A flexible and generalizable model of online latent-state learning
Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to...
Saved in:
Published in: | PLoS computational biology Vol. 15; no. 9; p. e1007331 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-09-2019
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to rewards (or penalties) and infer which index (i.e. latent state) is presently active. Our goal was to develop a model of latent-state inferences that uses latent states to predict rewards from cues efficiently and that can describe behavior in a diverse set of experiments. The resulting model combines a Rescorla-Wagner rule, for which updates to associations are proportional to prediction error, with an approximate Bayesian rule, for which beliefs in latent states are proportional to prior beliefs and an approximate likelihood based on current associations. In simulation, we demonstrate the model's ability to reproduce learning effects both famously explained and not explained by the Rescorla-Wagner model, including rapid return of fear after extinction, the Hall-Pearce effect, partial reinforcement extinction effect, backwards blocking, and memory modification. Lastly, we derive our model as an online algorithm to maximum likelihood estimation, demonstrating it is an efficient approach to outcome prediction. Establishing such a framework is a key step towards quantifying normative and pathological ranges of latent-state inferences in various contexts. |
---|---|
AbstractList | Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to rewards (or penalties) and infer which index (i.e. latent state) is presently active. Our goal was to develop a model of latent-state inferences that uses latent states to predict rewards from cues efficiently and that can describe behavior in a diverse set of experiments. The resulting model combines a Rescorla-Wagner rule, for which updates to associations are proportional to prediction error, with an approximate Bayesian rule, for which beliefs in latent states are proportional to prior beliefs and an approximate likelihood based on current associations. In simulation, we demonstrate the model's ability to reproduce learning effects both famously explained and not explained by the Rescorla-Wagner model, including rapid return of fear after extinction, the Hall-Pearce effect, partial reinforcement extinction effect, backwards blocking, and memory modification. Lastly, we derive our model as an online algorithm to maximum likelihood estimation, demonstrating it is an efficient approach to outcome prediction. Establishing such a framework is a key step towards quantifying normative and pathological ranges of latent-state inferences in various contexts. Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to rewards (or penalties) and infer which index (i.e. latent state) is presently active. Our goal was to develop a model of latent-state inferences that uses latent states to predict rewards from cues efficiently and that can describe behavior in a diverse set of experiments. The resulting model combines a Rescorla-Wagner rule, for which updates to associations are proportional to prediction error, with an approximate Bayesian rule, for which beliefs in latent states are proportional to prior beliefs and an approximate likelihood based on current associations. In simulation, we demonstrate the model’s ability to reproduce learning effects both famously explained and not explained by the Rescorla-Wagner model, including rapid return of fear after extinction, the Hall-Pearce effect, partial reinforcement extinction effect, backwards blocking, and memory modification. Lastly, we derive our model as an online algorithm to maximum likelihood estimation, demonstrating it is an efficient approach to outcome prediction. Establishing such a framework is a key step towards quantifying normative and pathological ranges of latent-state inferences in various contexts. Computational researchers are increasingly interested in a structured form of learning known as latent-state inferences. Latent-state inferences is a type of learning that involves categorizing, generalizing, and recalling disparate associations between observations in one’s environment and is used in situations when the correct association is latent or unknown. This type of learning has been used to explain overgeneralization of a fear memory and the cognitive role of certain brain regions important to cognitive neuroscience and psychiatry. Accordingly, latent-state inferences are an important area of inquiry. Through simulation and theory, we establish a new model of latent-state inferences. Moving forward, we aim to use this framework to measure latent-state inferences in healthy and psychiatric populations. |
Audience | Academic |
Author | Cochran, Amy L Cisler, Josh M |
AuthorAffiliation | 1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America 2 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America University of Toronto at Scarborough, CANADA |
AuthorAffiliation_xml | – name: 2 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America – name: 1 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America – name: University of Toronto at Scarborough, CANADA |
Author_xml | – sequence: 1 givenname: Amy L orcidid: 0000-0001-6024-796X surname: Cochran fullname: Cochran, Amy L organization: Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America – sequence: 2 givenname: Josh M surname: Cisler fullname: Cisler, Josh M organization: Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31525176$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl2L1DAUhousuB_6D0QL3uhFxySnTdobYVz8GFgUdO9Dmp7UDGkyNq2s_nozTnfZEW-kFwmnz3lzzst7np344DHLnlKyoiDo622YR6_caqdbu6KECAD6IDujVQWFgKo-uXc_zc5j3BKSrg1_lJ0CrVhFBT_L3q5z4_DGtg5z5bu8R4-jcvaX2leG0KHLg8mDd9Zj7tSEfirilM7coRq99f3j7KFRLuKT5bzIrt-_u778WFx9_rC5XF8VmgNMBeeiLYkRVHe8bhoAXZc1YcBNByCYptCVWlREtDVF0RI0ogLgjWo0ZSWHi-z5QXbnQpTL9lEyIByIqLhIxOZAdEFt5W60gxp_yqCs_FMIYy_VOFntUNZG07plNRMdLyvW1NDyCjtFaZpSMZO03iyvze2AnU5rJ1uORI__ePtN9uGH5IIzRuok8HIRGMP3GeMkBxs1Oqc8hjnNzRpGGpo8SOiLv9B_b7c6UL1KC1hvQnpXp6_DweqUDWNTfc0JTbZyoKnh1VFDYia8mXo1xyg3X7_8B_vpmC0PrB5DjCOaO1cokfto3o4v99GUSzRT27P7jt413WYRfgMdJt8c |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2023_105103 crossref_primary_10_1038_s41562_023_01543_7 crossref_primary_10_1016_j_ynstr_2024_100615 crossref_primary_10_1016_j_neubiorev_2021_02_039 crossref_primary_10_1016_j_biopsych_2020_06_001 crossref_primary_10_1007_s11538_020_00743_w crossref_primary_10_1007_s11538_023_01216_6 crossref_primary_10_1016_j_tins_2023_12_002 crossref_primary_10_1523_JNEUROSCI_0067_23_2023 crossref_primary_10_1016_j_brat_2024_104598 crossref_primary_10_1371_journal_pcbi_1011385 crossref_primary_10_3758_s13415_021_00943_4 crossref_primary_10_1016_j_jpsychires_2020_10_046 |
Cites_doi | 10.1037/a0017808 10.3758/BF03199227 10.1037/h0046302 10.1126/science.aac6076 10.1016/j.conb.2012.08.003 10.1038/nn.3982 10.1016/j.neuron.2005.04.026 10.1177/2167702614562040 10.31234/osf.io/46mbn 10.1523/JNEUROSCI.0659-16.2016 10.3758/s13415-014-0277-8 10.1101/lm.78804 10.3389/fnhum.2011.00189 10.1037/0096-3445.125.4.370 10.1146/annurev-clinpsy-050212-185542 10.1523/JNEUROSCI.2978-14.2015 10.3389/fnbeh.2013.00164 10.1037/h0061626 10.1126/science.1167975 10.1080/02724990344000141 10.1037/h0027760 10.1038/nature08637 10.1038/nn.2904 10.1016/j.neuron.2010.04.016 10.1037/0033-295X.87.6.532 10.1037/h0076778 10.1198/jcgs.2011.09109 10.1111/j.2517-6161.1977.tb01600.x 10.3758/BF03199014 10.1038/nature04766 10.1037/h0048700 10.1038/nrn.2016.56 10.1038/nn.4320 10.1111/j.1467-9868.2009.00698.x 10.1016/j.cobeha.2015.07.007 10.1126/science.1102384 10.3758/s13420-012-0080-8 10.1007/978-1-4612-5110-1_9 10.1037/0033-295X.114.3.784 10.3758/s13420-015-0176-z 10.7554/eLife.23763 10.2307/2333009 10.1098/rstb.2001.0948 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Cochran, Cisler. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Cochran, Cisler 2019 Cochran, Cisler |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Cochran, Cisler. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Cochran, Cisler 2019 Cochran, Cisler |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1007331 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Databases Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Psychology |
DocumentTitleAlternate | A flexible and generalizable model of online latent-state learning |
EISSN | 1553-7358 |
Editor | Richards, Blake A. |
Editor_xml | – sequence: 1 givenname: Blake A. surname: Richards fullname: Richards, Blake A. |
EndPage | e1007331 |
ExternalDocumentID | 2306307567 oai_doaj_org_article_8fc18b2827d6452983b65eda1167ba2f A601480631 10_1371_journal_pcbi_1007331 31525176 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States United States--US Wisconsin |
GeographicLocations_xml | – name: United States – name: Wisconsin – name: United States--US |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R33 MH108753 – fundername: NIMH NIH HHS grantid: R21 MH108753 – fundername: NIMH NIH HHS grantid: K01 MH112876 – fundername: NIMH NIH HHS grantid: R21 MH106860 – fundername: ; – fundername: ; grantid: 108753 – fundername: ; grantid: 106860 – fundername: ; grantid: 112876 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CGR CS3 CUY CVF DIK DWQXO E3Z EAP EAS EBD EBS ECM EIF EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS INH INR IPNFZ ISN ISR ITC J9A K6V K7- KQ8 LK8 M0N M1P M48 M7P M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO PV9 RIG RNS RPM RZL SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX CITATION AFPKN 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PQEST PQUKI PRINS Q9U RC3 7X8 5PM - AAPBV ABPTK ADACO BBAFP |
ID | FETCH-LOGICAL-c633t-667b40f71cd689933c8480236fd3372c13d4c7507b81e7b0ef753369a9c12463 |
IEDL.DBID | RPM |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:12:27 EST 2021 Tue Oct 22 15:10:23 EDT 2024 Tue Sep 17 21:24:34 EDT 2024 Sat Oct 26 01:41:56 EDT 2024 Thu Oct 10 15:48:56 EDT 2024 Tue Nov 12 22:37:33 EST 2024 Thu Aug 01 19:51:13 EDT 2024 Thu Aug 01 19:48:17 EDT 2024 Thu Nov 21 21:45:23 EST 2024 Sat Nov 02 12:25:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-667b40f71cd689933c8480236fd3372c13d4c7507b81e7b0ef753369a9c12463 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0001-6024-796X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6762208/ |
PMID | 31525176 |
PQID | 2306307567 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2306307567 doaj_primary_oai_doaj_org_article_8fc18b2827d6452983b65eda1167ba2f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6762208 proquest_miscellaneous_2292091848 proquest_journals_2306307567 gale_infotracacademiconefile_A601480631 gale_incontextgauss_ISR_A601480631 gale_incontextgauss_ISN_A601480631 crossref_primary_10_1371_journal_pcbi_1007331 pubmed_primary_31525176 |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | SJ Gershman (pcbi.1007331.ref016) 2015; 43 N Burgess (pcbi.1007331.ref051) 2001; 356 D Schiller (pcbi.1007331.ref045) 2010; 463 ES Page (pcbi.1007331.ref029) 1954; 41 SJ Gershman (pcbi.1007331.ref020) 2013; 7 AM Wikenheiser (pcbi.1007331.ref023) 2016; 17 JY Angela (pcbi.1007331.ref026) 2005; 46 SC Chan (pcbi.1007331.ref032) 2016; 36 LJ Kamin (pcbi.1007331.ref035) 1967 SJ Gershman (pcbi.1007331.ref018) 2015; 5 SJ Gershman (pcbi.1007331.ref052) 2015; 349 SJ Gershman (pcbi.1007331.ref017) 2012; 40 ME Bouton (pcbi.1007331.ref047) 1983; 9 pcbi.1007331.ref025 E Capaldi (pcbi.1007331.ref040) 1957 HM Jenkins (pcbi.1007331.ref041) 1962; 64 R Wilson (pcbi.1007331.ref005) 2019 RA Rescorla (pcbi.1007331.ref037) 1969; 72 EL Rich (pcbi.1007331.ref033) 2016; 19 RR Miller (pcbi.1007331.ref043) 1996; 125 J Li (pcbi.1007331.ref049) 2011; 14 G Hall (pcbi.1007331.ref024) 1979; 5 JM Pearce (pcbi.1007331.ref009) 1980; 87 SJ Gershman (pcbi.1007331.ref015) 2010; 117 O Cappé (pcbi.1007331.ref028) 2011; 20 B Vervliet (pcbi.1007331.ref013) 2013; 9 AD Redish (pcbi.1007331.ref014) 2004; 306 QJ Huys (pcbi.1007331.ref001) 2015; 3 ME Bouton (pcbi.1007331.ref012) 2004; 11 AD Redish (pcbi.1007331.ref011) 2007; 114 RS Sutton (pcbi.1007331.ref002) 1998 RA Rescorla (pcbi.1007331.ref039) 2000; 26 ME Le Pelley (pcbi.1007331.ref010) 2004; 57 P Granjon (pcbi.1007331.ref030) 2013 H Robbins (pcbi.1007331.ref053) 1985 ND Daw (pcbi.1007331.ref003) 2006; 441 AP Dempster (pcbi.1007331.ref054) 1977 BB Doll (pcbi.1007331.ref004) 2012; 22 P Dayan (pcbi.1007331.ref006) 2014; 14 Y Niv (pcbi.1007331.ref034) 2015; 35 RA Rescorla (pcbi.1007331.ref008) 1972; 2 DC Brooks (pcbi.1007331.ref048) 1993; 19 TA Stalnaker (pcbi.1007331.ref022) 2015; 18 KM Lattal (pcbi.1007331.ref036) 1998; 26 NJ Mackintosh (pcbi.1007331.ref031) 1975; 82 J Gläscher (pcbi.1007331.ref007) 2010; 66 PN Wilson (pcbi.1007331.ref038) 1992; 44 ST Ricker (pcbi.1007331.ref046) 1996; 24 SJ Gershman (pcbi.1007331.ref019) 2017; 6 EC Tolman (pcbi.1007331.ref021) 1948; 55 RC Wilson (pcbi.1007331.ref027) 2012; 5 J Theios (pcbi.1007331.ref042) 1962; 64 MH Monfils (pcbi.1007331.ref044) 2009; 324 O Cappé (pcbi.1007331.ref050) 2009; 71 |
References_xml | – volume: 117 start-page: 197 issue: 1 year: 2010 ident: pcbi.1007331.ref015 article-title: Context, learning, and extinction publication-title: Psychological review doi: 10.1037/a0017808 contributor: fullname: SJ Gershman – volume: 26 start-page: 351 issue: 3 year: 1998 ident: pcbi.1007331.ref036 article-title: Overexpectation in appetitive Pavlovian and instrumental conditioning publication-title: Animal Learning & Behavior doi: 10.3758/BF03199227 contributor: fullname: KM Lattal – volume: 5 start-page: 31 issue: 1 year: 1979 ident: pcbi.1007331.ref024 article-title: Latent inhibition of a CS during CS–US pairings publication-title: Journal of Experimental Psychology: Animal Behavior Processes contributor: fullname: G Hall – volume: 64 start-page: 1 issue: 1 year: 1962 ident: pcbi.1007331.ref042 article-title: The partial reinforcement effect sustained through blocks of continuous reinforcement publication-title: Journal of Experimental Psychology doi: 10.1037/h0046302 contributor: fullname: J Theios – volume: 349 start-page: 273 issue: 6245 year: 2015 ident: pcbi.1007331.ref052 article-title: Computational rationality: A converging paradigm for intelligence in brains, minds, and machines publication-title: Science doi: 10.1126/science.aac6076 contributor: fullname: SJ Gershman – volume: 22 start-page: 1075 issue: 6 year: 2012 ident: pcbi.1007331.ref004 article-title: The ubiquity of model-based reinforcement learning publication-title: Current opinion in neurobiology doi: 10.1016/j.conb.2012.08.003 contributor: fullname: BB Doll – year: 1957 ident: pcbi.1007331.ref040 article-title: The effect of different amounts of alternating partial reinforcement on resistance to extinction publication-title: The American Journal of Psychology contributor: fullname: E Capaldi – volume: 18 start-page: 620 issue: 5 year: 2015 ident: pcbi.1007331.ref022 article-title: What the orbitofrontal cortex does not do publication-title: Nature neuroscience doi: 10.1038/nn.3982 contributor: fullname: TA Stalnaker – ident: pcbi.1007331.ref025 – volume: 46 start-page: 681 issue: 4 year: 2005 ident: pcbi.1007331.ref026 article-title: Uncertainty, neuromodulation, and attention publication-title: Neuron doi: 10.1016/j.neuron.2005.04.026 contributor: fullname: JY Angela – volume: 3 start-page: 400 issue: 3 year: 2015 ident: pcbi.1007331.ref001 article-title: Decision-theoretic psychiatry publication-title: Clinical Psychological Science doi: 10.1177/2167702614562040 contributor: fullname: QJ Huys – volume-title: Ten simple rules for the computational modeling of behavioral data year: 2019 ident: pcbi.1007331.ref005 doi: 10.31234/osf.io/46mbn contributor: fullname: R Wilson – volume: 36 start-page: 7817 issue: 30 year: 2016 ident: pcbi.1007331.ref032 article-title: A probability distribution over latent causes, in the orbitofrontal cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0659-16.2016 contributor: fullname: SC Chan – volume: 14 start-page: 473 issue: 2 year: 2014 ident: pcbi.1007331.ref006 article-title: Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation publication-title: Cognitive, Affective, & Behavioral Neuroscience doi: 10.3758/s13415-014-0277-8 contributor: fullname: P Dayan – volume: 11 start-page: 485 issue: 5 year: 2004 ident: pcbi.1007331.ref012 article-title: Context and behavioral processes in extinction publication-title: Learning & memory doi: 10.1101/lm.78804 contributor: fullname: ME Bouton – volume: 5 start-page: 189 year: 2012 ident: pcbi.1007331.ref027 article-title: Inferring relevance in a changing world publication-title: Frontiers in human neuroscience doi: 10.3389/fnhum.2011.00189 contributor: fullname: RC Wilson – volume: 125 start-page: 370 issue: 4 year: 1996 ident: pcbi.1007331.ref043 article-title: Biological significance in forward and backward blocking: Resolution of a discrepancy between animal conditioning and human causal judgment publication-title: Journal of Experimental Psychology: General doi: 10.1037/0096-3445.125.4.370 contributor: fullname: RR Miller – volume: 9 start-page: 215 year: 2013 ident: pcbi.1007331.ref013 article-title: Fear extinction and relapse: state of the art publication-title: Annual review of clinical psychology doi: 10.1146/annurev-clinpsy-050212-185542 contributor: fullname: B Vervliet – volume: 19 start-page: 77 issue: 1 year: 1993 ident: pcbi.1007331.ref048 article-title: A retrieval cue for extinction attenuates spontaneous recovery publication-title: Journal of Experimental Psychology: Animal Behavior Processes contributor: fullname: DC Brooks – volume: 35 start-page: 8145 issue: 21 year: 2015 ident: pcbi.1007331.ref034 article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2978-14.2015 contributor: fullname: Y Niv – volume: 7 start-page: 164 year: 2013 ident: pcbi.1007331.ref020 article-title: Gradual extinction prevents the return of fear: implications for the discovery of state publication-title: Frontiers in behavioral neuroscience doi: 10.3389/fnbeh.2013.00164 contributor: fullname: SJ Gershman – volume: 55 start-page: 189 issue: 4 year: 1948 ident: pcbi.1007331.ref021 article-title: Cognitive maps in rats and men publication-title: Psychological review doi: 10.1037/h0061626 contributor: fullname: EC Tolman – volume: 324 start-page: 951 issue: 5929 year: 2009 ident: pcbi.1007331.ref044 article-title: Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories publication-title: science doi: 10.1126/science.1167975 contributor: fullname: MH Monfils – volume: 57 start-page: 193 issue: 3b year: 2004 ident: pcbi.1007331.ref010 article-title: The role of associative history in models of associative learning: A selective review and a hybrid model publication-title: The Quarterly Journal of Experimental Psychology Section B doi: 10.1080/02724990344000141 contributor: fullname: ME Le Pelley – volume: 72 start-page: 77 issue: 2 year: 1969 ident: pcbi.1007331.ref037 article-title: Pavlovian conditioned inhibition publication-title: Psychological Bulletin doi: 10.1037/h0027760 contributor: fullname: RA Rescorla – volume: 463 start-page: 49 issue: 7277 year: 2010 ident: pcbi.1007331.ref045 article-title: Preventing the return of fear in humans using reconsolidation update mechanisms publication-title: Nature doi: 10.1038/nature08637 contributor: fullname: D Schiller – volume: 14 start-page: 1250 issue: 10 year: 2011 ident: pcbi.1007331.ref049 article-title: Differential roles of human striatum and amygdala in associative learning publication-title: Nature neuroscience doi: 10.1038/nn.2904 contributor: fullname: J Li – volume: 66 start-page: 585 issue: 4 year: 2010 ident: pcbi.1007331.ref007 article-title: States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning publication-title: Neuron doi: 10.1016/j.neuron.2010.04.016 contributor: fullname: J Gläscher – volume: 87 start-page: 532 issue: 6 year: 1980 ident: pcbi.1007331.ref009 article-title: A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli publication-title: Psychological review doi: 10.1037/0033-295X.87.6.532 contributor: fullname: JM Pearce – volume: 82 start-page: 276 issue: 4 year: 1975 ident: pcbi.1007331.ref031 article-title: A theory of attention: variations in the associability of stimuli with reinforcement publication-title: Psychological review doi: 10.1037/h0076778 contributor: fullname: NJ Mackintosh – volume: 20 start-page: 728 issue: 3 year: 2011 ident: pcbi.1007331.ref028 article-title: Online EM algorithm for hidden Markov models publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/jcgs.2011.09109 contributor: fullname: O Cappé – start-page: 1 year: 1977 ident: pcbi.1007331.ref054 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the royal statistical society Series B (methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x contributor: fullname: AP Dempster – volume: 24 start-page: 423 issue: 4 year: 1996 ident: pcbi.1007331.ref046 article-title: Reacquisition following extinction in appetitive conditioning publication-title: Animal Learning & Behavior doi: 10.3758/BF03199014 contributor: fullname: ST Ricker – volume: 441 start-page: 876 issue: 7095 year: 2006 ident: pcbi.1007331.ref003 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature doi: 10.1038/nature04766 contributor: fullname: ND Daw – volume: 64 start-page: 441 issue: 5 year: 1962 ident: pcbi.1007331.ref041 article-title: Resistance to extinction when partial reinforcement is followed by regular reinforcement publication-title: Journal of Experimental Psychology doi: 10.1037/h0048700 contributor: fullname: HM Jenkins – volume: 17 start-page: 513 issue: 8 year: 2016 ident: pcbi.1007331.ref023 article-title: Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn.2016.56 contributor: fullname: AM Wikenheiser – volume: 9 start-page: 248 issue: 3 year: 1983 ident: pcbi.1007331.ref047 article-title: Contextual control of the extinction of conditioned fear: tests for the associative value of the context publication-title: Journal of Experimental Psychology: Animal Behavior Processes contributor: fullname: ME Bouton – volume-title: Reinforcement learning: An introduction year: 1998 ident: pcbi.1007331.ref002 contributor: fullname: RS Sutton – volume: 19 start-page: 973 issue: 7 year: 2016 ident: pcbi.1007331.ref033 article-title: Decoding subjective decisions from orbitofrontal cortex publication-title: Nature neuroscience doi: 10.1038/nn.4320 contributor: fullname: EL Rich – volume: 71 start-page: 593 issue: 3 year: 2009 ident: pcbi.1007331.ref050 article-title: On-line expectation–maximization algorithm for latent data models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2009.00698.x contributor: fullname: O Cappé – volume-title: The CuSum algorithm-a small review year: 2013 ident: pcbi.1007331.ref030 contributor: fullname: P Granjon – volume: 5 start-page: 43 year: 2015 ident: pcbi.1007331.ref018 article-title: Discovering latent causes in reinforcement learning publication-title: Current Opinion in Behavioral Sciences doi: 10.1016/j.cobeha.2015.07.007 contributor: fullname: SJ Gershman – volume: 44 start-page: 17 issue: 1b year: 1992 ident: pcbi.1007331.ref038 article-title: Restoration of the orienting response to a light by a change in its predictive accuracy publication-title: The Quarterly Journal of Experimental Psychology Section B contributor: fullname: PN Wilson – volume: 306 start-page: 1944 issue: 5703 year: 2004 ident: pcbi.1007331.ref014 article-title: Addiction as a computational process gone awry publication-title: Science doi: 10.1126/science.1102384 contributor: fullname: AD Redish – volume: 40 start-page: 255 issue: 3 year: 2012 ident: pcbi.1007331.ref017 article-title: Exploring a latent cause theory of classical conditioning publication-title: Learning & behavior doi: 10.3758/s13420-012-0080-8 contributor: fullname: SJ Gershman – start-page: 102 volume-title: Herbert Robbins Selected Papers year: 1985 ident: pcbi.1007331.ref053 doi: 10.1007/978-1-4612-5110-1_9 contributor: fullname: H Robbins – volume-title: Predictability, surprise, attention, and conditioning year: 1967 ident: pcbi.1007331.ref035 contributor: fullname: LJ Kamin – volume: 114 start-page: 784 issue: 3 year: 2007 ident: pcbi.1007331.ref011 article-title: Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling publication-title: Psychological review doi: 10.1037/0033-295X.114.3.784 contributor: fullname: AD Redish – volume: 43 start-page: 243 issue: 3 year: 2015 ident: pcbi.1007331.ref016 article-title: Individual differences in learning predict the return of fear publication-title: Learning & behavior doi: 10.3758/s13420-015-0176-z contributor: fullname: SJ Gershman – volume: 26 start-page: 428 issue: 4 year: 2000 ident: pcbi.1007331.ref039 article-title: Associative changes in excitors and inhibitors differ when they are conditioned in compound publication-title: Journal of Experimental Psychology: Animal Behavior Processes contributor: fullname: RA Rescorla – volume: 6 start-page: e23763 year: 2017 ident: pcbi.1007331.ref019 article-title: The computational nature of memory modification publication-title: Elife doi: 10.7554/eLife.23763 contributor: fullname: SJ Gershman – volume: 41 start-page: 100 issue: 1/2 year: 1954 ident: pcbi.1007331.ref029 article-title: Continuous inspection schemes publication-title: Biometrika doi: 10.2307/2333009 contributor: fullname: ES Page – volume: 2 start-page: 64 year: 1972 ident: pcbi.1007331.ref008 article-title: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement publication-title: Classical conditioning II: Current research and theory contributor: fullname: RA Rescorla – volume: 356 start-page: 1493 issue: 1413 year: 2001 ident: pcbi.1007331.ref051 article-title: Memory for events and their spatial context: models and experiments publication-title: Philosophical Transactions of the Royal Society of London Series B: Biological Sciences doi: 10.1098/rstb.2001.0948 contributor: fullname: N Burgess |
SSID | ssj0035896 |
Score | 2.4191947 |
Snippet | Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall,... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1007331 |
SubjectTerms | Algorithms Bayesian analysis Biology and Life Sciences Classical conditioning Cognitive models Computational Biology - methods Computer Simulation Conditioning (Psychology) Conditioning, Classical Decision making Experimental psychology Experiments Fear Humans Internet Learning Learning - physiology Mathematical models Maximum likelihood estimation Memory Models, Psychological Neurosciences Partial reinforcement Partial reinforcement extinction effect Physical Sciences Psychology Reinforcement, Psychology Research and Analysis Methods Social Sciences |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgJSQuiPJqaEEBIXEKXceJ7Ry30KpceqA99Gb5uVRaJatm98C_Z8b2BhYVceEaz8Xf-DGTGX8fIR90cFrTNlTaGoESZrrqLOwryrzmwQdjY7ng4kpc3sgvZ0iTM0l9YU9YogdOwJ3IYKk0kBgIhzW4TjLDW-801g-MrkM8fed8l0ylM5i1MipzoShOJVhzkx_NMUFPso8-ra25jT0CSWDu16UUufunE3q2Xg3jfeHnn12Uv11L50_JkxxPlos0jwPywPfPyKOkMPnjOTldlAEpL83Kl7p35TKxTGMrF3yJMjjlEMrEl1GuIPDsN1V8ZFRmPYnlC3J9fnb9-aLKsgmV5YxtKg7ANPMgqHUcsinGrGyQ5o0Hx5ioLWWusRAoCCOpF2buA6QsjHe6s3DZc_aSzPqh94ekbIR1ujWO1RjY1bwLvHEtD0zamjLLC1LtYFPrRI6hYoVMQFKR5q8QZpVhLsgpYjvZIrV1_AAOV9nh6l8OL8h79IxC8ooeu2OWejuO6uvVpVpw_D8KQRf9q9G3PaOP2SgM4EGr84sEmDySYu1ZHuIy2E1qVJi4wenYclGQ493SuH_43TQMGxerMbr3wxZsUCesgwRbFuRVWkkTMAxVqagAgMXeGttDbn-kv_0eycE53G71XL7-H1AfkccQH-aWumMy29xt_RvycHTbt3G7_QQ-5iuz priority: 102 providerName: Directory of Open Access Journals |
Title | A flexible and generalizable model of online latent-state learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31525176 https://www.proquest.com/docview/2306307567 https://search.proquest.com/docview/2292091848 https://pubmed.ncbi.nlm.nih.gov/PMC6762208 https://doaj.org/article/8fc18b2827d6452983b65eda1167ba2f http://dx.doi.org/10.1371/journal.pcbi.1007331 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaWABt6Gfauty7whgE7OYksW7KPadeixbBiWHvoTdDDSgukdlAnh_77krIc1EN32dWikYgiJdKkvo-Qb8pZpWjuEmW0QAozlZQG_IqySnFXOW18ueD0QpxfFT-OESYn7-_C-KZ9o2-m9ep2Wt9c-97K9a2Z9X1is9-_jjh4cDovZiMygtiwT9G77ZflhSflQj6cRLDsKtyXY4LOwvJM1_gDtOMr3CMvGHIAUUQdeXQ0eQT_3T49Xq-a9qkg9O9eykeH08kr8jJElfGi-_evybOqfkOedzyT92_J4SJ2CHypV1WsahsvO6xpbOiCJ54MJ25c3KFmxCsIP-tN4q8axYFVYvmOXJ4cXx6dJoE8ITGcsU3CudDZ3AlqLIecijFTZAj2xp1lTKSGMpsZCBeELmgl9LxykLgwXqrSwJHP2Xsyrpu62idxJoxVubYsxfAu5aXjmc25Y4VJKTM8IkmvNrnuIDKkr5MJSC26-UvUuAwaj8gh6nYniwDX_kFzt5RhmWXhDC005IPCYum1LJjmeWUVlo20Sl1EvuLKSISwqLFHZqm2bSvPLs7lguNXUgi96D-F_gyEvgch18AKGhXuJcDkERprILmPZtBPqpWYvsEemXMRkYPeNJ4e_rIbBvfFmoyqq2YLMsgWVkKaXUTkQ2dJO8X0dhkRMbCxgeaGI-AxHiI8eMjH_37zE9mD0DB00x2Q8eZuW30mo9ZuJ5B4nP2c-I8XE-96D0x4LlM |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xImAvfLMFBgSExFPaOk7s5LEbmzqxVYj1YW-WP-IyqUuqtX3Yf4_PcaoVjZe9xhdF9t3Zd7nz7wfwTVojJcltIrXiSGEmk1I7vyK0ksxWVmlfLhhf8Mll8eMYYXLy7i6Mb9rX6qpfz6_79dUf31u5uNaDrk9s8Ov8iDkPTofFYAceO38dDrskvd2AaV54Wi5kxEk4zS7DjTnKySAoqL_AT5CWsXAXnlJkASKIO3LncPIY_pudureYN8v7wtB_uynvHE8nLx44sZfwPMSj8agdfgWPqvo1PGkZKm_fwOEotgiZqeZVLGsTz1qUamwFc088jU7c2LjF24jnLnCtV4m_pBQHPorZW5ieHE-PxkmgXUg0o3SVMMZVNrScaMNcNkapLjKEiWPWUMpTTajJtAs0uCpIxdWwsi7loayUpXbBAqPvoFc3dbUPcca1kbkyNMXAMGWlZZnJmaWFTgnVLIKkW26xaME1hK-wcZeUtPMXqCkRNBXBIepkI4vQ2P5BczMTYR1FYTUplMskucGibVlQxfLKSCw4KZnaCL6iRgWCX9TYXTOT6-VSnF5MxIjh_1UXtJH_Cv3eEvoehGzjNK9luNHgJo-gWluS-2g-3aSWAhM_t7vmjEdw0JnU_cNfNsPO8bGaI-uqWTsZ5BkrXYJeRLDXWuBmYTp7joBv2ebWym2POJP04OLBBN8_-M3P8Gw8PT8TZ6eTnx9g1wWYoSfvAHqrm3X1EXaWZv3Ju-xfNGVB7A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RRVS98IYGCgSExCmbdZzYyXH7WLUCVhXtoTfLj3iptE1W3d0D_x6P46y6qFzgGk8U2TNjz2TG3wfwWVojJSlsIrXiSGEmk0o7vyK0lszWVmlfLji94NOr8vgEYXI2VF--aV-r62Ezvxk21z99b-XiRqd9n1h6_v2IOQ_ORmW6MDbdgYfOZ0dZn6h3mzAtSk_Nhaw4Caf5Vbg1RzlJg5KGC_wM6VgL92CXIhMQQeyROweUx_Hf7NaDxbxd3heK_tlReeeImjz5j8k9hcchLo3HncgzeFA3z-FRx1T56wUcjmOL0JlqXseyMfGsQ6vGljD3xNPpxK2NO9yNeO4C2GaV-MtKceClmL2Ey8nJ5dFpEugXEs0oXSWMcZWPLCfaMJeVUarLHOHimDWU8kwTanLtAg6uSlJzNaqtS30oq2SlXdDA6CsYNG1T70Occ21koQzNMEDMWGVZbgpmaakzQjWLIOmXXCw6kA3hK23cJSfd_AVqSwRtRXCIetnIIkS2f9DezkRYS1FaTUrlMkpusHhblVSxojYSC09KZjaCT6hVgSAYDXbZzOR6uRRnF1MxZvif1QVv5K9CP7aEvgQh2zrtaxluNrjJI7jWluQ-mlA_qaXABNDtsgXjERz0ZnX_8MfNsNsAsKojm7pdOxnkG6tcol5G8Lqzws3C9DYdAd-yz62V2x5xZulBxoMZvvnnNz_A7vnxRHw7m359C3suzgyteQcwWN2u63ewszTr995rfwNdLERs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+and+generalizable+model+of+online+latent-state+learning&rft.jtitle=PLoS+computational+biology&rft.au=Cochran%2C+Amy+L&rft.au=Cisler%2C+Josh+M&rft.date=2019-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=15&rft.issue=9&rft.spage=e1007331&rft_id=info:doi/10.1371%2Fjournal.pcbi.1007331&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |