Intracellular Implantation of Enzymes in Hollow Silica Nanospheres for Protein Therapy: Cascade System of Superoxide Dismutase and Catalase

An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) mod...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 22; pp. 4785 - 4795
Main Authors: Chang, Feng-Peng, Chen, Yi-Ping, Mou, Chung-Yuan
Format: Journal Article
Language:English
Published: Germany Blackwell Publishing Ltd 01-11-2014
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI‐grafted superoxide dismutase (PEI‐SOD) and catalase (PEI‐CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI‐SOD@HSN are found and transformation of H2O2 to water by PEI‐CAT@HSN. When PEI‐SOD and PEI‐CAT are co‐encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX‐2/p‐p38 expression show that co‐encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N′‐dimethyl‐4,4′‐bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT‐encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. Superoxide dismutase and catalase encapsulated in hollow silica nanospheres as a nanoreactor results in cascade reactions converting superoxide ions into water and oxygen. Upon uptake in Hela cells, the nanoreactor protects the cell against reactive oxygen species.
AbstractList An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI‐grafted superoxide dismutase (PEI‐SOD) and catalase (PEI‐CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI‐SOD@HSN are found and transformation of H2O2 to water by PEI‐CAT@HSN. When PEI‐SOD and PEI‐CAT are co‐encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX‐2/p‐p38 expression show that co‐encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N′‐dimethyl‐4,4′‐bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT‐encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. Superoxide dismutase and catalase encapsulated in hollow silica nanospheres as a nanoreactor results in cascade reactions converting superoxide ions into water and oxygen. Upon uptake in Hela cells, the nanoreactor protects the cell against reactive oxygen species.
An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions.
An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions.
An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SODSN are found and transformation of H sub(2)O sub(2) to water by PEI-CATSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'- bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. Superoxide dismutase and catalase encapsulated in hollow silica nanospheres as a nanoreactor results in cascade reactions converting superoxide ions into water and oxygen. Upon uptake in Hela cells, the nanoreactor protects the cell against reactive oxygen species.
An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI‐grafted superoxide dismutase (PEI‐SOD) and catalase (PEI‐CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI‐SOD@HSN are found and transformation of H 2 O 2 to water by PEI‐CAT@HSN. When PEI‐SOD and PEI‐CAT are co‐encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX‐2/p‐p38 expression show that co‐encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N , N ′‐dimethyl‐4,4′‐bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT‐encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions.
Author Chang, Feng-Peng
Chen, Yi-Ping
Mou, Chung-Yuan
Author_xml – sequence: 1
  givenname: Feng-Peng
  surname: Chang
  fullname: Chang, Feng-Peng
  organization: Department of Chemistry, National Taiwan University, 106, Taipei, Taiwan
– sequence: 2
  givenname: Yi-Ping
  surname: Chen
  fullname: Chen, Yi-Ping
  organization: Research Center for Applied Sciences Academia Sinica, 115, Taipei, Taiwan
– sequence: 3
  givenname: Chung-Yuan
  surname: Mou
  fullname: Mou, Chung-Yuan
  email: cymou@ntu.edu.tw
  organization: Department of Chemistry, National Taiwan University, 106, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25160910$$D View this record in MEDLINE/PubMed
BookMark eNqNkcuO1DAQRSM0iHnAliWyxIZNGj8SJ2aHel4NzYDoQbCzqpOKyODYwU40E36Bn8ZRDy3EBlblKp97pap7nBxYZzFJnjK6YJTyl6EzZsEpyyjLc_UgOWKSiVSWXB3s34weJsch3FAqGM-KR8khz5mkitGj5OfKDh4qNGY04Mmq6w3YAYbWWeIacmZ_TB0G0lpy6Yxxt2TTmrYCcgXWhf4r-vjZOE8-eDdgpK7jCPrpFVlCqKBGspnCgN3stRl79O6ujcPTNnTjAAEJ2DqiA5jYPE4eNmACPrmvJ8mn87Pr5WW6fn-xWr5ep5VkhUox57UsMoBS1KKUKseGAdCKA-NN1uQKi2zbiJohVlIyiUowVapcbYWsy5qJk-TFzrf37vuIYdBdG-YTgEU3Bs1kxgUVpSr-A-UFLUohZUSf_4XeuNHbuMhMyfngYqYWO6ryLgSPje5924GfNKN6TlTPiep9olHw7N523HZY7_HfEUZA7YDb1uD0Dzu9ebde_2me7rRtDOlurwX_TctCFLn-fHWh-fnb4o36-EVz8Qvpgb7z
CitedBy_id crossref_primary_10_1002_adma_201602111
crossref_primary_10_1021_acs_chemrev_6b00374
crossref_primary_10_1039_C9NR02584G
crossref_primary_10_1039_C9BM00913B
crossref_primary_10_1016_j_mtchem_2022_101298
crossref_primary_10_1016_j_tibtech_2015_12_015
crossref_primary_10_1021_acsami_6b11324
crossref_primary_10_1002_smll_202101455
crossref_primary_10_1021_acsami_7b00240
crossref_primary_10_1016_j_addr_2017_09_006
crossref_primary_10_1021_acs_jpcc_8b03271
crossref_primary_10_1039_D1BM01106E
crossref_primary_10_1016_j_micromeso_2017_10_034
crossref_primary_10_1016_j_biomaterials_2022_121437
crossref_primary_10_1021_acsapm_9b00308
crossref_primary_10_1039_D0NR07148J
crossref_primary_10_1021_jacs_0c00285
crossref_primary_10_1016_j_biotechadv_2021_107798
crossref_primary_10_1021_acs_chemmater_1c00123
crossref_primary_10_1039_C5CC03025K
crossref_primary_10_1016_j_jinorgbio_2020_111050
crossref_primary_10_1038_s41598_021_83819_4
crossref_primary_10_1021_acsami_0c05588
crossref_primary_10_1002_anie_202216966
crossref_primary_10_1016_j_cis_2023_103037
crossref_primary_10_1021_acsmaterialslett_2c00580
crossref_primary_10_1039_C4CP05605A
crossref_primary_10_1002_chem_201801159
crossref_primary_10_1038_s41392_022_01298_z
crossref_primary_10_1002_adhm_201700759
crossref_primary_10_1002_adma_202105670
crossref_primary_10_1007_s12010_018_2896_y
crossref_primary_10_1002_adhm_201700917
crossref_primary_10_2217_nnm_2019_0166
crossref_primary_10_1016_j_bej_2022_108416
crossref_primary_10_1021_acscatal_8b04921
crossref_primary_10_1016_j_cis_2016_08_001
crossref_primary_10_1016_j_jcis_2019_08_063
crossref_primary_10_1021_acscatal_0c04488
crossref_primary_10_1039_D1TB02540F
crossref_primary_10_1039_C5RA16023E
crossref_primary_10_1177_2211068216630743
crossref_primary_10_1021_acs_jpcb_9b08799
crossref_primary_10_1186_s11671_023_03926_1
crossref_primary_10_1002_fsn3_3307
crossref_primary_10_1039_C6NR07598C
crossref_primary_10_1039_C5NR01395J
crossref_primary_10_1002_smll_201906493
crossref_primary_10_1007_s41061_017_0151_6
crossref_primary_10_1039_C8NR09204D
crossref_primary_10_1039_C6TB01355D
crossref_primary_10_1038_s41929_020_0433_1
crossref_primary_10_1080_10837450_2018_1457051
crossref_primary_10_1016_j_ceramint_2024_02_071
crossref_primary_10_1021_acsami_1c19457
crossref_primary_10_1039_C4TB02102A
crossref_primary_10_1021_acsnano_4c03421
crossref_primary_10_1039_D3RA05020C
crossref_primary_10_1002_advs_201800801
crossref_primary_10_1002_ange_201813066
crossref_primary_10_1002_adfm_201703814
crossref_primary_10_1002_smll_202202294
crossref_primary_10_1002_nano_202100040
crossref_primary_10_1002_ppsc_201900484
crossref_primary_10_1016_j_foodchem_2020_126851
crossref_primary_10_1186_s11671_018_2527_0
crossref_primary_10_1021_acsami_6b05834
crossref_primary_10_1007_s40843_021_1706_4
crossref_primary_10_1021_acsami_9b02797
crossref_primary_10_1021_acsami_0c19633
crossref_primary_10_1002_cbic_201700502
crossref_primary_10_1039_C7CC00300E
crossref_primary_10_1039_C6RA05494C
crossref_primary_10_1002_adhm_201601141
crossref_primary_10_1002_anie_201813066
crossref_primary_10_1039_C7TB00351J
crossref_primary_10_1038_s41598_019_47927_6
crossref_primary_10_1039_D4TB00307A
crossref_primary_10_1002_ange_202216966
crossref_primary_10_2174_1381612829666221216114912
crossref_primary_10_1021_acsomega_7b01234
crossref_primary_10_1021_acscatal_6b01302
Cites_doi 10.1039/c3cs35405a
10.1016/j.jtherbio.2011.12.013
10.1021/bm1001125
10.1021/nn403617j
10.1039/c0jm00645a
10.1016/j.febslet.2011.05.003
10.1016/S0021-9258(18)63504-5
10.1002/anie.200701125
10.2217/nnm.11.166
10.1016/S0168-3659(99)00090-5
10.1039/c3tb21009j
10.1016/j.micromeso.2014.02.011
10.1021/cs401096c
10.1016/j.biomaterials.2008.07.007
10.1016/j.ymthe.2005.02.010
10.1021/nn100690m
10.1039/b902681a
10.1021/am500701c
10.1039/C2TB00283C
10.1021/nn1015117
10.1002/anie.201308141
10.1038/sj.jid.5700340
10.1016/j.addr.2006.09.008
10.1371/journal.pone.0021770
10.1042/bj1390043
10.1016/S0021-9258(19)83842-5
10.1002/chem.201002782
10.1021/nl401215n
10.1039/c3tb21052a
10.1002/adma.201205292
10.1263/jbb.99.95
10.1039/C3TB21849J
10.1039/C2CS35312A
10.1039/c1jm12407b
10.2217/nnm.11.92
10.1002/chem.200802114
10.1021/nn901398j
10.1039/C1CS15240H
10.1016/S1389-0344(01)00088-0
10.1021/ar400091e
10.1016/S0898-8838(00)51001-0
10.1002/chem.201301802
10.1016/0378-4274(86)90147-5
10.1002/adma.201204685
10.1039/C0JM02012E
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201401559
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
Materials Research Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 4795
ExternalDocumentID 3501871321
10_1002_smll_201401559
25160910
SMLL201401559
ark_67375_WNG_2FK7J9RX_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Taiwan University and the Ministry of Science and Technology (MOST) of Taiwan
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c6179-e52d674aa83d38695ef1aa0c2a12f4f59e74bf3d1eec6616e93198959b36d8d13
IEDL.DBID 33P
ISSN 1613-6810
IngestDate Fri Aug 16 00:53:46 EDT 2024
Fri Aug 16 09:21:33 EDT 2024
Thu Oct 10 16:46:24 EDT 2024
Fri Aug 23 01:08:39 EDT 2024
Sat Sep 28 08:12:41 EDT 2024
Sat Aug 24 00:53:42 EDT 2024
Wed Oct 30 09:52:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords enzymes
protein/enzyme therapy
biomaterials
hollow silica nanospheres
proteins
nanoreactors
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6179-e52d674aa83d38695ef1aa0c2a12f4f59e74bf3d1eec6616e93198959b36d8d13
Notes istex:413DF3C694C80F1E9FFB7073D28A91D2FD25904A
ark:/67375/WNG-2FK7J9RX-2
ArticleID:SMLL201401559
National Taiwan University and the Ministry of Science and Technology (MOST) of Taiwan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25160910
PQID 1626160936
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_1642303897
proquest_miscellaneous_1627078366
proquest_journals_1626160936
crossref_primary_10_1002_smll_201401559
pubmed_primary_25160910
wiley_primary_10_1002_smll_201401559_SMLL201401559
istex_primary_ark_67375_WNG_2FK7J9RX_2
PublicationCentury 2000
PublicationDate 2014-Nov
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References B. R. Lokesh, M. L. Cunningham, Toxicol. Lett. 1986, 34, 75.
C.-J. Tsou, Y. Hung, C.-Y. Mou, Microporous Mesoporous Mater. 2014, 190, 181.
A. C. Hunter, Adv. Drug Delivery Rev. 2006, 58, 1523.
E. Hood, E. Simone, P. Wattamwar, T. Dziubla, V. Muzykantov, Nanomedicine 2011, 6, 1257.
W. Siti, H. P. M. de Hoog, O. Fischer, W. Y. Shan, N. Tomczak, M. Nallani, B. Liedberg, J. Mater. Chem. B 2014, 2, 2733.
S. F. M. van Dongen, M. Nallani, J. L. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, Chem.-Eur. J. 2009, 15, 1107.
F. Chen, H. Hong, Y. Zhang, H. F. Valdovinos, S. Shi, G. S. Kwon, C. P. Theuer, T. E. Barnhart, W. Cai, ACS Nano 2013, 7, 9027.
W. T. Godbey, K. K. Wu, A. G. Mikos, J. Controlled Release 1999, 60, 149.
N. Hadzi-Petrushev, N. Jankulovski, M. Milev, P. Filipovska, H. Gagov, E. Gjorgievska, D. Mitrov, R. Sopi, K. Hristov, M. Mladenov, J. Therm. Biol. 2012, 37, 361.
S. P. Hudson, R. F. Padera, R. Langer, D. S. Kohane, Biomaterials 2008, 29, 4045.
W. I. Lin, C. Y. Lin, Y. S. Lin, S. H. Wu, Y. R. Huang, Y. Hung, C. Chang, C. Y. Mou, J. Mater. Chem. B 2013, 1, 639.
C. J. Tsou, C. Y. Chu, Y. Hung, C. Y. Mou, J. Mater. Chem. B 2013, 1, 5557.
H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J. I. Zink, A. E. Nel, ACS Nano 2010, 4, 4539.
Y. Chen, P. Xu, H. Chen, Y. Li, W. Bu, Z. Shu, J. Zhang, L. Zhang, L. Pan, X. Cui, Z. Hua, J. Wang, J. Shi, Adv. Mater. 2013, 25, 3100.
S. H. Cheng, C. H. Lee, M. C. Chen, J. S. Souris, F. G. Tseng, C. S. Yang, C. Y. Mou, C. T. Chen, L. W. Lo, J. Mater. Chem. 2010, 20, 6149.
X. L. Wang, Z. Li, J. F. Shi, H. Wu, Z. Y. Jiang, W. Y. Zhang, X. K. Song, Q. H. Ai, ACS Catal. 2014, 4, 962.
Y. Chen, H. R. Chen, J. L. Shi, Acc. Chem. Res. 2014, 47, 125.
P. Nicholls, I. Fita, P. C. Loewen, Adv. Inorg. Chem. 2001, 51, 51.
J. Futami, M. Kitazoe, T. Maeda, E. Nukui, M. Sakaguchi, J. Kosaka, M. Miyazaki, M. Kosaka, H. Tada, M. Seno, Y. Sasaki, N. H. Huh, M. Namba, H. Yamada, J. Biosci. Bioeng. 2005, 99, 95.
Q. Yu, T. Wang, X. Zhou, J. Wu, X. Chen, Y. Liu, D. Wu, Q. Zhai, PLoS One 2011, 6, e21770.
C. G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Chem. Soc. Rev. 2012, 41, 2800.
Y. Chen, H. R. Chen, J. L. Shi, Adv. Mater. 2013, 25, 3144.
F. P. Chang, Y. Hung, J. H. Chang, C. H. Lin, C. Y. Mou, ACS Appl. Mater. Interfaces 2014, 6, 6883.
M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512.
S. A. Meeuwissen, A. Rioz-Martinez, G. de Gonzalo, M. W. Fraaije, V. Gotor, J. C. M. van Hest, J. Mater. Chem. 2011, 21, 18 923.
S.-H. Wu, C.-Y. Mou, H.-P. Lin, Chem. Soc. Rev. 2013, 42, 3862.
M. Perez-Lorenzo, B. Vaz, V. Salgueirino, M. A. Correa-Duarte, Chem. Eur. J. 2013, 19, 12 196.
Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng, J. Shi, ACS Nano 2010, 4, 6001.
D. R. Bickers, M. Athar, J. Invest. Dermatol. 2006, 126, 2565.
Y.-S. Lin, S.-H. Wu, C.-T. Tseng, Y. Hung, C. Chang, C.-Y. Mou, Chem. Commun. 2009, 3542.
S. H. Wu, C. T. Tseng, Y. S. Lin, C. H. Lin, Y. Hung, C. Y. Mou, J. Mater. Chem. 2011, 21, 789.
Y. C. Fang, Y. P. Chen, C. T. Chen, T. S. Lin, C. Y. Mou, J. Mater. Chem. B 2013, 1, 6042.
R. C. Bray, S. A. Cockle, E. M. Fielden, P. B. Roberts, G. Rotilio, L. Calabres, Biochem. J. 1974, 139, 43.
P. Tanner, O. Onaca, V. Balasubramanian, W. Meier, C. G. Palivan, Chem.-Eur. J. 2011, 17, 4552.
H. Baumler, R. Georgieva, Biomacromolecules 2010, 11, 1480.
J. M. Rosenholm, V. Mamaeva, C. Sahlgren, M. Linden, Nanomedicine 2012, 7, 111.
Y. Kono, I. Fridovich, J. Biol. Chem. 1982, 257, 5751.
Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, ACS Nano 2010, 4, 529.
P. Tanner, S. Egli, V. Balasubramanian, O. Onaca, C. G. Palivan, W. Meier, FEBS Lett. 2011, 585, 1699.
R. J. R. W. Peters, M. Marguet, S. Marais, M. W. Fraaije, J. C. M. van Hest, S. Lecommandoux, Angew. Chem., Int. Ed. 2014, 53, 146.
S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, A. Szewczyk, Mol. Ther. 2005, 11, 990.
J. M. McCord, I. Fridovich, J. Biol. Chem. 1969, 244, 6049.
P. Walde, S. Ichikawa, Biomol. Eng. 2001, 18, 143.
D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, N. S. Hatzakis, S. M. Kuiper, R. J. M. Nolte, A. E. Rowan, J. C. M. van Hest, Angew. Chem., Int. Ed. 2007, 46, 7378.
P. Tanner, V. Balasubramanian, C. G. Palivan, Nano Lett. 2013, 13, 2875.
2010; 11
2013; 25
2013; 1
1986; 34
2013; 42
2006; 58
2014; 190
2009
2014; 47
2012; 37
2011; 17
2013; 7
1999; 60
2011; 6
1969; 244
2013; 19
2010; 20
2014; 4
2014; 2
2013; 13
2008; 29
1974; 139
2011; 21
2001; 18
1982; 257
2012; 7
2006; 126
2014; 6
2010; 4
2011; 585
2007; 46
2001; 51
2005; 99
2005; 11
2009; 15
2012; 41
2014; 53
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
Kono Y. (e_1_2_6_38_1) 1982; 257
References_xml – volume: 47
  start-page: 125
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 6149
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 6883
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 962
  year: 2014
  publication-title: ACS Catal.
– volume: 13
  start-page: 2875
  year: 2013
  publication-title: Nano Lett.
– volume: 42
  start-page: 3862
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1257
  year: 2011
  publication-title: Nanomedicine
– volume: 42
  start-page: 512
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 5557
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 529
  year: 2010
  publication-title: ACS Nano
– volume: 190
  start-page: 181
  year: 2014
  publication-title: Microporous Mesoporous Mater.
– volume: 7
  start-page: 111
  year: 2012
  publication-title: Nanomedicine
– volume: 37
  start-page: 361
  year: 2012
  publication-title: J. Therm. Biol.
– volume: 41
  start-page: 2800
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 143
  year: 2001
  publication-title: Biomol. Eng.
– volume: 29
  start-page: 4045
  year: 2008
  publication-title: Biomaterials
– volume: 6
  start-page: e21770
  year: 2011
  publication-title: PLoS One
– volume: 51
  start-page: 51
  year: 2001
  publication-title: Adv. Inorg. Chem.
– volume: 1
  start-page: 6042
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 19
  start-page: 12 196
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 244
  start-page: 6049
  year: 1969
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 789
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 139
  start-page: 43
  year: 1974
  publication-title: Biochem. J.
– volume: 7
  start-page: 9027
  year: 2013
  publication-title: ACS Nano
– volume: 2
  start-page: 2733
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 4539
  year: 2010
  publication-title: ACS Nano
– volume: 46
  start-page: 7378
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– start-page: 3542
  year: 2009
  publication-title: Chem. Commun.
– volume: 126
  start-page: 2565
  year: 2006
  publication-title: J. Invest. Dermatol.
– volume: 585
  start-page: 1699
  year: 2011
  publication-title: FEBS Lett.
– volume: 11
  start-page: 990
  year: 2005
  publication-title: Mol. Ther.
– volume: 15
  start-page: 1107
  year: 2009
  publication-title: Chem.‐Eur. J.
– volume: 4
  start-page: 6001
  year: 2010
  publication-title: ACS Nano
– volume: 11
  start-page: 1480
  year: 2010
  publication-title: Biomacromolecules
– volume: 21
  start-page: 18 923
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 25
  start-page: 3100
  year: 2013
  publication-title: Adv. Mater.
– volume: 1
  start-page: 639
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 53
  start-page: 146
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 4552
  year: 2011
  publication-title: Chem.‐Eur. J.
– volume: 25
  start-page: 3144
  year: 2013
  publication-title: Adv. Mater.
– volume: 60
  start-page: 149
  year: 1999
  publication-title: J. Controlled Release
– volume: 257
  start-page: 5751
  year: 1982
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 95
  year: 2005
  publication-title: J. Biosci. Bioeng.
– volume: 58
  start-page: 1523
  year: 2006
  publication-title: Adv. Drug Delivery Rev.
– volume: 34
  start-page: 75
  year: 1986
  publication-title: Toxicol. Lett.
– ident: e_1_2_6_42_1
  doi: 10.1039/c3cs35405a
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jtherbio.2011.12.013
– ident: e_1_2_6_5_1
  doi: 10.1021/bm1001125
– ident: e_1_2_6_15_1
  doi: 10.1021/nn403617j
– ident: e_1_2_6_43_1
  doi: 10.1039/c0jm00645a
– ident: e_1_2_6_2_1
  doi: 10.1016/j.febslet.2011.05.003
– ident: e_1_2_6_45_1
  doi: 10.1016/S0021-9258(18)63504-5
– ident: e_1_2_6_9_1
  doi: 10.1002/anie.200701125
– ident: e_1_2_6_16_1
  doi: 10.2217/nnm.11.166
– ident: e_1_2_6_31_1
  doi: 10.1016/S0168-3659(99)00090-5
– ident: e_1_2_6_19_1
  doi: 10.1039/c3tb21009j
– ident: e_1_2_6_20_1
  doi: 10.1016/j.micromeso.2014.02.011
– ident: e_1_2_6_12_1
  doi: 10.1021/cs401096c
– ident: e_1_2_6_17_1
  doi: 10.1016/j.biomaterials.2008.07.007
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ymthe.2005.02.010
– ident: e_1_2_6_34_1
  doi: 10.1021/nn100690m
– ident: e_1_2_6_44_1
  doi: 10.1039/b902681a
– ident: e_1_2_6_13_1
  doi: 10.1021/am500701c
– ident: e_1_2_6_21_1
  doi: 10.1039/C2TB00283C
– ident: e_1_2_6_25_1
  doi: 10.1021/nn1015117
– ident: e_1_2_6_4_1
  doi: 10.1002/anie.201308141
– ident: e_1_2_6_39_1
  doi: 10.1038/sj.jid.5700340
– ident: e_1_2_6_32_1
  doi: 10.1016/j.addr.2006.09.008
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0021770
– ident: e_1_2_6_35_1
  doi: 10.1042/bj1390043
– volume: 257
  start-page: 5751
  year: 1982
  ident: e_1_2_6_38_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)83842-5
  contributor:
    fullname: Kono Y.
– ident: e_1_2_6_7_1
  doi: 10.1002/chem.201002782
– ident: e_1_2_6_28_1
  doi: 10.1021/nl401215n
– ident: e_1_2_6_40_1
  doi: 10.1039/c3tb21052a
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.201205292
– ident: e_1_2_6_30_1
  doi: 10.1263/jbb.99.95
– ident: e_1_2_6_10_1
  doi: 10.1039/C3TB21849J
– ident: e_1_2_6_11_1
  doi: 10.1039/C2CS35312A
– ident: e_1_2_6_8_1
  doi: 10.1039/c1jm12407b
– ident: e_1_2_6_27_1
  doi: 10.2217/nnm.11.92
– ident: e_1_2_6_6_1
  doi: 10.1002/chem.200802114
– ident: e_1_2_6_23_1
  doi: 10.1021/nn901398j
– ident: e_1_2_6_1_1
  doi: 10.1039/C1CS15240H
– ident: e_1_2_6_3_1
  doi: 10.1016/S1389-0344(01)00088-0
– ident: e_1_2_6_22_1
  doi: 10.1021/ar400091e
– ident: e_1_2_6_26_1
  doi: 10.1016/S0898-8838(00)51001-0
– ident: e_1_2_6_18_1
  doi: 10.1002/chem.201301802
– ident: e_1_2_6_37_1
  doi: 10.1016/0378-4274(86)90147-5
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.201204685
– ident: e_1_2_6_14_1
  doi: 10.1039/C0JM02012E
SSID ssj0031247
Score 2.4811788
Snippet An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres...
An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 4785
SubjectTerms biomaterials
Cascades
Catalase
Catalase - metabolism
Encapsulation
Enzymes
hollow silica nanospheres
Microscopy, Electron, Transmission
nanoreactors
Nanospheres
Nanostructure
Nanotechnology
protein/enzyme therapy
proteins
Silicon dioxide
Silicon Dioxide - chemistry
Superoxide dismutase
Superoxide Dismutase - metabolism
Title Intracellular Implantation of Enzymes in Hollow Silica Nanospheres for Protein Therapy: Cascade System of Superoxide Dismutase and Catalase
URI https://api.istex.fr/ark:/67375/WNG-2FK7J9RX-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201401559
https://www.ncbi.nlm.nih.gov/pubmed/25160910
https://www.proquest.com/docview/1626160936
https://search.proquest.com/docview/1627078366
https://search.proquest.com/docview/1642303897
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgXOBQvmmgICMhOEVN7MROuKF2lwVKVbFF9GZNYlta0U2qpqu2_AX-NDPxbmAlBBLckngcOfaM_TyZeWbsRQ1J5jy4GNK0irPU13Fhcx1XvrIWvE10Ta7syVQfHBd7I6LJGbL4Az_E4HAjy-jnazJwqLqdn6Sh3fyEfh3QBgFRMU7CeNXncMjD1VQscfHqT1fBNSsm4q0Va2Midtarr61KN6iDL38HOdcRbL8EjW__f-PvsM0l_ORvgr7cZddcc4_d-oWU8D77_o78veTQpwhVTvTBEPKTGt56Pmq-Xc1dx2cNn6AOtRd8OiPHH8d5uu2IpAALEQnzQ2KAQKmjwFvwmu9CR8H4PJCk07umC6Ipv5zhw71ZN6fwcMehsSh6Tvmd7gH7PB4d7U7i5ZENcY1QqIxdLqzSGUAhrSxUmTufAiS1gFT4zOel01nlpU2dqxEZKFdKCtrKy0oqW9hUPmQbTdu4LcZtXXlRQA2kTqBK0HlpdSKc0yALryP2ajVk5jQwc5jAwSwMda8ZujdiL_sRHcTg7CvFs-ncfDl4a8T4g35ffjo2ImLbqyE3S1PuTIpbvlQlpVQRez4UoxHSQEDj2kUvQ6xJUv1RBpEr0Rliyx8FdRoahCBTEXCLmOi15i8fZKYf9_eHu8f_UukJu0nXIatym22cny3cU3a9s4tnvQn9AD7eHco
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbY9gA8MH4TGGAkBE_REjuxY96mraVjXTXRIvZmXWJbqqAJWlYx-Bf2T8-XNBmVEEiIx9jnyLHv7M-Xu8-EvC4gSqwDG0Ic52ESuyLMTCrD3OXGgDORLNCVPZrKyWl2MECanL0uF6blh-gdbmgZzXqNBo4O6d1r1tB68RX_HeAJwcPiDbKViETh7Q2cn3SLMffbV3O_it-1QqTe6ngbI7a73n5tX9rCIb74Hehcx7DNJjTc_g_dv0vurBAo3WtV5h65Ycv75PYvvIQPyOUhunzRp49BqhQZhKFNUSpp5eig_PljYWs6L-nIq1H1nU7n6PujfqmuauQp8JUeDNMTJIHwUrOWuuAd3Yca4_Fpy5OO75oukan8Yu4LD-b1AiPELYXSeNFzTPG0D8mn4WC2PwpXtzaEhUdDKrQpM0ImABk3PBMqtS4GiAoGMXOJS5WVSe64ia0tPDgQVnGM20pVzoXJTMwfkc2yKu0TQk2RO5ZBAahRIBTIVBkZMWsl8MzJgLzt5kx_a8k5dEvDzDQOr-6HNyBvmintxeDsC4a0yVR_nrzXbHgkP6iPp5oFZKebc72y5lrH_tQXi0hxEZBXfbW3Q5wIKG21bGSQOImLP8p48IqMhr7nj1t96jvkcaZA7BYQ1qjNXz5IT4_H4_7p6b80eklujmbHYz0-nBw9I7ewvE2y3CGb52dL-5xs1Gb5orGnKyYPIes
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xTULwwPg1CAwwEoKnaImdxAlv09rSsVJVdIi9WZfYlqqtybSsYvAv7J-eL2kDlRBI8Bj7HDn2nf35cvcZ4E2BQWQsGh_DMPej0BZ-qmPp5zbXGq0OZEGu7OFUjk_SXp9ocros_pYfonO4kWU06zUZ-Lm2ez9JQ-v5Gf06oAOCQ8UbsBURFqckDjFZrcXC7V7N9Spu0_KJeWtF2xjwvfX2a9vSFo3w1e8w5zqEbfagwfb_9_4-3FviT7bfKswDuGXKh3D3F1bCR3B9SA5f8uhTiCoj_mBsE5RKVlnWL398n5uazUo2dEpUfWPTGXn-mFuoq5pYClylg8JsQhQQTuq4JS54zw6wpmh81rKk07umC-Ipv5q5wt6snlN8uGFYaid6SQme5jF8GfSPD4b-8s4Gv3BYKPNNzHUiI8RUaJEmWWxsiBgUHENuIxtnRka5FTo0pnDQIDGZoKitOMtFolMdih3YLKvSPAWmi9zyFAskfcIkQxlnWgbcGIkitdKDd6spU-ctNYdqSZi5ouFV3fB68LaZ0U4ML04poE3G6uv4g-KDI_kx-3yiuAe7qylXS1uuVejOfGESZCLx4HVX7ayQJgJLUy0aGaJNEskfZRx0JT5D1_MnrTp1HXIoMyHk5gFvtOYvH6Smn0aj7unZvzR6BbcnvYEaHY6PnsMdKm4zLHdh8_JiYV7ARq0XLxtrugGevyCa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+Implantation+of+Enzymes+in+Hollow+Silica+Nanospheres+for+Protein+Therapy%3A+Cascade+System+of+Superoxide+Dismutase+and+Catalase&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chang%2C+Feng%E2%80%90Peng&rft.au=Chen%2C+Yi%E2%80%90Ping&rft.au=Mou%2C+Chung%E2%80%90Yuan&rft.date=2014-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=10&rft.issue=22&rft.spage=4785&rft.epage=4795&rft_id=info:doi/10.1002%2Fsmll.201401559&rft.externalDBID=10.1002%252Fsmll.201401559&rft.externalDocID=SMLL201401559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon