Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial...
Saved in:
Published in: | Environmental microbiology Vol. 13; no. 6; pp. 1601 - 1610 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-06-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria. |
---|---|
AbstractList | Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria. Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya . Specimens of Lyngbya from various environmental habitats around Curaçao were analyzed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS 2 and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single-cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya , a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria. Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya . Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS 2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya , a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria. Summary Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria. |
Author | Gerwick, William H. Choi, Hyukjae Esquenazi, Eduardo Dorrestein, Pieter C. Engene, Niclas Ellisman, Mark H. Rottacker, Erin C. |
AuthorAffiliation | 2 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA 1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA 4 Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA 3 National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA 5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA |
AuthorAffiliation_xml | – name: 3 National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA – name: 2 Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA – name: 1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA – name: 5 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA – name: 4 Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA |
Author_xml | – sequence: 1 fullname: Engene, Niclas – sequence: 2 fullname: Choi, Hyukjae – sequence: 3 fullname: Esquenazi, Eduardo – sequence: 4 fullname: Rottacker, Erin C – sequence: 5 fullname: Ellisman, Mark H – sequence: 6 fullname: Dorrestein, Pieter C – sequence: 7 fullname: Gerwick, William H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21477107$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vEzEQXaEi-gF_AXzjlOCxd-PsASQUSlsUQAiiHq1Z7zh12KxTe1Oyv4E_jbcpEZzAF4897z153vNpdtT6lrKMAR9DWq9WY8gnYiRKwceCA4y5yJUY7x5lJ4fG0aEGcZydxrjiHJRU_El2LCBXCrg6yX4u2poCxc6tsaOaVc7X7o5CdF3PMDJka1z5wGi3abDFzvmW2XTubohtKBhK4JoFZ25YJOPbGkPP1tRh5RvXETO4QTNoeXvPMT22vkLTUXDYsCW128jmfbusenyaPbbYRHr2sJ9li_fn32aXo_nni6vZ2_nITKQUIywUKFvbulITLETJLdiCjK0gn4KsqCQuC4sTAdPkDZVW5FVZpzuqyFKJ8ix7s9fdbKs11YbaLmCjNyF5EHrt0em_O6270Ut_pyVIEABJ4OWDQPC322SeXrtoqEkOkd9GXXIFU1B5-U_kVPE0ABc8Iad7pAk-xkD28B7geghdr_SQpx6y1UPo-j50vUvU53_OcyD-TjkBXu8BP1xD_X8L6_OPV0OV-KM938WOdgc-hu96kn5Uoa8_XWj-YfZlfgnX-l3Cv9jjLXqNy-CiXnxNypJDWUykkPIXIZ_ZpA |
CitedBy_id | crossref_primary_10_52229_pbmj_v3i1_8 crossref_primary_10_1080_00318884_2021_2006589 crossref_primary_10_1016_j_phytol_2015_05_003 crossref_primary_10_7554_eLife_24214 crossref_primary_10_1128_AEM_03793_12 crossref_primary_10_1016_j_hal_2011_10_027 crossref_primary_10_1039_C6NP00097E crossref_primary_10_1021_acs_jnatprod_8b00288 crossref_primary_10_1021_np200611f crossref_primary_10_1007_s10126_020_10010_7 crossref_primary_10_1080_15287394_2022_2102100 crossref_primary_10_1099_ijs_0_033761_0 crossref_primary_10_3390_molecules21030324 crossref_primary_10_7717_peerj_5049 crossref_primary_10_1111_jpy_12115 crossref_primary_10_3390_md18120621 crossref_primary_10_1021_acs_jnatprod_7b00449 crossref_primary_10_1016_j_jphotobiol_2019_111684 crossref_primary_10_3390_md17060320 crossref_primary_10_1016_j_ejmech_2020_112473 crossref_primary_10_1038_nrmicro2839 crossref_primary_10_1007_s10531_015_0871_2 crossref_primary_10_3389_fmars_2021_766282 crossref_primary_10_1016_j_jhazmat_2020_123418 crossref_primary_10_11144_Javeriana_SC24_3_eacc crossref_primary_10_1128_AEM_01068_17 crossref_primary_10_1007_s10872_013_0195_3 crossref_primary_10_1186_2193_1801_2_491 crossref_primary_10_1007_s00210_023_02719_8 crossref_primary_10_1021_np200236c crossref_primary_10_1039_c2np00075j crossref_primary_10_1021_np500931q crossref_primary_10_5507_fot_2021_009 crossref_primary_10_3390_md12010098 crossref_primary_10_1111_pre_12482 crossref_primary_10_1039_C5NP00097A crossref_primary_10_3390_md10040849 crossref_primary_10_1016_j_marpolbul_2024_116134 crossref_primary_10_3390_d15080909 crossref_primary_10_3390_w14162470 crossref_primary_10_3390_md13127065 crossref_primary_10_1039_c4np00044g crossref_primary_10_4490_algae_2018_33_11_25 crossref_primary_10_1111_jpy_12752 crossref_primary_10_1016_j_hal_2019_04_010 crossref_primary_10_3390_md11041316 crossref_primary_10_1016_j_ympev_2020_107010 crossref_primary_10_1080_07352689_2020_1763541 crossref_primary_10_1128_genomeA_00846_15 crossref_primary_10_1111_jpy_12273 crossref_primary_10_1099_mic_0_000706 crossref_primary_10_1007_s10531_015_0888_6 crossref_primary_10_3389_fmars_2021_790277 crossref_primary_10_3390_jmse8060406 crossref_primary_10_1111_jpy_12866 |
Cites_doi | 10.1021/np0499261 10.1128/AEM.70.6.3305-3312.2004 10.1093/nar/gkm306 10.1128/AEM.02508-08 10.1007/s10750-005-1129-x 10.1073/pnas.0600999103 10.1021/np960085a 10.1128/AEM.02656-08 10.1016/S0378-1119(02)00860-0 10.1016/S0031-9422(97)00084-8 10.1016/j.phytochem.2007.01.012 10.1128/AEM.66.8.3387-3392.2000 10.1021/np970539j 10.1023/A:1007973009869 10.1007/978-0-387-21609-6_27 10.1111/j.1529-8817.2010.00840.x 10.1021/ja00136a031 10.1038/nature07381 10.1073/pnas.0709851105 10.1016/S0040-4020(97)10067-9 10.1016/B978-008045382-8.00041-1 10.1021/np800110e 10.3354/meps147021 10.1016/j.mib.2007.08.005 10.1016/S0040-4020(01)00931-0 10.1111/j.1462-2920.2007.01519.x 10.1021/ja005526y 10.1021/jo00085a006 10.4490/ALGAE.2006.21.4.349 |
ContentType | Journal Article |
Copyright | 2011 Society for Applied Microbiology and Blackwell Publishing Ltd 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QL 7TN C1K F1W H95 L.G M7N 5PM |
DOI | 10.1111/j.1462-2920.2011.02472.x |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Oceanic Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 1610 |
ExternalDocumentID | 10_1111_j_1462_2920_2011_02472_x 21477107 EMI2472 ark_67375_WNG_0JCQLH1W_D US201301956323 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Netherlands Antilles |
GeographicLocations_xml | – name: Netherlands Antilles |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41 RR004050-19 – fundername: NCRR NIH HHS grantid: P41 RR004050 – fundername: NCI NIH HHS grantid: R01 CA100851-08 – fundername: NCI NIH HHS grantid: CA100851 – fundername: NCI NIH HHS grantid: R01 CA100851 – fundername: NCRR NIH HHS grantid: P41-RR004050 – fundername: National Cancer Institute : NCI grantid: R01 CA100851-08 || CA – fundername: National Center for Research Resources : NCRR grantid: P41 RR004050-19 || RR |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 7QL 7TN C1K F1W H95 L.G M7N 5PM |
ID | FETCH-LOGICAL-c6332-a5717fdfdb76a5290f1f5ecfb14813be9e035fa6218201e9f24b9d035ebefe9a3 |
IEDL.DBID | 33P |
ISSN | 1462-2912 |
IngestDate | Tue Sep 17 21:23:24 EDT 2024 Sat Aug 17 02:42:10 EDT 2024 Fri Aug 16 07:23:00 EDT 2024 Thu Nov 21 22:15:47 EST 2024 Sat Nov 02 12:23:26 EDT 2024 Sat Aug 24 00:55:43 EDT 2024 Wed Oct 30 09:52:02 EDT 2024 Wed Dec 27 19:18:01 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2011 Society for Applied Microbiology and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6332-a5717fdfdb76a5290f1f5ecfb14813be9e035fa6218201e9f24b9d035ebefe9a3 |
Notes | http://dx.doi.org/10.1111/j.1462-2920.2011.02472.x ArticleID:EMI2472 istex:8393A8037FC8E80579254685F13156BB4F13B840 ark:/67375/WNG-0JCQLH1W-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc3131211?pdf=render |
PMID | 21477107 |
PQID | 870290020 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3131211 proquest_miscellaneous_907181749 proquest_miscellaneous_870290020 crossref_primary_10_1111_j_1462_2920_2011_02472_x pubmed_primary_21477107 wiley_primary_10_1111_j_1462_2920_2011_02472_x_EMI2472 istex_primary_ark_67375_WNG_0JCQLH1W_D fao_agris_US201301956323 |
PublicationCentury | 2000 |
PublicationDate | June 2011 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Sorrels, C.M., Proteau, P.J., and Gerwick, W.H. (2009) Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl Environ Microbiol 75: 4861-4869. Tan, L.T. (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954-979. Orjala, J., Nagle, D.G., Hsu, V.L., and Gerwick, W.H. (1995) Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. J Am Chem Soc 117: 8281-8282. Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., and Wright, P.C. (2001) Marine cyanobacteria - a prolific source of natural products. Tetrahedron 46: 9347-9377. Chang, Z., Flatt, P.M., Gerwick, W.H., Nguyen, V-A., Willis, C.L., and Sherman, D.H. (2002) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296: 235-247. Gerwick, W.H., Proteau, P.J., Nagle, D.G., Hamel, E., Blokhin, A., and Slate, D.L. (1994) Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59: 1243-1245. Komárek, J., and Anagnostidis, K. (2005) Süsswasserflora von Mitteleuropa 19/2. Heidelberg, Germany: Elsevier/Spektrum. Thacker, R.W., and Paul, V.J. (2004) Morphological, chemical, and genetic diversity of tropical marine cyanobacteria Lyngbya spp. and Symploca spp. (Oscillatoriales). Appl Environ Microbiol 70: 3305-3312. Castenholz, R.W. (2001) Phylum BX. Cyanobacteria Oxygenic Photosynthetic Bacteria. Bergey's Manual of Systematic Bacteriology. New York, USA: Springer, pp. 473-553. Graber, M.A., and Gerwick, W.H. (1998) Kalkipyrone, a toxic γ-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. J Nat Prod 61: 677-680. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., and Leunissen, J.A.M. (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35: 71-74. Kaebernick, M., Neilan, B.A., Borner, T., and Dittmann, E. (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66: 3387-3392. Chang, Z., Sitachitta, N., Rossi, J.V., Roberts, M.A., Flatt, P.M., Jia, J., et al. (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67: 1356-1367. Wu, M., Milligan, K.E., and Gerwick, W.H. (1997) Three new malyngamides from the marine cyanobacterium Lyngbya majuscula. Tetrahedron 53: 15983-15990. Lasken, R.S. (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10: 510-516. Wu, M., Okino, T., Nogle, L.M., Marquez, B.L., Williamson, R.T., Gerwick, W.H., et al. (2000) Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 122: 12041-12042. Capper, A., Cruz-Rivera, E., Paul, V.J., and Tibbetts, I.R. (2006) Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 553: 319-326. Engene, N., Coates, R.C., and Gerwick, W.H. (2010) 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46: 591-601. Rasmussen, B., Fletcher, I.R., Brocks, J.J., and Kilburn, M.R. (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nat Lett 455: 1101-1104. Gerwick, W.H., Coates, R.C., Engene, N., Gerwick, L.G., Grindberg, R., Jones, A., and Sorrels, C. (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3: 277-284. Simmons, T.L., Coates, R.C., Clark, B.R., Engene, N., Gonzalez, D., Esquenazi, E., et al. (2007) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci USA 105: 4587-4594. Sharp, K., Arthur, K.E., Gu, L., Ross, C., Harrison, G., Gunasekera, S.P., et al. (2009) Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 75: 2879-2888. Komárek, J. (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21: 349-375. Tomitani, A., Knoll, A.K., Cavanaugh, C.M., and Ohno, T. (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103: 5442-5447. Hoffman, L., Komárek, J., and Kaštovsky, J. (2005) System of cyanoprokaryotes. (Cyanobacteria) - State in 2004. Arch Hydrobiol 159: 95-115. Thacker, R.W., Nagle, D.G., and Paul, V.J. (1997) Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Mar Ecol Prog Ser 147: 21-29. Orjala, J., and Gerwick, W.H. (1994) Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 59: 427-430. Shalev-Malul, G., Lieman-Hurwitz, J., Viner-Mozzini, Y., Sukenik, A., Gaathon, A., Lebendiker, M., and Kaplan, A. (2008) An AbrB-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum. Environ Microbiol 10: 988-999. Orjala, J., and Gerwick, W.H. (1997) Two quinoline alkaloids from the Caribbean cyanobacterium Lyngbya majuscula. Phytochemistry 45: 1087-1090. Rossi, J.V., Roberts, M.A., Yoo, H.-D., and Gerwick, W.H. (1997) Pilot scale culture of the marine cyanobacterium Lyngbya majuscula for its pharmaceutically-useful natural metabolite curacin A. J Appl Phycol 9: 195-204. Simmons, T.L., Engene, N., Urena, L.D., Romero, L.I., Ortega-Barrıa, E., Gerwick, G.L., and Gerwick, W.H. (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. J Nat Prod 71: 1544-1550. 2007; 105 2002; 296 2010 2005; 159 2000; 66 2004; 67 1997; 45 1995; 117 2005 2008; 10 2008; 3 1998; 61 2007; 10 2001; 46 2008; 71 1997; 9 2007; 35 2006; 553 1997; 147 2004; 70 2010; 46 2009; 75 2001 2006; 21 1997; 53 1986 1994; 59 2008; 455 2000; 122 2007; 68 2006; 103 Wilmotte A. (e_1_2_6_34_1) 2001 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Hoffman L. (e_1_2_6_12_1) 2005; 159 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Komárek J. (e_1_2_6_15_1) 2005 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Gerwick W.H. (e_1_2_6_9_1) 2008; 3 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 35 start-page: 71 year: 2007 end-page: 74 article-title: Primer3Plus, an enhanced web interface to Primer3 publication-title: Nucleic Acids Res – volume: 71 start-page: 1544 year: 2008 end-page: 1550 article-title: Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium publication-title: J Nat Prod – volume: 46 start-page: 591 year: 2010 end-page: 601 article-title: 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus publication-title: J Phycol – volume: 9 start-page: 195 year: 1997 end-page: 204 article-title: Pilot scale culture of the marine cyanobacterium for its pharmaceutically‐useful natural metabolite curacin A publication-title: J Appl Phycol – start-page: 487 year: 2001 end-page: 493 – year: 2005 – volume: 67 start-page: 1356 year: 2004 end-page: 1367 article-title: Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium publication-title: J Nat Prod – volume: 105 start-page: 4587 year: 2007 end-page: 4594 article-title: Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 510 year: 2007 end-page: 516 article-title: Single‐cell genomic sequencing using multiple displacement amplification publication-title: Curr Opin Microbiol – volume: 3 start-page: 277 year: 2008 end-page: 284 article-title: Giant marine cyanobacteria produce exciting potential pharmaceuticals publication-title: Microbe – volume: 455 start-page: 1101 year: 2008 end-page: 1104 article-title: Reassessing the first appearance of eukaryotes and cyanobacteria publication-title: Nat Lett – volume: 59 start-page: 1243 year: 1994 end-page: 1245 article-title: Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium publication-title: J Org Chem – volume: 53 start-page: 15983 year: 1997 end-page: 15990 article-title: Three new malyngamides from the marine cyanobacterium publication-title: Tetrahedron – volume: 10 start-page: 988 year: 2008 end-page: 999 article-title: An AbrB‐like protein might be involved in the regulation of cylindrospermopsin production by publication-title: Environ Microbiol – volume: 46 start-page: 9347 year: 2001 end-page: 9377 article-title: Marine cyanobacteria – a prolific source of natural products publication-title: Tetrahedron – volume: 70 start-page: 3305 year: 2004 end-page: 3312 article-title: Morphological, chemical, and genetic diversity of tropical marine cyanobacteria spp. and spp. (Oscillatoriales) publication-title: Appl Environ Microbiol – volume: 59 start-page: 427 year: 1994 end-page: 430 article-title: Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium publication-title: J Nat Prod – year: 2010 – volume: 75 start-page: 4861 year: 2009 end-page: 4869 article-title: Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV‐absorbing pigment publication-title: Appl Environ Microbiol – start-page: 141 year: 2010 end-page: 188 – volume: 61 start-page: 677 year: 1998 end-page: 680 article-title: Kalkipyrone, a toxic γ‐pyrone from an assemblage of the marine cyanobacteria and sp publication-title: J Nat Prod – volume: 147 start-page: 21 year: 1997 end-page: 29 article-title: Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish publication-title: Mar Ecol Prog Ser – year: 1986 – volume: 296 start-page: 235 year: 2002 end-page: 247 article-title: The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)‐non‐ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit publication-title: Gene – volume: 68 start-page: 954 year: 2007 end-page: 979 article-title: Bioactive natural products from marine cyanobacteria for drug discovery publication-title: Phytochemistry – volume: 553 start-page: 319 year: 2006 end-page: 326 article-title: Chemical deterrence of a marine cyanobacterium against sympatric and non‐sympatric consumers publication-title: Hydrobiologia – volume: 117 start-page: 8281 year: 1995 end-page: 8282 article-title: Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium publication-title: J Am Chem Soc – volume: 21 start-page: 349 year: 2006 end-page: 375 article-title: Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches publication-title: Algae – volume: 103 start-page: 5442 year: 2006 end-page: 5447 article-title: The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives publication-title: Proc Natl Acad Sci USA – volume: 66 start-page: 3387 year: 2000 end-page: 3392 article-title: Light and the transcriptional response of the microcystin biosynthesis gene cluster publication-title: Appl Environ Microbiol – volume: 45 start-page: 1087 year: 1997 end-page: 1090 article-title: Two quinoline alkaloids from the Caribbean cyanobacterium publication-title: Phytochemistry – volume: 159 start-page: 95 year: 2005 end-page: 115 article-title: System of cyanoprokaryotes. (Cyanobacteria) – State in 2004 publication-title: Arch Hydrobiol – volume: 75 start-page: 2879 year: 2009 end-page: 2888 article-title: Phylogenetic and chemical diversity of three chemotypes of bloom‐forming species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida publication-title: Appl Environ Microbiol – volume: 122 start-page: 12041 year: 2000 end-page: 12042 article-title: Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium publication-title: J Am Chem Soc – start-page: 473 year: 2001 end-page: 553 – ident: e_1_2_6_6_1 doi: 10.1021/np0499261 – ident: e_1_2_6_29_1 doi: 10.1128/AEM.70.6.3305-3312.2004 – ident: e_1_2_6_33_1 doi: 10.1093/nar/gkm306 – ident: e_1_2_6_27_1 doi: 10.1128/AEM.02508-08 – ident: e_1_2_6_3_1 doi: 10.1007/s10750-005-1129-x – ident: e_1_2_6_32_1 doi: 10.1073/pnas.0600999103 – ident: e_1_2_6_18_1 doi: 10.1021/np960085a – ident: e_1_2_6_24_1 doi: 10.1128/AEM.02656-08 – ident: e_1_2_6_5_1 doi: 10.1016/S0378-1119(02)00860-0 – ident: e_1_2_6_19_1 doi: 10.1016/S0031-9422(97)00084-8 – ident: e_1_2_6_28_1 doi: 10.1016/j.phytochem.2007.01.012 – ident: e_1_2_6_11_1 – volume-title: Süsswasserflora von Mitteleuropa 19/2 year: 2005 ident: e_1_2_6_15_1 contributor: fullname: Komárek J. – ident: e_1_2_6_13_1 doi: 10.1128/AEM.66.8.3387-3392.2000 – start-page: 487 volume-title: Bergey's Manual of Systematic Bacteriology year: 2001 ident: e_1_2_6_34_1 contributor: fullname: Wilmotte A. – ident: e_1_2_6_10_1 doi: 10.1021/np970539j – ident: e_1_2_6_22_1 doi: 10.1023/A:1007973009869 – ident: e_1_2_6_4_1 doi: 10.1007/978-0-387-21609-6_27 – ident: e_1_2_6_7_1 doi: 10.1111/j.1529-8817.2010.00840.x – ident: e_1_2_6_20_1 doi: 10.1021/ja00136a031 – ident: e_1_2_6_17_1 – ident: e_1_2_6_21_1 doi: 10.1038/nature07381 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.0709851105 – ident: e_1_2_6_35_1 doi: 10.1016/S0040-4020(97)10067-9 – ident: e_1_2_6_31_1 doi: 10.1016/B978-008045382-8.00041-1 – ident: e_1_2_6_26_1 doi: 10.1021/np800110e – ident: e_1_2_6_30_1 doi: 10.3354/meps147021 – ident: e_1_2_6_16_1 doi: 10.1016/j.mib.2007.08.005 – ident: e_1_2_6_2_1 doi: 10.1016/S0040-4020(01)00931-0 – volume: 3 start-page: 277 year: 2008 ident: e_1_2_6_9_1 article-title: Giant marine cyanobacteria produce exciting potential pharmaceuticals publication-title: Microbe contributor: fullname: Gerwick W.H. – ident: e_1_2_6_23_1 doi: 10.1111/j.1462-2920.2007.01519.x – volume: 159 start-page: 95 year: 2005 ident: e_1_2_6_12_1 article-title: System of cyanoprokaryotes. (Cyanobacteria) – State in 2004 publication-title: Arch Hydrobiol contributor: fullname: Hoffman L. – ident: e_1_2_6_36_1 doi: 10.1021/ja005526y – ident: e_1_2_6_8_1 doi: 10.1021/jo00085a006 – ident: e_1_2_6_14_1 doi: 10.4490/ALGAE.2006.21.4.349 |
SSID | ssj0017370 |
Score | 2.3267725 |
Snippet | Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising... Summary Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1601 |
SubjectTerms | algal blooms bacteria Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Base Sequence biochemical pathways Biodiversity Biological Products - biosynthesis Biosynthetic Pathways chemotaxonomy Cyanobacteria - classification Cyanobacteria - genetics Cyanobacteria - metabolism environmental factors Genes, Bacterial habitats Lyngbya mass spectrometry Molecular Sequence Data Netherlands Antilles Phylogeny screening secondary metabolites taxonomic revisions |
Title | Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya |
URI | https://api.istex.fr/ark:/67375/WNG-0JCQLH1W-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2011.02472.x https://www.ncbi.nlm.nih.gov/pubmed/21477107 https://search.proquest.com/docview/870290020 https://search.proquest.com/docview/907181749 https://pubmed.ncbi.nlm.nih.gov/PMC3131211 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RSkhceEPDSz4gbkFrO4_6iPpgVVUVqFTlZk1iuw9ostp0pd3fwJ9mxtmN2FIkhLitsraTTGbG39iebwDeah1KpqhMdV1gmiEWKaLK0xG6jPMqixBzq8bH5dHX7d09psk5WOXC9PwQw4IbW0b012zgWHU3jVylXG1pycSpslK9ZzxJQUPM5tCfhg2FUse6ccsu8sahnlsHWpupNgK2hF9Z9PPbwOjvZyp_xbpxstp_8D9f8yHcX0JW8aHXsUdwxzeP4W5fxHLxBH7E0klM1kHg1ztRXbRuddhDYCdQXOFlOxV-PvmO_dqjIKQsCHmKCR-rocZOkDs-Fx1H546eVVz5a9JOzo8WNU3nNY_VhtinXmBDTiiSTNNjkQHMOnG4aM6qBT6Fk_29LzvjdFniIa0LrVWKOYWTwQVXlQXmyoyCDLmvQ0VRmtSVN36k84BF5JmX3gSVVcbRNdK94A3qZ7DZtI3fAlFXGtHJYDJnOGgk4IWayW6Uzo1TMgG5-px20jN52LUISFkWsmUh2yhkO09gi767xTNyuPbkWPE2LydYaqUTeBeVYRgLp9_4kFyZ29Ojj3Z0sPP5cCxP7W4CYqUtlkyX92Ow8e2ss-Qq6Y0Jr_-5iSEEuE1Bo0ngea9fw_24wBTBwzKBck3zhgZMHL7-T3NxHgnEtdTM7JdAETXvr8VhyTXwrxf_2vEl3OvX5HkV6xVsXk9n_jVsdG72JprrT5_pPJg |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xIQQvfMPCpx8Qb0GNnY_6Ee2DwkoF2qbxZl1iexuwpGpWqf0b-Ke5c9qKjiEhxFuV2k7i3J1_d_b9DuCVUr5gispYVTnGKWIeI8os7qFNOa8y9yG3anBQjL70d3aZJmd_mQvT8UOsAm6sGcFes4JzQPqylsuYyy0tqDhlWsg3BCiv0236IZ9DfVptKRQqVI5b9EkuHeu5cqS1tWrDY0MIlid_dhUc_f1U5a9oNyxXe3f-64vehdsL1CredmJ2D665-j7c6OpYzh_Aj1A9ifk6CP86K8qzxi7PewhsBYpz_NpMhJuNv2MXfhQElgWBTzHmkzXU2AqyyKeiZQfd0sOKc3dBAsop0qKiFb3isRof-lRzrMkOBZ5peizSgWkrhvP6pJzjQzja2z3cHsSLKg9xlSslY8zIo_TW27LIMZO65xOfucqX5KglqnTa9VTmMQ9U84nTXqaltnSNxM87jeoRbNZN7bZAVKVCtInXqdXsNxL2QsV8N1Jl2sokgmT5Pc24I_Mwa06QNDzJhifZhEk2swi26MMbPCGba44OJO_0co6lkiqC10EaVmPh5Bufkysyczx6Z3oftj8PB8mx2YlALMXFkPbylgzWrpm2hqwlvTFB9j830QQC--Q36ggedwK2uh_XmCKEWERQrIneqgFzh6__U5-dBg5xlSgm94sgD6L319NhyDrwryf_2vEl3Bwcfhya4fvR_lO41YXoOaj1DDYvJlP3HDZaO30RdPcnkVtAwA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xIRAv43MsfPoB8RbU2PlYHtG6UkZVDY1pvFmX2N4GW1I1q9T-DfzT3DltRMeQEOKtSm0nudydf2f7fgfwRimXMUVlqMoUwxgxDRFlEvbQxJxXmTqfWzU8ysZfd_v7TJNzsMqFafkhugU3tgzvr9nAJ8ZdN3IZcrWlJROnjDP5jvDk7ZhQOfPoK3XY7ShkyheOW_aJrp3quXGktalqw2FNAJZlP78Jjf5-qPJXsOtnq8H9__meD2BriVnF-1bJHsItWz2CO20Vy8Vj-OFrJzFbB6Ffa0RxXpvVaQ-BjUBxid_qqbDzyQW2i4-CoLIg6CkmfK6GGhtB_vhMNByeG3pWcWmvSD05QVqUNJ-XPFbtfJ9ygRV5Ic8yTY9FFjBrxGhRnRYLfALHg_0ve8NwWeMhLFOlZIgJxZPOOFNkKSYy77nIJbZ0BYVpkSpsbnsqcZh6ovnI5k7GRW7oGimfszmqbdis6srugCgLhWgil8cm56iRkBcqZruRKsmNjAKIVp9TT1oqD70WAknNQtYsZO2FrOcB7NB313hKHlcfH0ne5-UMSyVVAG-9MnRj4fQ7n5LLEn0y_qB7B3ufR8PoRPcDECtt0WS7vCGDla1njSZfSW9MgP3PTXKCgLsUNeYBPG31q7sfV5gifJgFkK1pXteAmcPX_6nOzzyDuIoUU_sFkHrN-2txaPIN_OvZv3Z8DXcP-wM9-jj-9BzutevzvKL1AjavpjP7EjYaM3vlLfcnZl4_Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underestimated+biodiversity+as+a+major+explanation+for+the+perceived+rich+secondary+metabolite+capacity+of+the+cyanobacterial+genus+Lyngbya&rft.jtitle=Environmental+microbiology&rft.au=Engene%2C+Niclas&rft.au=Choi%2C+Hyukjae&rft.au=Esquenazi%2C+Eduardo&rft.au=Rottacker%2C+Erin+C.&rft.date=2011-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=6&rft.spage=1601&rft.epage=1610&rft_id=info:doi/10.1111%2Fj.1462-2920.2011.02472.x&rft.externalDBID=10.1111%252Fj.1462-2920.2011.02472.x&rft.externalDocID=EMI2472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |