High content screening of a kinase-focused library reveals compounds broadly-active against dengue viruses
Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potent...
Saved in:
Published in: | PLoS neglected tropical diseases Vol. 7; no. 2; p. e2073 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-02-2013
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: DJMC ACK MAEH LHFJ. Performed the experiments: DJMC ACK JBT RMB KHK SB HYK ALPM LdB. Analyzed the data: DJMC ACK JBT XL RMB JHN MAEH KHK SB HYK MPW ALPM LdB ML CNDdS LHFJ. Contributed reagents/materials/analysis tools: XL MAEH CNDdS LHFJ. Wrote the paper: DJMC ACK JBT XL RMB JHN MAEH KHK SB HYK MPW ALPM LdB ML CNDdS LHFJ. The authors have declared that no competing interests exist. |
ISSN: | 1935-2735 1935-2727 1935-2735 |
DOI: | 10.1371/journal.pntd.0002073 |