Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche

The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbio...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells international Vol. 2017; no. 2017; pp. 1 - 17
Main Authors: Sethupathy, Praveen, Singh, Ajeet P., Shanahan, Michael T., Peck, Bailey C. E.
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01-01-2017
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.
Bibliography:Academic Editor: Karen Liu
ISSN:1687-966X
1687-9678
1687-9678
DOI:10.1155/2017/5604727