_10_3389_fmars_2021_811055 crossref_primary_10_1016_j_gca_2019_08_001 crossref_primary_10_1017_qua_2023_24 crossref_primary_10_1016_j_gca_2019_11_022 crossref_primary_10_1016_j_chemgeo_2022_121183 crossref_primary_10_1016_j_gca_2021_06_012 crossref_primary_10_5194_cp_20_1_2024 crossref_primary_10_1016_j_earscirev_2024_104801 crossref_primary_10_1007_s00531_020_01978_7 crossref_primary_10_1029_2021GC009769 crossref_primary_10_1016_j_chemgeo_2020_119705 crossref_primary_10_2138_rmg_2021_86_09 crossref_primary_10_1038_s41467_020_17501_0 crossref_primary_10_1016_j_gca_2021_08_014 crossref_primary_10_1016_j_chemgeo_2019_07_014 crossref_primary_10_1038_s41598_024_51937_4 crossref_primary_10_1016_j_gloplacha_2023_104220 crossref_primary_10_1016_j_chemgeo_2024_122148 crossref_primary_10_5194_bg_17_1731_2020 crossref_primary_10_1007_s00531_023_02376_5 crossref_primary_10_1029_2022GL099479 crossref_primary_10_1186_s42501_021_00103_2 crossref_primary_10_1016_j_gca_2020_10_005 crossref_primary_10_1016_j_gca_2020_07_044 crossref_primary_10_1016_j_gca_2020_07_045 crossref_primary_10_1038_s43247_022_00509_3 crossref_primary_10_1016_j_gca_2023_11_032 crossref_primary_10_1038_s41561_023_01272_6 crossref_primary_10_1177_0959683620908648 crossref_primary_10_1016_j_cretres_2023_105825 crossref_primary_10_3390_w12092386 crossref_primary_10_1016_j_gca_2020_12_008 crossref_primary_10_1016_j_gca_2020_06_012 crossref_primary_10_1126_sciadv_adf1701 crossref_primary_10_1016_j_sedgeo_2022_106214 crossref_primary_10_1126_sciadv_abq0611 crossref_primary_10_2138_rmg_2021_86_11 crossref_primary_10_1002_rcm_8837 crossref_primary_10_1016_j_gloplacha_2023_104353 crossref_primary_10_1073_pnas_2302283120 crossref_primary_10_1016_j_chemgeo_2023_121881 crossref_primary_10_1016_j_gloplacha_2023_104050 crossref_primary_10_1016_j_quascirev_2019_07_023 crossref_primary_10_1029_2019GC008369 crossref_primary_10_1016_j_gca_2020_11_019 crossref_primary_10_1029_2023JD039607 crossref_primary_10_1038_s41561_021_00851_9 crossref_primary_10_1038_s41598_021_98528_1 crossref_primary_10_1016_j_quascirev_2024_108534 crossref_primary_10_1029_2020GL092069 crossref_primary_10_1016_j_gca_2021_12_019 crossref_primary_10_1029_2021GC010249 crossref_primary_10_1016_j_gca_2023_11_017 crossref_primary_10_1038_s41598_022_12929_4 crossref_primary_10_1029_2021GL096937 crossref_primary_10_1016_j_chemgeo_2023_121803 crossref_primary_10_1016_j_quascirev_2022_107808 crossref_primary_10_1029_2019PA003785 crossref_primary_10_1007_s00126_023_01162_2 crossref_primary_10_1016_j_gca_2021_01_003 crossref_primary_10_1029_2020GL088804 crossref_primary_10_1016_j_gca_2023_03_016 crossref_primary_10_1111_brv_12940 crossref_primary_10_1016_j_chemgeo_2023_121773 crossref_primary_10_1029_2019GC008755 crossref_primary_10_1016_j_gca_2021_10_008 crossref_primary_10_1016_j_gca_2023_03_030 crossref_primary_10_5194_gmd_15_1247_2022 crossref_primary_10_1144_jgs2020_102 crossref_primary_10_1144_jgs2022_175 crossref_primary_10_1029_2021GL093257 crossref_primary_10_1016_j_gca_2022_10_030 crossref_primary_10_5194_bg_20_1381_2023 crossref_primary_10_1029_2023PA004660 |
Cites_doi | 10.1002/2017gc007289 10.3986/ac.v40i1.36 10.1073/pnas.0906636106 10.1016/j.gca.2017.06.022 10.1063/1.1671982 10.1016/j.gca.2015.12.016 10.1016/j.epsl.2013.05.054 10.1016/j.gca.2018.03.010 10.1016/j.gca.2016.11.028 10.1029/2017GC006969 10.1029/2012PA002339 10.1029/2004PA001046 10.1016/j.jembe.2010.07.016 10.1016/0016-7037(69)90108-2 10.1029/2017GC007385 10.1016/j.gca.2005.02.003 10.1016/j.gca.2006.02.011 10.5038/1827-806X.37.3.2 10.1126/science.202.4368.627 10.2113/0540115 10.1038/215015a0 10.1016/j.gca.2012.07.022 10.1016/j.epsl.2007.08.020 10.1126/science.207.4432.759 10.1002/2017gc007089 10.1016/j.gca.2018.07.016 10.1016/j.gca.2013.06.018 10.1306/212f7df6-2b24-11d7-8648000102c1865d 10.1016/S0016-7037(97)00169-5 10.1016/j.epsl.2014.07.036 10.1016/j.quageo.2012.06.009 10.1016/j.epsl.2014.05.047 10.1023/A:1009627710476 10.1016/S0016-7037(97)00141-5 10.1016/j.gca.2015.06.032 10.1016/j.chemgeo.2012.02.021 10.1002/grl.50331 10.1029/2006GL026011 10.1130/B25698.1 10.1016/0016-7037(71)90127-X 10.1029/96PA01420 10.1016/j.gca.2007.05.028 10.1016/j.yqres.2006.06.003 10.1016/j.gca.2015.06.021 10.1016/j.epsl.2010.12.030 10.1016/j.gca.2007.07.029 10.1016/j.epsl.2018.12.014 10.1063/1.1747785 10.1016/j.gca.2010.10.032 10.1126/science.1164271 10.1039/jr9470000562 10.1073/pnas.0904306106 10.1016/0016-7037(89)90282-2 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 10.1016/0079-1946(81)90021-5 10.1016/j.gca.2011.06.005 10.1016/j.epsl.2015.09.042 10.1016/j.chemgeo.2016.08.014 10.1016/j.gca.2016.10.010 10.1016/j.gca.2007.03.006 10.1351/PAC-REP-09-01-05 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41467-019-08336-5 |
DatabaseName | Springer Nature OA Free Journals PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 429 |
ExternalDocumentID | oai_doaj_org_article_7f71bb6639164d8895d5625b539d49ba oai_HAL_hal_02396547v1 10_1038_s41467_019_08336_5 30683869 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI RC3 SOI 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c640t-abdf07c2ffac3b1424cf8f3d7aa36181aa9adbe18d864a39f8a12f7e4d3f20163 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:10:55 EDT 2024 Tue Sep 17 21:25:46 EDT 2024 Mon Nov 18 06:41:37 EST 2024 Fri Oct 25 00:11:56 EDT 2024 Sat Nov 09 09:51:40 EST 2024 Thu Nov 21 21:01:38 EST 2024 Sat Sep 28 08:29:35 EDT 2024 Fri Oct 11 20:46:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Geochemistry Palaeoceanography Palaeoclimate |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-abdf07c2ffac3b1424cf8f3d7aa36181aa9adbe18d864a39f8a12f7e4d3f20163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0244-4345 0000-0001-7130-2944 0000-0003-1210-9786 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347637/ |
PMID | 30683869 |
PQID | 2171189014 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f71bb6639164d8895d5625b539d49ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_6347637 hal_primary_oai_HAL_hal_02396547v1 proquest_miscellaneous_2179419113 proquest_journals_2171189014 crossref_primary_10_1038_s41467_019_08336_5 pubmed_primary_30683869 springer_journals_10_1038_s41467_019_08336_5 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-25 |
PublicationDateYYYYMMDD | 2019-01-25 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | HillPSTripatiAKSchaubleEATheoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate mineralsGeochim. Cosmochim. Acta20141256106522014GeCoA.125..610H1:CAS:528:DC%2BC3sXhsFOiurfJ10.1016/j.gca.2013.06.018 EpsteinSBuchsbaumRLowenstamAUreyHCRevised carbonate-water isotopic temperature scaleBull. Geol. Soc. Am.195364131513261:CAS:528:DyaG2cXmvVSj10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 CoplenTBMore uncertainty than necessaryPaleoceanography1996113693701996PalOc..11..369C10.1029/96PA01420 MicklerPJSternLABannerJLLarge kinetic isotope effects in modern speleothemsGeol. Soc. Am. Bull.200611865812006GSAB..118...65M1:CAS:528:DC%2BD2sXhtVWnt77J10.1130/B25698.1 BrandWAAssonovSSCoplenTBCorrection for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report)Pure Appl. Chem.201082171917331:CAS:528:DC%2BC3cXpsFegtLc%3D10.1351/PAC-REP-09-01-05 LeGrandeANSchmidtGAGlobal gridded data set of the oxygen isotopic composition in seawaterGeophys. Res. Lett.2006331210.1029/2006GL026011 ShackletonNOxygen isotope analyses and Pleistocene temperatures re-assessedNature196721515171967Natur.215...15S1:CAS:528:DyaF2sXltVWqt74%3D10.1038/215015a0 Brand, U. & Veizer, J. Chemical diagenesis of a multicomponent carbonate system—2: stable isotopes. J. Sediment. Res.51, https://doi.org/10.1306/212f7df6-2b24-11d7-8648000102c1865d (1981). DevriendtLSWatkinsJMMcGregorHVOxygen isotope fractionation in the CaCO3–DIC–H2O systemGeochim. Cosmochim. Acta20172141151422017GeCoA.214..115D1:CAS:528:DC%2BC2sXhtFentrvF10.1016/j.gca.2017.06.022 TremaineDMFroelichPNWangYSpeleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave systemGeochim. Cosmochim. Acta201175492949502011GeCoA..75.4929T1:CAS:528:DC%2BC3MXhtVWjsrvK10.1016/j.gca.2011.06.005 BoltonCTStollHMMendez-VicenteAVital effects in coccolith calcite: Cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?Paleoceanography201227410.1029/2012PA002339 McConnaugheyT13C and 18O isotopic disequilibrium in biological carbonates: I. PatternsGeochim. Cosmochim. Acta1989531511621989GeCoA..53..151M1:CAS:528:DyaL1MXht1Sktrc%3D10.1016/0016-7037(89)90282-2 Schmidt, G. A., Bigg, G. R. & Rohling, E. J. Global Seawater Oxygen-18 Database—v1.22. https://data.giss.nasa.gov/o18data (1999). SheppardSMFStable isotope geochemistry of fluidsPhys. Chem. Earth198113–1441944510.1016/0079-1946(81)90021-5 BentovSBrownleeCErezJThe role of seawater endocytosis in the biomineralization process in calcareous foraminiferaProc. Natl Acad. Sci. USA200910621500215042009PNAS..10621500B10.1073/pnas.0906636106 Deines, P. Stable isotope variations in carbonatites. In: Carbonatites: Genesis and Evolution. (ed. Bell, K.) 301–359 (Unwin & Hyman, London, 1989). StollHMLimited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene–Eocene thermal maximumPaleoceanography200520110.1029/2004PA001046 LartaudFExperimental growth pattern calibration of Antarctic scallop shells (Adamussium colbecki, Smith 1902) to provide a biogenic archive of high-resolution records of environmental and climatic changesJ. Exp. Mar. Biol. Ecol.201039315816710.1016/j.jembe.2010.07.016 McCreaJMOn the isotopic chemistry of carbonates and a paleotemperature scaleJ. Chem. Phys.1950188498571950JChPh..18..849M1:CAS:528:DyaG3cXlsVOlug%3D%3D10.1063/1.1747785 BonifacieMCalibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonatesGeochim. Cosmochim. Acta20172002552792017GeCoA.200..255B1:CAS:528:DC%2BC28XhvFGjtL%2FF10.1016/j.gca.2016.11.028 BeckWCGrossmanELMorseJWExperimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40 °CGeochim. Cosmochim. Acta200569349335032005GeCoA..69.3493B1:CAS:528:DC%2BD2MXmtlKltbo%3D10.1016/j.gca.2005.02.003 O’NeilJRClaytonRNMayedaTKOxygen isotope fractionation in divalent metal carbonatesJ. Chem. Phys.196951554755581969JChPh..51.5547O10.1063/1.1671982 UchikawaJZeebeREThe effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2–H2O system: implications for δ18O vital effects in biogenic carbonatesGeochim. Cosmochim. Acta20129515342012GeCoA..95...15U1:CAS:528:DC%2BC38XhsVegsbzL10.1016/j.gca.2012.07.022 Durrieu de MadronXInteraction of dense shelf water cascading and open-sea convection in the northwestern Mediterranean during winter 2012Geophys. Res. Lett.201340137913852013GeoRL..40.1379D10.1002/grl.50331 HendyCHThe isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicatorsGeochim. Cosmochim. Acta1971358018241971GeCoA..35..801H1:CAS:528:DyaE3MXkvFSitL0%3D10.1016/0016-7037(71)90127-X GillisKMCooganLASecular variation in carbon uptake into the ocean crustEarth Planet. Sci. Lett.20113023853922011E&PSL.302..385G1:CAS:528:DC%2BC3MXhtlKmsL4%3D10.1016/j.epsl.2010.12.030 DrysdaleRNPrecise microsampling of poorly laminated speleothems for U-series datingQuat. Geochronol.201214384710.1016/j.quageo.2012.06.009 Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 562–581 (1947). EilerJM“Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologuesEarth Planet. Sci. Lett.20072623093272007E&PSL.262..309E1:CAS:528:DC%2BD2sXhtFKlsrjP10.1016/j.epsl.2007.08.020 AnderssonMPRodriguez-BlancoJDStippSLSIs bicarbonate stable in and on the calcite surface?Geochim. Cosmochim. Acta20161761982052016GeCoA.176..198A1:CAS:528:DC%2BC2MXitV2msbzL10.1016/j.gca.2015.12.016 ErezJThe source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxiesRev. Mineral. Geochem.2003541151491:CAS:528:DC%2BD2cXktVCmsQ%3D%3D10.2113/0540115 PeralMUpdated calibration of the clumped isotope thermometer in planktonic and benthic foraminiferaGeochim. Cosmochim. Acta20182391162018GeCoA.239....1P1:CAS:528:DC%2BC1cXhtlKhsbfO10.1016/j.gca.2018.07.016 KillingleyJSMigrations of California gray whales tracked by oxygen-18 variations in their epizoic barnaclesScience19802077597601980Sci...207..759K1:STN:280:DC%2BC3cvjsFWksw%3D%3D10.1126/science.207.4432.759 FantleMSDePaoloDJCa isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sedimentsGeochim. Cosmochim. Acta200771252425462007GeCoA..71.2524F1:CAS:528:DC%2BD2sXkvFahuro%3D10.1016/j.gca.2007.03.006 PicciniLThe environmental features of the Monte Corchia cave system (Apuan Alps, central Italy) and their effects on speleothem growthInt. J. Speleol.20083715317210.5038/1827-806X.37.3.2 BaneschiIHypogean microclimatology and hydrology of the 800–900 m ASL level in the Monte Corchia cave (Tuscany, Italy): preliminary considerations and implications for paleoclimatological studiesActa Carsol.2011401 KelsonJRHuntingtonKWSchauerAJSaengerCLechlerARToward a universal carbonate clumped isotope calibration: diverse synthesis and preparatory methods suggest a single temperature relationshipGeochim. Cosmochim. Acta20171971041312017GeCoA.197..104K1:CAS:528:DC%2BC28XhslGhsrrK10.1016/j.gca.2016.10.010 KlugeTJohnCMBochRKeleSAssessment of factors controlling clumped isotopes and δ18O values of hydrothermal vent calcitesGeochem. Geophys. Geosyst.2018191844118582018GGG....19.1844K1:CAS:528:DC%2BC1cXhsVahsbnI10.1029/2017GC006969 GebauerDVölkelACölfenHStable prenucleation calcium carbonate clustersScience2008322181918222008Sci...322.1819G1:CAS:528:DC%2BD1cXhsFSmtrnM10.1126/science.1164271 GabitovRIWatsonEBSadekovAOxygen isotope fractionation between calcite and fluid as a function of growth rate and temperature: an in situ studyChem. Geol.2012306–307921022012ChGeo.306...92G10.1016/j.chemgeo.2012.02.021 Coogan, L. A., Daëron, M. & Gillis, K. M. Seafloor weathering and the oxygen isotope ratio in seawater: insight from whole-rock δ18O and carbonate δ18O and ∆47 from the Troodos ophiolite. Earth Planet. Sci. Lett. 508, 41–50 (2019). GuoWEilerJMTemperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondritesGeochim. Cosmochim. Acta200771556555752007GeCoA..71.5565G1:CAS:528:DC%2BD2sXht1Ghu77I10.1016/j.gca.2007.07.029 WatkinsJMHuntJDA process-based model for non-equilibrium clumped isotope effects in carbonatesEarth Planet. Sci. Lett.20154321521652015E&PSL.432..152W1:CAS:528:DC%2BC2MXhs1ehurvN10.1016/j.epsl.2015.09.042 ShackletonNJAttainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacialColloq. Int. CNRS1974219203210 DaëronMBlamartDPeralMAffekHPAbsolute isotopic abundance ratios and the accuracy of Δ47 measurementsChem. Geol.201644283962016ChGeo.442...83D10.1016/j.chemgeo.2016.08.014 Bernasconi, S. M. et al. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst.19, https://doi.org/10.1029/2017GC007385 (2018). PlummerLNBusenbergERiggsACIn-situ growth of calcite at Devils Hole, Nevada: comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growthAq. Geochem.200062572741:CAS:528:DC%2BD3cXkslygu7s%3D10.1023/A:1009627710476 ThorroldSRCampanaSEJonesCMSwartPKFactors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fishGeochim. Cosmochim. Acta199761290929191997GeCoA..61.2909T1:CAS:528:DyaK2sXlsFKltb0%3D10.1016/S0016-7037(97)00141-5 WatkinsJMHuntJDRyersonFJDePaoloDJThe influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calciteEarth Planet. Sci. Lett.201440433 M Bonifacie (8336_CR38) 2017; 200 S Epstein (8336_CR12) 1953; 64 NJ Shackleton (8336_CR63) 1974; 219 AK Tripati (8336_CR44) 2015; 166 M Daëron (8336_CR20) 2011; 75 JM Eiler (8336_CR36) 2007; 262 RN Drysdale (8336_CR30) 2012; 14 8336_CR42 8336_CR40 S Bentov (8336_CR47) 2009; 106 EA Schauble (8336_CR37) 2006; 70 JM Watkins (8336_CR23) 2013; 375 SMF Sheppard (8336_CR6) 1981; 13–14 D Gebauer (8336_CR26) 2008; 322 MP Andersson (8336_CR25) 2016; 176 TB Coplen (8336_CR65) 1996; 11 L Piccini (8336_CR31) 2008; 37 JM Watkins (8336_CR27) 2014; 404 T Kluge (8336_CR50) 2018; 19 J Uchikawa (8336_CR10) 2012; 95 T Tarutani (8336_CR13) 1969; 33 X Durrieu de Madron (8336_CR61) 2013; 40 TB Coplen (8336_CR16) 2007; 71 C Emiliani (8336_CR21) 1978; 202 JM Watkins (8336_CR33) 2015; 432 IJ Winograd (8336_CR58) 2006; 66 LS Devriendt (8336_CR29) 2017; 214 8336_CR28 N Shackleton (8336_CR2) 1967; 215 I Baneschi (8336_CR34) 2011; 40 8336_CR3 W Guo (8336_CR9) 2007; 71 MS Fantle (8336_CR54) 2007; 71 8336_CR1 8336_CR7 JS Killingley (8336_CR8) 1980; 207 J Erez (8336_CR46) 2003; 54 LJ de Nooijer (8336_CR48) 2009; 106 SR Thorrold (8336_CR17) 1997; 61 WC Beck (8336_CR35) 2005; 69 KM Gillis (8336_CR4) 2011; 302 8336_CR60 JR O’Neil (8336_CR14) 1969; 51 JR Kelson (8336_CR39) 2017; 197 CH Hendy (8336_CR53) 1971; 35 RI Gabitov (8336_CR24) 2012; 306–307 8336_CR55 PJ Mickler (8336_CR19) 2006; 118 8336_CR56 S Kele (8336_CR52) 2015; 168 T McConnaughey (8336_CR5) 1989; 53 PS Hill (8336_CR49) 2014; 125 F Lartaud (8336_CR59) 2010; 393 CT Bolton (8336_CR22) 2012; 27 M Daëron (8336_CR41) 2016; 442 M Peral (8336_CR45) 2018; 239 AN LeGrande (8336_CR62) 2006; 33 ST Kim (8336_CR15) 1997; 61 JM McCrea (8336_CR11) 1950; 18 LN Plummer (8336_CR32) 2000; 6 T Kluge (8336_CR43) 2014; 400 DM Tremaine (8336_CR18) 2011; 75 HM Stoll (8336_CR57) 2005; 20 WA Brand (8336_CR64) 2010; 82 8336_CR51 |
References_xml | – ident: 8336_CR51 doi: 10.1002/2017gc007289 – volume: 40 start-page: 1 year: 2011 ident: 8336_CR34 publication-title: Acta Carsol. doi: 10.3986/ac.v40i1.36 contributor: fullname: I Baneschi – volume: 106 start-page: 21500 year: 2009 ident: 8336_CR47 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0906636106 contributor: fullname: S Bentov – ident: 8336_CR60 – volume: 214 start-page: 115 year: 2017 ident: 8336_CR29 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.06.022 contributor: fullname: LS Devriendt – volume: 51 start-page: 5547 year: 1969 ident: 8336_CR14 publication-title: J. Chem. Phys. doi: 10.1063/1.1671982 contributor: fullname: JR O’Neil – volume: 176 start-page: 198 year: 2016 ident: 8336_CR25 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.12.016 contributor: fullname: MP Andersson – volume: 375 start-page: 349 year: 2013 ident: 8336_CR23 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.05.054 contributor: fullname: JM Watkins – ident: 8336_CR40 doi: 10.1016/j.gca.2018.03.010 – volume: 200 start-page: 255 year: 2017 ident: 8336_CR38 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.11.028 contributor: fullname: M Bonifacie – volume: 19 start-page: 1844 year: 2018 ident: 8336_CR50 publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2017GC006969 contributor: fullname: T Kluge – volume: 27 start-page: 4 year: 2012 ident: 8336_CR22 publication-title: Paleoceanography doi: 10.1029/2012PA002339 contributor: fullname: CT Bolton – volume: 20 start-page: 1 year: 2005 ident: 8336_CR57 publication-title: Paleoceanography doi: 10.1029/2004PA001046 contributor: fullname: HM Stoll – volume: 393 start-page: 158 year: 2010 ident: 8336_CR59 publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/j.jembe.2010.07.016 contributor: fullname: F Lartaud – volume: 33 start-page: 987 year: 1969 ident: 8336_CR13 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(69)90108-2 contributor: fullname: T Tarutani – ident: 8336_CR42 doi: 10.1029/2017GC007385 – volume: 69 start-page: 3493 year: 2005 ident: 8336_CR35 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.02.003 contributor: fullname: WC Beck – ident: 8336_CR7 – volume: 70 start-page: 2510 year: 2006 ident: 8336_CR37 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.02.011 contributor: fullname: EA Schauble – volume: 37 start-page: 153 year: 2008 ident: 8336_CR31 publication-title: Int. J. Speleol. doi: 10.5038/1827-806X.37.3.2 contributor: fullname: L Piccini – volume: 202 start-page: 627 year: 1978 ident: 8336_CR21 publication-title: Science doi: 10.1126/science.202.4368.627 contributor: fullname: C Emiliani – volume: 54 start-page: 115 year: 2003 ident: 8336_CR46 publication-title: Rev. Mineral. Geochem. doi: 10.2113/0540115 contributor: fullname: J Erez – volume: 215 start-page: 15 year: 1967 ident: 8336_CR2 publication-title: Nature doi: 10.1038/215015a0 contributor: fullname: N Shackleton – volume: 95 start-page: 15 year: 2012 ident: 8336_CR10 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.07.022 contributor: fullname: J Uchikawa – volume: 262 start-page: 309 year: 2007 ident: 8336_CR36 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.08.020 contributor: fullname: JM Eiler – volume: 207 start-page: 759 year: 1980 ident: 8336_CR8 publication-title: Science doi: 10.1126/science.207.4432.759 contributor: fullname: JS Killingley – ident: 8336_CR28 doi: 10.1002/2017gc007089 – volume: 239 start-page: 1 year: 2018 ident: 8336_CR45 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2018.07.016 contributor: fullname: M Peral – volume: 125 start-page: 610 year: 2014 ident: 8336_CR49 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.06.018 contributor: fullname: PS Hill – ident: 8336_CR3 doi: 10.1306/212f7df6-2b24-11d7-8648000102c1865d – ident: 8336_CR56 – volume: 61 start-page: 3461 year: 1997 ident: 8336_CR15 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00169-5 contributor: fullname: ST Kim – volume: 404 start-page: 332 year: 2014 ident: 8336_CR27 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.07.036 contributor: fullname: JM Watkins – volume: 14 start-page: 38 year: 2012 ident: 8336_CR30 publication-title: Quat. Geochronol. doi: 10.1016/j.quageo.2012.06.009 contributor: fullname: RN Drysdale – volume: 400 start-page: 251 year: 2014 ident: 8336_CR43 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.05.047 contributor: fullname: T Kluge – volume: 6 start-page: 257 year: 2000 ident: 8336_CR32 publication-title: Aq. Geochem. doi: 10.1023/A:1009627710476 contributor: fullname: LN Plummer – volume: 61 start-page: 2909 year: 1997 ident: 8336_CR17 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00141-5 contributor: fullname: SR Thorrold – volume: 168 start-page: 172 year: 2015 ident: 8336_CR52 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.06.032 contributor: fullname: S Kele – volume: 306–307 start-page: 92 year: 2012 ident: 8336_CR24 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2012.02.021 contributor: fullname: RI Gabitov – volume: 40 start-page: 1379 year: 2013 ident: 8336_CR61 publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50331 contributor: fullname: X Durrieu de Madron – volume: 33 start-page: 12 year: 2006 ident: 8336_CR62 publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026011 contributor: fullname: AN LeGrande – volume: 118 start-page: 65 year: 2006 ident: 8336_CR19 publication-title: Geol. Soc. Am. Bull. doi: 10.1130/B25698.1 contributor: fullname: PJ Mickler – volume: 35 start-page: 801 year: 1971 ident: 8336_CR53 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(71)90127-X contributor: fullname: CH Hendy – volume: 11 start-page: 369 year: 1996 ident: 8336_CR65 publication-title: Paleoceanography doi: 10.1029/96PA01420 contributor: fullname: TB Coplen – volume: 71 start-page: 3948 year: 2007 ident: 8336_CR16 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.05.028 contributor: fullname: TB Coplen – volume: 66 start-page: 202 year: 2006 ident: 8336_CR58 publication-title: Quat. Res. doi: 10.1016/j.yqres.2006.06.003 contributor: fullname: IJ Winograd – volume: 166 start-page: 344 year: 2015 ident: 8336_CR44 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.06.021 contributor: fullname: AK Tripati – volume: 219 start-page: 203 year: 1974 ident: 8336_CR63 publication-title: Colloq. Int. CNRS contributor: fullname: NJ Shackleton – volume: 302 start-page: 385 year: 2011 ident: 8336_CR4 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.12.030 contributor: fullname: KM Gillis – volume: 71 start-page: 5565 year: 2007 ident: 8336_CR9 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.07.029 contributor: fullname: W Guo – ident: 8336_CR55 doi: 10.1016/j.epsl.2018.12.014 – volume: 18 start-page: 849 year: 1950 ident: 8336_CR11 publication-title: J. Chem. Phys. doi: 10.1063/1.1747785 contributor: fullname: JM McCrea – volume: 75 start-page: 3303 year: 2011 ident: 8336_CR20 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.10.032 contributor: fullname: M Daëron – volume: 322 start-page: 1819 year: 2008 ident: 8336_CR26 publication-title: Science doi: 10.1126/science.1164271 contributor: fullname: D Gebauer – ident: 8336_CR1 doi: 10.1039/jr9470000562 – volume: 106 start-page: 15374 year: 2009 ident: 8336_CR48 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0904306106 contributor: fullname: LJ de Nooijer – volume: 53 start-page: 151 year: 1989 ident: 8336_CR5 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(89)90282-2 contributor: fullname: T McConnaughey – volume: 64 start-page: 1315 year: 1953 ident: 8336_CR12 publication-title: Bull. Geol. Soc. Am. doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2 contributor: fullname: S Epstein – volume: 13–14 start-page: 419 year: 1981 ident: 8336_CR6 publication-title: Phys. Chem. Earth doi: 10.1016/0079-1946(81)90021-5 contributor: fullname: SMF Sheppard – volume: 75 start-page: 4929 year: 2011 ident: 8336_CR18 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.06.005 contributor: fullname: DM Tremaine – volume: 432 start-page: 152 year: 2015 ident: 8336_CR33 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.09.042 contributor: fullname: JM Watkins – volume: 442 start-page: 83 year: 2016 ident: 8336_CR41 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2016.08.014 contributor: fullname: M Daëron – volume: 197 start-page: 104 year: 2017 ident: 8336_CR39 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.10.010 contributor: fullname: JR Kelson – volume: 71 start-page: 2524 year: 2007 ident: 8336_CR54 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.03.006 contributor: fullname: MS Fantle – volume: 82 start-page: 1719 year: 2010 ident: 8336_CR64 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-REP-09-01-05 contributor: fullname: WA Brand |
SSID | ssj0000391844 |
Score | 2.655031 |
Snippet | Oxygen-isotope thermometry played a critical role in the rise of modern geochemistry and remains extensively used in (bio-)geoscience. Its theoretical... Isotopic thermometry of carbonate minerals postulates that their composition reflects thermodynamic equilibrium constants. Here the authors constrain... |
SourceID | doaj pubmedcentral hal proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 429 |
SubjectTerms | 140/58 704/106/2738 704/106/413 704/172/169/209 Calcite Earth Sciences Earth surface Equilibrium Fractionation Geochemistry Humanities and Social Sciences Isotope fractionation Isotopes Minerals multidisciplinary Oxygen Science Science (multidisciplinary) Sciences of the Universe Thermodynamic equilibrium |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BJSQuiDeBggLiBlaT2PHjWMpWewAugMTNcvzQ7oFkaRKk_vuOnexCqBAXrrbl2N_YnpnY8w3Aa8olQ0PYEKYCJ6jxLFG1E4Qr1bBg6lom2sX1Z_Hpm3y_ijQ5h1Rf8U3YRA88AXcigiibBvUi2jHMSYk9RZu9qalyTDWTaVTw35ypdAZjc8nYHCVTUHnSs3QmFDFmR1LKSb3QRImwH_XLJj6HvG5rXn8y-ce9aVJH53fhzmxH5qfT-O_BDd_eh1tTZsnLB3D2seuHfIXT25B-vAjG-hylYdHA7PNdZLSI2UIGn3fjkHch3_bd0O22Nvc_xm0KAxi_P4Sv56svZ2sy50sglrNiIKZxoRC2CtgpjT93mA0yUCeMoRw1uTHKuMaX0knODFVBmrIKwjNHA9oBnD6Co7Zr_RPIg2AeHT0bgkX_LbjGlsKV1LHKWEFLmsGbPXZ6N9Fi6HSdTaWekNaItE5I6zqDdxHeQ8tIaZ0KUNB6FrT-l6AzeIXCWfSxPv2gY1kM0I1JlH-WGRzvZafnzdhr9LrQjYr3xRm8PFTjNop3I6b13ZjaKIa-a5za40nUh0-hVyWp5CoDsVgEi7Esa9rtJlF1c8rwABcZvN0vl1_D-jteT_8HXs_gdpVWe0mq-hiOhovRP4ebvRtfpL1yBXbzFE0 priority: 102 providerName: Directory of Open Access Journals |
Title | Most Earth-surface calcites precipitate out of isotopic equilibrium |
URI | https://link.springer.com/article/10.1038/s41467-019-08336-5 https://www.ncbi.nlm.nih.gov/pubmed/30683869 https://www.proquest.com/docview/2171189014 https://search.proquest.com/docview/2179419113 https://hal.science/hal-02396547 https://pubmed.ncbi.nlm.nih.gov/PMC6347637 https://doaj.org/article/7f71bb6639164d8895d5625b539d49ba |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7RlZC4IN4EllVA3CDbJnZi-7iUrnpgERIgcbMcP2ilbVKaZKX994ydpGxZceEaR7YzM85843kBvCUFpwiEVUKFKxLUeDoRuWFJIURJncpzHsouLr-yzz_4x4Uvk5OPuTAhaF-X69PqcnNarVchtnK70dMxTmz65WJeEIrHgk0nMEFseMNED79fItBqoUOCzIzwaUPD72Dm03U4IUXi29UgVOaE-zjnG_oolO1HLbPyQZG3EeftwMm_vKdBKZ0_gPsDmozP-l0_hDu2egR3-_6S149hflE3bbzAj1olTbdzStsYeaIRZjbx1te18D1DWhvXXRvXLl43dVtv1zq2v7p1SAboNk_g-_ni23yZDF0TEl3QWZuo0rgZ05nDSYm_4qHacUcMU4oUqM-VEsqUNuWGF1QR4bhKM8csNcQhGijIUziq6so-h9gxatHc085ptOKcKXXKTEoMzZRmJCURvBtpJ7d9cQwZnNqEy57oEokuA9FlHsEHT979m76wdXhQ737Kgb2SOZaWJcIghK3UcI6C4020MifCUFGqCN4gcw7mWJ59kv6ZT9P1rZSv0giOR97J4Ug2Em0vNKa81ziC1_thPEzeQ6IqW3fhHUHRgvWf9qxn9X6pUWAiYAdCcLCXwxGU31Cwe5DXCN6P4vJnW_-m14v_Xugl3MuCtKdJlh_DUbvr7CuYNKY7CXcOJ-HE_AaIcxan |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xixBceD8CCwTEDbJNYid2jkvpqoh2hcQicbMcO6aRaFKaBIl_z9hJypYVl73ajl8zY38TzwPgDUk5RSAsA5qZNMAbTwVZolmQZllOjUwS7sIuzr-ws2_8w8yGyUlGXxhntK_y8rj6sT6uypWzrdys1WS0E5t8Xk5TQlEs2OQArqO8huEFJd0dwCRDvYUOLjIh4ZOGugMhtA47nJA0sAlrECxzwq2l84UbyQXux3tmZc0iL2POy6aT_7yfumvp9M4VF3QXbg841D_pq-_BtaK6Dzf6zJS_H8B0WTetP8OvV0HTbY1UhY_UVAhQG39jI2LYbCNt4ddd69fGL5u6rTel8oufXencCLr1Q_h6OjufzoMh30KgUhq2gcy1CZmKDXZK7M8hqgw3RDMpSYpIQMpM6ryIuOYplSQzXEaxYQXVxCCOSMkjOKzqqngCvmG0QEVRGaNQ_zM6VxHTEdE0loqRiHjwdtxzsenDagj3HE646IklkFjCEUskHry3ZNm1tCGxXUG9_S6GfRTMsCjPEUAh4KWac2Q5q9zlCck0zXLpwWsk6l4f85OFsGXWwdcmYf4VeXA00lwMwtwI1NpQDbPvzR682lWjGNq3FVkVdefaZBR1X7u0xz2L7IYaGc0Dtsc8e3PZr0FGcaG-B8bw4N3IZn-n9f_9enrlgV7Czfn5ciEWH88-PYNbsZOYKIiTIzhst13xHA4a3b1w8vYHuvArPg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIRAvfA8CAwLiDbImsRM7j6NrVcQ2TQIk3izHjmkkmpQmQeK_5-wkZWXiBV5ty3Z8d_bvcl8Ar0nKKQJhGdDMpAG-eCrIEs2CNMtyamSScJd2cfGRnX_hJzObJmdb6ss57au8PKq-rY6qcul8K9crNRn9xCYXZ9OUUBQLNllrM9mD6yizYXxJUXeXMMlQd6FDmExI-KSh7lIIbdAOJyQNbNEaBMyccOvtfOlVcsn78a1ZWtfIq7jzqvvkHzZU9zTN7_zHR92F2wMe9Y_7IffgWlHdhxt9hcqfD2B6VjetP8MZlkHTbYxUhY9UVQhUG39tM2PYqiNt4ddd69fGL5u6rdel8ovvXenCCbrVQ_g8n32aLoKh7kKgUhq2gcy1CZmKDU5K7E8iqgw3RDMpSYqIQMpM6ryIuOYplSQzXEaxYQXVxCCeSMkB7Fd1VTwG3zBaoMKojFGoBxqdq4jpiGgaS8VIRDx4M567WPfpNYQzixMueoIJJJhwBBOJB-8sabYjbWps11BvvorhLAUzLMpzBFIIfKnmHFnPKnl5QjJNs1x68AoJuzPH4vhU2DYb6GuLMf-IPDgc6S4GoW4Eam-ojlm7swcvt90ojtbGIqui7tyYjKIObD_tUc8m26VGZvOA7TDQzl52e5BZXMrvgTk8eDuy2u9t_f28nvzzQi_g5sXJXJy-P__wFG7FTmiiIE4OYb_ddMUz2Gt099yJ3C8swy2- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Most+Earth-surface+calcites+precipitate+out+of+isotopic+equilibrium&rft.jtitle=Nature+communications&rft.au=Dae%CC%88ron%2C+M.&rft.au=Drysdale%2C+R.+N.&rft.au=Peral%2C+M.&rft.au=Huyghe%2C+D.&rft.date=2019-01-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-08336-5&rft.externalDocID=10_1038_s41467_019_08336_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |