Strand-specific miR-28-3p and miR-28-5p have differential effects on nasopharyngeal cancer cells proliferation, apoptosis, migration and invasion
MicroRNAs (miRNAs) play crucial roles in varieties of cancers, particularly in tumorigenesis, progression, and migration. Dysregulation of miR-28 was reported to occur in various types of human malignancies. In humans, two different mature miRNA sequences are excised from opposite arms of the stem-l...
Saved in:
Published in: | Cancer cell international Vol. 19; no. 1; p. 187 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central
19-07-2019
BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MicroRNAs (miRNAs) play crucial roles in varieties of cancers, particularly in tumorigenesis, progression, and migration. Dysregulation of miR-28 was reported to occur in various types of human malignancies. In humans, two different mature miRNA sequences are excised from opposite arms of the stem-loop pre-miR-28, hsa-miR-28-3p and hsamiR-28-5p. However, the expression and distinct role of miR-28-3p and miR-28-5p in nasopharyngeal carcinoma (NPC) remain undetermined.
The expressions of miR-28-3p/-5p in human NPC tissues were tested by quantitative real-time PCR. miR-28-3p/-5p were overexpressed by mimics and silenced by inhibitors. The roles of miR-28-3p/-5p in NPC development were studied using cultured HONE-1 cells.
The mRNA expression levels of miR-28-3p and -5p were significantly decreased in NPC tissues in comparison with adjacent normal tissues. Overexpression of miR-28-5p suppressed NPC cell proliferation and induced cell cycle arrest and apoptosis, while miR-28-3p promoted NPC cell migration and invasion. The miRNAs effected on different signal pathways: miR-28-5p altered expression of cyclin D1 and influenced the PI3K/AKT signaling pathway. In contrast, miR-28-3p downregulated Nm23-H1 and accelerated the process of EMT.
miR-28-3p and -5p were both downregulated in NPC tissues but had distinct biological effects in NPC cells. They may serve as potential prognostic markers and therapeutic targets for NPC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1475-2867 1475-2867 |
DOI: | 10.1186/s12935-019-0915-x |