Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya

Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology Vol. 13; no. 6; pp. 1601 - 1610
Main Authors: Engene, Niclas, Choi, Hyukjae, Esquenazi, Eduardo, Rottacker, Erin C, Ellisman, Mark H, Dorrestein, Pieter C, Gerwick, William H
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-06-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
AbstractList Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya . Specimens of Lyngbya from various environmental habitats around Curaçao were analyzed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS 2 and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single-cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya , a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya . Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS 2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya , a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
Summary Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
Author Gerwick, William H.
Choi, Hyukjae
Esquenazi, Eduardo
Dorrestein, Pieter C.
Engene, Niclas
Ellisman, Mark H.
Rottacker, Erin C.
AuthorAffiliation 2 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
4 Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
3 National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
AuthorAffiliation_xml – name: 3 National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
– name: 2 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
– name: 1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
– name: 5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
– name: 4 Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
Author_xml – sequence: 1
  fullname: Engene, Niclas
– sequence: 2
  fullname: Choi, Hyukjae
– sequence: 3
  fullname: Esquenazi, Eduardo
– sequence: 4
  fullname: Rottacker, Erin C
– sequence: 5
  fullname: Ellisman, Mark H
– sequence: 6
  fullname: Dorrestein, Pieter C
– sequence: 7
  fullname: Gerwick, William H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21477107$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEQXaEi-gF_AXzjlOCxd-PsASQUSlsUQAiiHq1Z7zh12KxTe1Oyv4E_jbcpEZzAF4897z153vNpdtT6lrKMAR9DWq9WY8gnYiRKwceCA4y5yJUY7x5lJ4fG0aEGcZydxrjiHJRU_El2LCBXCrg6yX4u2poCxc6tsaOaVc7X7o5CdF3PMDJka1z5wGi3abDFzvmW2XTubohtKBhK4JoFZ25YJOPbGkPP1tRh5RvXETO4QTNoeXvPMT22vkLTUXDYsCW128jmfbusenyaPbbYRHr2sJ9li_fn32aXo_nni6vZ2_nITKQUIywUKFvbulITLETJLdiCjK0gn4KsqCQuC4sTAdPkDZVW5FVZpzuqyFKJ8ix7s9fdbKs11YbaLmCjNyF5EHrt0em_O6270Ut_pyVIEABJ4OWDQPC322SeXrtoqEkOkd9GXXIFU1B5-U_kVPE0ABc8Iad7pAk-xkD28B7geghdr_SQpx6y1UPo-j50vUvU53_OcyD-TjkBXu8BP1xD_X8L6_OPV0OV-KM938WOdgc-hu96kn5Uoa8_XWj-YfZlfgnX-l3Cv9jjLXqNy-CiXnxNypJDWUykkPIXIZ_ZpA
CitedBy_id crossref_primary_10_52229_pbmj_v3i1_8
crossref_primary_10_1080_00318884_2021_2006589
crossref_primary_10_1016_j_phytol_2015_05_003
crossref_primary_10_7554_eLife_24214
crossref_primary_10_1128_AEM_03793_12
crossref_primary_10_1016_j_hal_2011_10_027
crossref_primary_10_1039_C6NP00097E
crossref_primary_10_1021_acs_jnatprod_8b00288
crossref_primary_10_1021_np200611f
crossref_primary_10_1007_s10126_020_10010_7
crossref_primary_10_1080_15287394_2022_2102100
crossref_primary_10_1099_ijs_0_033761_0
crossref_primary_10_3390_molecules21030324
crossref_primary_10_7717_peerj_5049
crossref_primary_10_1111_jpy_12115
crossref_primary_10_3390_md18120621
crossref_primary_10_1021_acs_jnatprod_7b00449
crossref_primary_10_1016_j_jphotobiol_2019_111684
crossref_primary_10_3390_md17060320
crossref_primary_10_1016_j_ejmech_2020_112473
crossref_primary_10_1038_nrmicro2839
crossref_primary_10_1007_s10531_015_0871_2
crossref_primary_10_3389_fmars_2021_766282
crossref_primary_10_1016_j_jhazmat_2020_123418
crossref_primary_10_11144_Javeriana_SC24_3_eacc
crossref_primary_10_1128_AEM_01068_17
crossref_primary_10_1007_s10872_013_0195_3
crossref_primary_10_1186_2193_1801_2_491
crossref_primary_10_1007_s00210_023_02719_8
crossref_primary_10_1021_np200236c
crossref_primary_10_1039_c2np00075j
crossref_primary_10_1021_np500931q
crossref_primary_10_5507_fot_2021_009
crossref_primary_10_3390_md12010098
crossref_primary_10_1111_pre_12482
crossref_primary_10_1039_C5NP00097A
crossref_primary_10_3390_md10040849
crossref_primary_10_1016_j_marpolbul_2024_116134
crossref_primary_10_3390_d15080909
crossref_primary_10_3390_w14162470
crossref_primary_10_3390_md13127065
crossref_primary_10_1039_c4np00044g
crossref_primary_10_4490_algae_2018_33_11_25
crossref_primary_10_1111_jpy_12752
crossref_primary_10_1016_j_hal_2019_04_010
crossref_primary_10_3390_md11041316
crossref_primary_10_1016_j_ympev_2020_107010
crossref_primary_10_1080_07352689_2020_1763541
crossref_primary_10_1128_genomeA_00846_15
crossref_primary_10_1111_jpy_12273
crossref_primary_10_1099_mic_0_000706
crossref_primary_10_1007_s10531_015_0888_6
crossref_primary_10_3389_fmars_2021_790277
crossref_primary_10_3390_jmse8060406
crossref_primary_10_1111_jpy_12866
Cites_doi 10.1021/np0499261
10.1128/AEM.70.6.3305-3312.2004
10.1093/nar/gkm306
10.1128/AEM.02508-08
10.1007/s10750-005-1129-x
10.1073/pnas.0600999103
10.1021/np960085a
10.1128/AEM.02656-08
10.1016/S0378-1119(02)00860-0
10.1016/S0031-9422(97)00084-8
10.1016/j.phytochem.2007.01.012
10.1128/AEM.66.8.3387-3392.2000
10.1021/np970539j
10.1023/A:1007973009869
10.1007/978-0-387-21609-6_27
10.1111/j.1529-8817.2010.00840.x
10.1021/ja00136a031
10.1038/nature07381
10.1073/pnas.0709851105
10.1016/S0040-4020(97)10067-9
10.1016/B978-008045382-8.00041-1
10.1021/np800110e
10.3354/meps147021
10.1016/j.mib.2007.08.005
10.1016/S0040-4020(01)00931-0
10.1111/j.1462-2920.2007.01519.x
10.1021/ja005526y
10.1021/jo00085a006
10.4490/ALGAE.2006.21.4.349
ContentType Journal Article
Copyright 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QL
7TN
C1K
F1W
H95
L.G
M7N
5PM
DOI 10.1111/j.1462-2920.2011.02472.x
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Oceanic Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environmental Sciences and Pollution Management
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1610
ExternalDocumentID 10_1111_j_1462_2920_2011_02472_x
21477107
EMI2472
ark_67375_WNG_0JCQLH1W_D
US201301956323
Genre article
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Netherlands Antilles
GeographicLocations_xml – name: Netherlands Antilles
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41 RR004050-19
– fundername: NCRR NIH HHS
  grantid: P41 RR004050
– fundername: NCI NIH HHS
  grantid: R01 CA100851-08
– fundername: NCI NIH HHS
  grantid: CA100851
– fundername: NCI NIH HHS
  grantid: R01 CA100851
– fundername: NCRR NIH HHS
  grantid: P41-RR004050
– fundername: National Cancer Institute : NCI
  grantid: R01 CA100851-08 || CA
– fundername: National Center for Research Resources : NCRR
  grantid: P41 RR004050-19 || RR
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
7QL
7TN
C1K
F1W
H95
L.G
M7N
5PM
ID FETCH-LOGICAL-c6332-a5717fdfdb76a5290f1f5ecfb14813be9e035fa6218201e9f24b9d035ebefe9a3
IEDL.DBID 33P
ISSN 1462-2912
IngestDate Tue Sep 17 21:23:24 EDT 2024
Sat Aug 17 02:42:10 EDT 2024
Fri Aug 16 07:23:00 EDT 2024
Thu Nov 21 22:15:47 EST 2024
Sat Nov 02 12:23:26 EDT 2024
Sat Aug 24 00:55:43 EDT 2024
Wed Oct 30 09:52:02 EDT 2024
Wed Dec 27 19:18:01 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6332-a5717fdfdb76a5290f1f5ecfb14813be9e035fa6218201e9f24b9d035ebefe9a3
Notes http://dx.doi.org/10.1111/j.1462-2920.2011.02472.x
ArticleID:EMI2472
istex:8393A8037FC8E80579254685F13156BB4F13B840
ark:/67375/WNG-0JCQLH1W-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3131211?pdf=render
PMID 21477107
PQID 870290020
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3131211
proquest_miscellaneous_907181749
proquest_miscellaneous_870290020
crossref_primary_10_1111_j_1462_2920_2011_02472_x
pubmed_primary_21477107
wiley_primary_10_1111_j_1462_2920_2011_02472_x_EMI2472
istex_primary_ark_67375_WNG_0JCQLH1W_D
fao_agris_US201301956323
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Sorrels, C.M., Proteau, P.J., and Gerwick, W.H. (2009) Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl Environ Microbiol 75: 4861-4869.
Tan, L.T. (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954-979.
Orjala, J., Nagle, D.G., Hsu, V.L., and Gerwick, W.H. (1995) Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. J Am Chem Soc 117: 8281-8282.
Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., and Wright, P.C. (2001) Marine cyanobacteria - a prolific source of natural products. Tetrahedron 46: 9347-9377.
Chang, Z., Flatt, P.M., Gerwick, W.H., Nguyen, V-A., Willis, C.L., and Sherman, D.H. (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296: 235-247.
Gerwick, W.H., Proteau, P.J., Nagle, D.G., Hamel, E., Blokhin, A., and Slate, D.L. (1994) Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59: 1243-1245.
Komárek, J., and Anagnostidis, K. (2005) Süsswasserflora von Mitteleuropa 19/2. Heidelberg, Germany: Elsevier/Spektrum.
Thacker, R.W., and Paul, V.J. (2004) Morphological, chemical, and genetic diversity of tropical marine cyanobacteria Lyngbya spp. and Symploca spp. (Oscillatoriales). Appl Environ Microbiol 70: 3305-3312.
Castenholz, R.W. (2001) Phylum BX. Cyanobacteria Oxygenic Photosynthetic Bacteria. Bergey's Manual of Systematic Bacteriology. New York, USA: Springer, pp. 473-553.
Graber, M.A., and Gerwick, W.H. (1998) Kalkipyrone, a toxic γ-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. J Nat Prod 61: 677-680.
Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., and Leunissen, J.A.M. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: 71-74.
Kaebernick, M., Neilan, B.A., Borner, T., and Dittmann, E. (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66: 3387-3392.
Chang, Z., Sitachitta, N., Rossi, J.V., Roberts, M.A., Flatt, P.M., Jia, J., et al. (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67: 1356-1367.
Wu, M., Milligan, K.E., and Gerwick, W.H. (1997) Three new malyngamides from the marine cyanobacterium Lyngbya majuscula. Tetrahedron 53: 15983-15990.
Lasken, R.S. (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10: 510-516.
Wu, M., Okino, T., Nogle, L.M., Marquez, B.L., Williamson, R.T., Gerwick, W.H., et al. (2000) Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 122: 12041-12042.
Capper, A., Cruz-Rivera, E., Paul, V.J., and Tibbetts, I.R. (2006) Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 553: 319-326.
Engene, N., Coates, R.C., and Gerwick, W.H. (2010) 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46: 591-601.
Rasmussen, B., Fletcher, I.R., Brocks, J.J., and Kilburn, M.R. (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nat Lett 455: 1101-1104.
Gerwick, W.H., Coates, R.C., Engene, N., Gerwick, L.G., Grindberg, R., Jones, A., and Sorrels, C. (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3: 277-284.
Simmons, T.L., Coates, R.C., Clark, B.R., Engene, N., Gonzalez, D., Esquenazi, E., et al. (2007) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci USA 105: 4587-4594.
Sharp, K., Arthur, K.E., Gu, L., Ross, C., Harrison, G., Gunasekera, S.P., et al. (2009) Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 75: 2879-2888.
Komárek, J. (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21: 349-375.
Tomitani, A., Knoll, A.K., Cavanaugh, C.M., and Ohno, T. (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103: 5442-5447.
Hoffman, L., Komárek, J., and Kaštovsky, J. (2005) System of cyanoprokaryotes. (Cyanobacteria) - State in 2004. Arch Hydrobiol 159: 95-115.
Thacker, R.W., Nagle, D.G., and Paul, V.J. (1997) Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Mar Ecol Prog Ser 147: 21-29.
Orjala, J., and Gerwick, W.H. (1994) Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 59: 427-430.
Shalev-Malul, G., Lieman-Hurwitz, J., Viner-Mozzini, Y., Sukenik, A., Gaathon, A., Lebendiker, M., and Kaplan, A. (2008) An AbrB-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum. Environ Microbiol 10: 988-999.
Orjala, J., and Gerwick, W.H. (1997) Two quinoline alkaloids from the Caribbean cyanobacterium Lyngbya majuscula. Phytochemistry 45: 1087-1090.
Rossi, J.V., Roberts, M.A., Yoo, H.-D., and Gerwick, W.H. (1997) Pilot scale culture of the marine cyanobacterium Lyngbya majuscula for its pharmaceutically-useful natural metabolite curacin A. J Appl Phycol 9: 195-204.
Simmons, T.L., Engene, N., Urena, L.D., Romero, L.I., Ortega-Barrıa, E., Gerwick, G.L., and Gerwick, W.H. (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. J Nat Prod 71: 1544-1550.
2007; 105
2002; 296
2010
2005; 159
2000; 66
2004; 67
1997; 45
1995; 117
2005
2008; 10
2008; 3
1998; 61
2007; 10
2001; 46
2008; 71
1997; 9
2007; 35
2006; 553
1997; 147
2004; 70
2010; 46
2009; 75
2001
2006; 21
1997; 53
1986
1994; 59
2008; 455
2000; 122
2007; 68
2006; 103
Wilmotte A. (e_1_2_6_34_1) 2001
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Hoffman L. (e_1_2_6_12_1) 2005; 159
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Komárek J. (e_1_2_6_15_1) 2005
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Gerwick W.H. (e_1_2_6_9_1) 2008; 3
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 35
  start-page: 71
  year: 2007
  end-page: 74
  article-title: Primer3Plus, an enhanced web interface to Primer3
  publication-title: Nucleic Acids Res
– volume: 71
  start-page: 1544
  year: 2008
  end-page: 1550
  article-title: Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium
  publication-title: J Nat Prod
– volume: 46
  start-page: 591
  year: 2010
  end-page: 601
  article-title: 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus
  publication-title: J Phycol
– volume: 9
  start-page: 195
  year: 1997
  end-page: 204
  article-title: Pilot scale culture of the marine cyanobacterium for its pharmaceutically‐useful natural metabolite curacin A
  publication-title: J Appl Phycol
– start-page: 487
  year: 2001
  end-page: 493
– year: 2005
– volume: 67
  start-page: 1356
  year: 2004
  end-page: 1367
  article-title: Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium
  publication-title: J Nat Prod
– volume: 105
  start-page: 4587
  year: 2007
  end-page: 4594
  article-title: Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 510
  year: 2007
  end-page: 516
  article-title: Single‐cell genomic sequencing using multiple displacement amplification
  publication-title: Curr Opin Microbiol
– volume: 3
  start-page: 277
  year: 2008
  end-page: 284
  article-title: Giant marine cyanobacteria produce exciting potential pharmaceuticals
  publication-title: Microbe
– volume: 455
  start-page: 1101
  year: 2008
  end-page: 1104
  article-title: Reassessing the first appearance of eukaryotes and cyanobacteria
  publication-title: Nat Lett
– volume: 59
  start-page: 1243
  year: 1994
  end-page: 1245
  article-title: Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium
  publication-title: J Org Chem
– volume: 53
  start-page: 15983
  year: 1997
  end-page: 15990
  article-title: Three new malyngamides from the marine cyanobacterium
  publication-title: Tetrahedron
– volume: 10
  start-page: 988
  year: 2008
  end-page: 999
  article-title: An AbrB‐like protein might be involved in the regulation of cylindrospermopsin production by
  publication-title: Environ Microbiol
– volume: 46
  start-page: 9347
  year: 2001
  end-page: 9377
  article-title: Marine cyanobacteria – a prolific source of natural products
  publication-title: Tetrahedron
– volume: 70
  start-page: 3305
  year: 2004
  end-page: 3312
  article-title: Morphological, chemical, and genetic diversity of tropical marine cyanobacteria spp. and spp. (Oscillatoriales)
  publication-title: Appl Environ Microbiol
– volume: 59
  start-page: 427
  year: 1994
  end-page: 430
  article-title: Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium
  publication-title: J Nat Prod
– year: 2010
– volume: 75
  start-page: 4861
  year: 2009
  end-page: 4869
  article-title: Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV‐absorbing pigment
  publication-title: Appl Environ Microbiol
– start-page: 141
  year: 2010
  end-page: 188
– volume: 61
  start-page: 677
  year: 1998
  end-page: 680
  article-title: Kalkipyrone, a toxic γ‐pyrone from an assemblage of the marine cyanobacteria and sp
  publication-title: J Nat Prod
– volume: 147
  start-page: 21
  year: 1997
  end-page: 29
  article-title: Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish
  publication-title: Mar Ecol Prog Ser
– year: 1986
– volume: 296
  start-page: 235
  year: 2002
  end-page: 247
  article-title: The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)‐non‐ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit
  publication-title: Gene
– volume: 68
  start-page: 954
  year: 2007
  end-page: 979
  article-title: Bioactive natural products from marine cyanobacteria for drug discovery
  publication-title: Phytochemistry
– volume: 553
  start-page: 319
  year: 2006
  end-page: 326
  article-title: Chemical deterrence of a marine cyanobacterium against sympatric and non‐sympatric consumers
  publication-title: Hydrobiologia
– volume: 117
  start-page: 8281
  year: 1995
  end-page: 8282
  article-title: Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium
  publication-title: J Am Chem Soc
– volume: 21
  start-page: 349
  year: 2006
  end-page: 375
  article-title: Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches
  publication-title: Algae
– volume: 103
  start-page: 5442
  year: 2006
  end-page: 5447
  article-title: The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 3387
  year: 2000
  end-page: 3392
  article-title: Light and the transcriptional response of the microcystin biosynthesis gene cluster
  publication-title: Appl Environ Microbiol
– volume: 45
  start-page: 1087
  year: 1997
  end-page: 1090
  article-title: Two quinoline alkaloids from the Caribbean cyanobacterium
  publication-title: Phytochemistry
– volume: 159
  start-page: 95
  year: 2005
  end-page: 115
  article-title: System of cyanoprokaryotes. (Cyanobacteria) – State in 2004
  publication-title: Arch Hydrobiol
– volume: 75
  start-page: 2879
  year: 2009
  end-page: 2888
  article-title: Phylogenetic and chemical diversity of three chemotypes of bloom‐forming species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida
  publication-title: Appl Environ Microbiol
– volume: 122
  start-page: 12041
  year: 2000
  end-page: 12042
  article-title: Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium
  publication-title: J Am Chem Soc
– start-page: 473
  year: 2001
  end-page: 553
– ident: e_1_2_6_6_1
  doi: 10.1021/np0499261
– ident: e_1_2_6_29_1
  doi: 10.1128/AEM.70.6.3305-3312.2004
– ident: e_1_2_6_33_1
  doi: 10.1093/nar/gkm306
– ident: e_1_2_6_27_1
  doi: 10.1128/AEM.02508-08
– ident: e_1_2_6_3_1
  doi: 10.1007/s10750-005-1129-x
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.0600999103
– ident: e_1_2_6_18_1
  doi: 10.1021/np960085a
– ident: e_1_2_6_24_1
  doi: 10.1128/AEM.02656-08
– ident: e_1_2_6_5_1
  doi: 10.1016/S0378-1119(02)00860-0
– ident: e_1_2_6_19_1
  doi: 10.1016/S0031-9422(97)00084-8
– ident: e_1_2_6_28_1
  doi: 10.1016/j.phytochem.2007.01.012
– ident: e_1_2_6_11_1
– volume-title: Süsswasserflora von Mitteleuropa 19/2
  year: 2005
  ident: e_1_2_6_15_1
  contributor:
    fullname: Komárek J.
– ident: e_1_2_6_13_1
  doi: 10.1128/AEM.66.8.3387-3392.2000
– start-page: 487
  volume-title: Bergey's Manual of Systematic Bacteriology
  year: 2001
  ident: e_1_2_6_34_1
  contributor:
    fullname: Wilmotte A.
– ident: e_1_2_6_10_1
  doi: 10.1021/np970539j
– ident: e_1_2_6_22_1
  doi: 10.1023/A:1007973009869
– ident: e_1_2_6_4_1
  doi: 10.1007/978-0-387-21609-6_27
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1529-8817.2010.00840.x
– ident: e_1_2_6_20_1
  doi: 10.1021/ja00136a031
– ident: e_1_2_6_17_1
– ident: e_1_2_6_21_1
  doi: 10.1038/nature07381
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.0709851105
– ident: e_1_2_6_35_1
  doi: 10.1016/S0040-4020(97)10067-9
– ident: e_1_2_6_31_1
  doi: 10.1016/B978-008045382-8.00041-1
– ident: e_1_2_6_26_1
  doi: 10.1021/np800110e
– ident: e_1_2_6_30_1
  doi: 10.3354/meps147021
– ident: e_1_2_6_16_1
  doi: 10.1016/j.mib.2007.08.005
– ident: e_1_2_6_2_1
  doi: 10.1016/S0040-4020(01)00931-0
– volume: 3
  start-page: 277
  year: 2008
  ident: e_1_2_6_9_1
  article-title: Giant marine cyanobacteria produce exciting potential pharmaceuticals
  publication-title: Microbe
  contributor:
    fullname: Gerwick W.H.
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1462-2920.2007.01519.x
– volume: 159
  start-page: 95
  year: 2005
  ident: e_1_2_6_12_1
  article-title: System of cyanoprokaryotes. (Cyanobacteria) – State in 2004
  publication-title: Arch Hydrobiol
  contributor:
    fullname: Hoffman L.
– ident: e_1_2_6_36_1
  doi: 10.1021/ja005526y
– ident: e_1_2_6_8_1
  doi: 10.1021/jo00085a006
– ident: e_1_2_6_14_1
  doi: 10.4490/ALGAE.2006.21.4.349
SSID ssj0017370
Score 2.3267725
Snippet Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising...
Summary Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1601
SubjectTerms algal blooms
bacteria
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Base Sequence
biochemical pathways
Biodiversity
Biological Products - biosynthesis
Biosynthetic Pathways
chemotaxonomy
Cyanobacteria - classification
Cyanobacteria - genetics
Cyanobacteria - metabolism
environmental factors
Genes, Bacterial
habitats
Lyngbya
mass spectrometry
Molecular Sequence Data
Netherlands Antilles
Phylogeny
screening
secondary metabolites
taxonomic revisions
Title Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya
URI https://api.istex.fr/ark:/67375/WNG-0JCQLH1W-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2011.02472.x
https://www.ncbi.nlm.nih.gov/pubmed/21477107
https://search.proquest.com/docview/870290020
https://search.proquest.com/docview/907181749
https://pubmed.ncbi.nlm.nih.gov/PMC3131211
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RSkhceEPDSz4gbkFrO4_6iPpgVVUVqFTlZk1iuw9ostp0pd3fwJ9mxtmN2FIkhLitsraTTGbG39iebwDeah1KpqhMdV1gmiEWKaLK0xG6jPMqixBzq8bH5dHX7d09psk5WOXC9PwQw4IbW0b012zgWHU3jVylXG1pycSpslK9ZzxJQUPM5tCfhg2FUse6ccsu8sahnlsHWpupNgK2hF9Z9PPbwOjvZyp_xbpxstp_8D9f8yHcX0JW8aHXsUdwxzeP4W5fxHLxBH7E0klM1kHg1ztRXbRuddhDYCdQXOFlOxV-PvmO_dqjIKQsCHmKCR-rocZOkDs-Fx1H546eVVz5a9JOzo8WNU3nNY_VhtinXmBDTiiSTNNjkQHMOnG4aM6qBT6Fk_29LzvjdFniIa0LrVWKOYWTwQVXlQXmyoyCDLmvQ0VRmtSVN36k84BF5JmX3gSVVcbRNdK94A3qZ7DZtI3fAlFXGtHJYDJnOGgk4IWayW6Uzo1TMgG5-px20jN52LUISFkWsmUh2yhkO09gi767xTNyuPbkWPE2LydYaqUTeBeVYRgLp9_4kFyZ29Ojj3Z0sPP5cCxP7W4CYqUtlkyX92Ow8e2ss-Qq6Y0Jr_-5iSEEuE1Bo0ngea9fw_24wBTBwzKBck3zhgZMHL7-T3NxHgnEtdTM7JdAETXvr8VhyTXwrxf_2vEl3OvX5HkV6xVsXk9n_jVsdG72JprrT5_pPJg
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xIQQvfMPCpx8Qb0GNnY_6Ee2DwkoF2qbxZl1iexuwpGpWqf0b-Ke5c9qKjiEhxFuV2k7i3J1_d_b9DuCVUr5gispYVTnGKWIeI8os7qFNOa8y9yG3anBQjL70d3aZJmd_mQvT8UOsAm6sGcFes4JzQPqylsuYyy0tqDhlWsg3BCiv0236IZ9DfVptKRQqVI5b9EkuHeu5cqS1tWrDY0MIlid_dhUc_f1U5a9oNyxXe3f-64vehdsL1CredmJ2D665-j7c6OpYzh_Aj1A9ifk6CP86K8qzxi7PewhsBYpz_NpMhJuNv2MXfhQElgWBTzHmkzXU2AqyyKeiZQfd0sOKc3dBAsop0qKiFb3isRof-lRzrMkOBZ5peizSgWkrhvP6pJzjQzja2z3cHsSLKg9xlSslY8zIo_TW27LIMZO65xOfucqX5KglqnTa9VTmMQ9U84nTXqaltnSNxM87jeoRbNZN7bZAVKVCtInXqdXsNxL2QsV8N1Jl2sokgmT5Pc24I_Mwa06QNDzJhifZhEk2swi26MMbPCGba44OJO_0co6lkiqC10EaVmPh5Bufkysyczx6Z3oftj8PB8mx2YlALMXFkPbylgzWrpm2hqwlvTFB9j830QQC--Q36ggedwK2uh_XmCKEWERQrIneqgFzh6__U5-dBg5xlSgm94sgD6L319NhyDrwryf_2vEl3Bwcfhya4fvR_lO41YXoOaj1DDYvJlP3HDZaO30RdPcnkVtAwA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xIRAv43MsfPoB8RbU2PlYHtG6UkZVDY1pvFmX2N4GW1I1q9T-DfzT3DltRMeQEOKtSm0nudydf2f7fgfwRimXMUVlqMoUwxgxDRFlEvbQxJxXmTqfWzU8ysZfd_v7TJNzsMqFafkhugU3tgzvr9nAJ8ZdN3IZcrWlJROnjDP5jvDk7ZhQOfPoK3XY7ShkyheOW_aJrp3quXGktalqw2FNAJZlP78Jjf5-qPJXsOtnq8H9__meD2BriVnF-1bJHsItWz2CO20Vy8Vj-OFrJzFbB6Ffa0RxXpvVaQ-BjUBxid_qqbDzyQW2i4-CoLIg6CkmfK6GGhtB_vhMNByeG3pWcWmvSD05QVqUNJ-XPFbtfJ9ygRV5Ic8yTY9FFjBrxGhRnRYLfALHg_0ve8NwWeMhLFOlZIgJxZPOOFNkKSYy77nIJbZ0BYVpkSpsbnsqcZh6ovnI5k7GRW7oGimfszmqbdis6srugCgLhWgil8cm56iRkBcqZruRKsmNjAKIVp9TT1oqD70WAknNQtYsZO2FrOcB7NB313hKHlcfH0ne5-UMSyVVAG-9MnRj4fQ7n5LLEn0y_qB7B3ufR8PoRPcDECtt0WS7vCGDla1njSZfSW9MgP3PTXKCgLsUNeYBPG31q7sfV5gifJgFkK1pXteAmcPX_6nOzzyDuIoUU_sFkHrN-2txaPIN_OvZv3Z8DXcP-wM9-jj-9BzutevzvKL1AjavpjP7EjYaM3vlLfcnZl4_Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underestimated+biodiversity+as+a+major+explanation+for+the+perceived+rich+secondary+metabolite+capacity+of+the+cyanobacterial+genus+Lyngbya&rft.jtitle=Environmental+microbiology&rft.au=Engene%2C+Niclas&rft.au=Choi%2C+Hyukjae&rft.au=Esquenazi%2C+Eduardo&rft.au=Rottacker%2C+Erin+C.&rft.date=2011-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=6&rft.spage=1601&rft.epage=1610&rft_id=info:doi/10.1111%2Fj.1462-2920.2011.02472.x&rft.externalDBID=10.1111%252Fj.1462-2920.2011.02472.x&rft.externalDocID=EMI2472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon