Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer

In humans, muscle-invasive bladder cancer (MIBC) is highly aggressive and associated with a poor prognosis. With a high mutation load and large number of altered genes, strategies to delineate key driver events are necessary. Dogs and cats develop urothelial carcinoma (UC) with histological and clin...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology Vol. 24; no. 1; p. 191
Main Authors: Wong, Kim, Abascal, Federico, Ludwig, Latasha, Aupperle-Lellbach, Heike, Grassinger, Julia, Wright, Colin W, Allison, Simon J, Pinder, Emma, Phillips, Roger M, Romero, Laura P, Gal, Arnon, Roady, Patrick J, Pires, Isabel, Guscetti, Franco, Munday, John S, Peleteiro, Maria C, Pinto, Carlos A, Carvalho, Tânia, Cota, João, Du Plessis, Elizabeth C, Constantino-Casas, Fernando, Plog, Stephanie, Moe, Lars, de Brot, Simone, Bemelmans, Ingrid, Amorim, Renée Laufer, Georgy, Smitha R, Prada, Justina, Del Pozo, Jorge, Heimann, Marianne, de Carvalho Nunes, Louisiane, Simola, Outi, Pazzi, Paolo, Steyl, Johan, Ubukata, Rodrigo, Vajdovich, Peter, Priestnall, Simon L, Suárez-Bonnet, Alejandro, Roperto, Franco, Millanta, Francesca, Palmieri, Chiara, Ortiz, Ana L, Barros, Claudio S L, Gava, Aldo, Söderström, Minna E, O'Donnell, Marie, Klopfleisch, Robert, Manrique-Rincón, Andrea, Martincorena, Inigo, Ferreira, Ingrid, Arends, Mark J, Wood, Geoffrey A, Adams, David J, van der Weyden, Louise
Format: Journal Article
Language:English
Published: England BioMed Central 28-08-2023
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In humans, muscle-invasive bladder cancer (MIBC) is highly aggressive and associated with a poor prognosis. With a high mutation load and large number of altered genes, strategies to delineate key driver events are necessary. Dogs and cats develop urothelial carcinoma (UC) with histological and clinical similarities to human MIBC. Cattle that graze on bracken fern also develop UC, associated with exposure to the carcinogen ptaquiloside. These species may represent relevant animal models of spontaneous and carcinogen-induced UC that can provide insight into human MIBC. Whole-exome sequencing of domestic canine (n = 87) and feline (n = 23) UC, and comparative analysis with human MIBC reveals a lower mutation rate in animal cases and the absence of APOBEC mutational signatures. A convergence of driver genes (ARID1A, KDM6A, TP53, FAT1, and NRAS) is discovered, along with common focally amplified and deleted genes involved in regulation of the cell cycle and chromatin remodelling. We identify mismatch repair deficiency in a subset of canine and feline UCs with biallelic inactivation of MSH2. Bovine UC (n = 8) is distinctly different; we identify novel mutational signatures which are recapitulated in vitro in human urinary bladder UC cells treated with bracken fern extracts or purified ptaquiloside. Canine and feline urinary bladder UC represent relevant models of MIBC in humans, and cross-species analysis can identify evolutionarily conserved driver genes. We characterize mutational signatures in bovine UC associated with bracken fern and ptaquiloside exposure, a human-linked cancer exposure. Our work demonstrates the relevance of cross-species comparative analysis in understanding both human and animal UC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-023-03026-4