Intracellular Implantation of Enzymes in Hollow Silica Nanospheres for Protein Therapy: Cascade System of Superoxide Dismutase and Catalase
An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) mod...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 22; pp. 4785 - 4795 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Blackwell Publishing Ltd
01-11-2014
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI‐grafted superoxide dismutase (PEI‐SOD) and catalase (PEI‐CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI‐SOD@HSN are found and transformation of H2O2 to water by PEI‐CAT@HSN. When PEI‐SOD and PEI‐CAT are co‐encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX‐2/p‐p38 expression show that co‐encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N′‐dimethyl‐4,4′‐bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT‐encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions.
Superoxide dismutase and catalase encapsulated in hollow silica nanospheres as a nanoreactor results in cascade reactions converting superoxide ions into water and oxygen. Upon uptake in Hela cells, the nanoreactor protects the cell against reactive oxygen species. |
---|---|
AbstractList | An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI‐grafted superoxide dismutase (PEI‐SOD) and catalase (PEI‐CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI‐SOD@HSN are found and transformation of H2O2 to water by PEI‐CAT@HSN. When PEI‐SOD and PEI‐CAT are co‐encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX‐2/p‐p38 expression show that co‐encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N′‐dimethyl‐4,4′‐bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT‐encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions.
Superoxide dismutase and catalase encapsulated in hollow silica nanospheres as a nanoreactor results in cascade reactions converting superoxide ions into water and oxygen. Upon uptake in Hela cells, the nanoreactor protects the cell against reactive oxygen species. An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SODSN are found and transformation of H sub(2)O sub(2) to water by PEI-CATSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'- bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. Superoxide dismutase and catalase encapsulated in hollow silica nanospheres as a nanoreactor results in cascade reactions converting superoxide ions into water and oxygen. Upon uptake in Hela cells, the nanoreactor protects the cell against reactive oxygen species. An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol–gel templating of water‐in‐oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI‐grafted superoxide dismutase (PEI‐SOD) and catalase (PEI‐CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI‐SOD@HSN are found and transformation of H 2 O 2 to water by PEI‐CAT@HSN. When PEI‐SOD and PEI‐CAT are co‐encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX‐2/p‐p38 expression show that co‐encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N , N ′‐dimethyl‐4,4′‐bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT‐encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. |
Author | Chang, Feng-Peng Chen, Yi-Ping Mou, Chung-Yuan |
Author_xml | – sequence: 1 givenname: Feng-Peng surname: Chang fullname: Chang, Feng-Peng organization: Department of Chemistry, National Taiwan University, 106, Taipei, Taiwan – sequence: 2 givenname: Yi-Ping surname: Chen fullname: Chen, Yi-Ping organization: Research Center for Applied Sciences Academia Sinica, 115, Taipei, Taiwan – sequence: 3 givenname: Chung-Yuan surname: Mou fullname: Mou, Chung-Yuan email: cymou@ntu.edu.tw organization: Department of Chemistry, National Taiwan University, 106, Taipei, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25160910$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcuO1DAQRSM0iHnAliWyxIZNGj8SJ2aHel4NzYDoQbCzqpOKyODYwU40E36Bn8ZRDy3EBlblKp97pap7nBxYZzFJnjK6YJTyl6EzZsEpyyjLc_UgOWKSiVSWXB3s34weJsch3FAqGM-KR8khz5mkitGj5OfKDh4qNGY04Mmq6w3YAYbWWeIacmZ_TB0G0lpy6Yxxt2TTmrYCcgXWhf4r-vjZOE8-eDdgpK7jCPrpFVlCqKBGspnCgN3stRl79O6ujcPTNnTjAAEJ2DqiA5jYPE4eNmACPrmvJ8mn87Pr5WW6fn-xWr5ep5VkhUox57UsMoBS1KKUKseGAdCKA-NN1uQKi2zbiJohVlIyiUowVapcbYWsy5qJk-TFzrf37vuIYdBdG-YTgEU3Bs1kxgUVpSr-A-UFLUohZUSf_4XeuNHbuMhMyfngYqYWO6ryLgSPje5924GfNKN6TlTPiep9olHw7N523HZY7_HfEUZA7YDb1uD0Dzu9ebde_2me7rRtDOlurwX_TctCFLn-fHWh-fnb4o36-EVz8Qvpgb7z |
CitedBy_id | crossref_primary_10_1002_adma_201602111 crossref_primary_10_1021_acs_chemrev_6b00374 crossref_primary_10_1039_C9NR02584G crossref_primary_10_1039_C9BM00913B crossref_primary_10_1016_j_mtchem_2022_101298 crossref_primary_10_1016_j_tibtech_2015_12_015 crossref_primary_10_1021_acsami_6b11324 crossref_primary_10_1002_smll_202101455 crossref_primary_10_1021_acsami_7b00240 crossref_primary_10_1016_j_addr_2017_09_006 crossref_primary_10_1021_acs_jpcc_8b03271 crossref_primary_10_1039_D1BM01106E crossref_primary_10_1016_j_micromeso_2017_10_034 crossref_primary_10_1016_j_biomaterials_2022_121437 crossref_primary_10_1021_acsapm_9b00308 crossref_primary_10_1039_D0NR07148J crossref_primary_10_1021_jacs_0c00285 crossref_primary_10_1016_j_biotechadv_2021_107798 crossref_primary_10_1021_acs_chemmater_1c00123 crossref_primary_10_1039_C5CC03025K crossref_primary_10_1016_j_jinorgbio_2020_111050 crossref_primary_10_1038_s41598_021_83819_4 crossref_primary_10_1021_acsami_0c05588 crossref_primary_10_1002_anie_202216966 crossref_primary_10_1016_j_cis_2023_103037 crossref_primary_10_1021_acsmaterialslett_2c00580 crossref_primary_10_1039_C4CP05605A crossref_primary_10_1002_chem_201801159 crossref_primary_10_1038_s41392_022_01298_z crossref_primary_10_1002_adhm_201700759 crossref_primary_10_1002_adma_202105670 crossref_primary_10_1007_s12010_018_2896_y crossref_primary_10_1002_adhm_201700917 crossref_primary_10_2217_nnm_2019_0166 crossref_primary_10_1016_j_bej_2022_108416 crossref_primary_10_1021_acscatal_8b04921 crossref_primary_10_1016_j_cis_2016_08_001 crossref_primary_10_1016_j_jcis_2019_08_063 crossref_primary_10_1021_acscatal_0c04488 crossref_primary_10_1039_D1TB02540F crossref_primary_10_1039_C5RA16023E crossref_primary_10_1177_2211068216630743 crossref_primary_10_1021_acs_jpcb_9b08799 crossref_primary_10_1186_s11671_023_03926_1 crossref_primary_10_1002_fsn3_3307 crossref_primary_10_1039_C6NR07598C crossref_primary_10_1039_C5NR01395J crossref_primary_10_1002_smll_201906493 crossref_primary_10_1007_s41061_017_0151_6 crossref_primary_10_1039_C8NR09204D crossref_primary_10_1039_C6TB01355D crossref_primary_10_1038_s41929_020_0433_1 crossref_primary_10_1080_10837450_2018_1457051 crossref_primary_10_1016_j_ceramint_2024_02_071 crossref_primary_10_1021_acsami_1c19457 crossref_primary_10_1039_C4TB02102A crossref_primary_10_1021_acsnano_4c03421 crossref_primary_10_1039_D3RA05020C crossref_primary_10_1002_advs_201800801 crossref_primary_10_1002_ange_201813066 crossref_primary_10_1002_adfm_201703814 crossref_primary_10_1002_smll_202202294 crossref_primary_10_1002_nano_202100040 crossref_primary_10_1002_ppsc_201900484 crossref_primary_10_1016_j_foodchem_2020_126851 crossref_primary_10_1186_s11671_018_2527_0 crossref_primary_10_1021_acsami_6b05834 crossref_primary_10_1007_s40843_021_1706_4 crossref_primary_10_1021_acsami_9b02797 crossref_primary_10_1021_acsami_0c19633 crossref_primary_10_1002_cbic_201700502 crossref_primary_10_1039_C7CC00300E crossref_primary_10_1039_C6RA05494C crossref_primary_10_1002_adhm_201601141 crossref_primary_10_1002_anie_201813066 crossref_primary_10_1039_C7TB00351J crossref_primary_10_1038_s41598_019_47927_6 crossref_primary_10_1039_D4TB00307A crossref_primary_10_1002_ange_202216966 crossref_primary_10_2174_1381612829666221216114912 crossref_primary_10_1021_acsomega_7b01234 crossref_primary_10_1021_acscatal_6b01302 |
Cites_doi | 10.1039/c3cs35405a 10.1016/j.jtherbio.2011.12.013 10.1021/bm1001125 10.1021/nn403617j 10.1039/c0jm00645a 10.1016/j.febslet.2011.05.003 10.1016/S0021-9258(18)63504-5 10.1002/anie.200701125 10.2217/nnm.11.166 10.1016/S0168-3659(99)00090-5 10.1039/c3tb21009j 10.1016/j.micromeso.2014.02.011 10.1021/cs401096c 10.1016/j.biomaterials.2008.07.007 10.1016/j.ymthe.2005.02.010 10.1021/nn100690m 10.1039/b902681a 10.1021/am500701c 10.1039/C2TB00283C 10.1021/nn1015117 10.1002/anie.201308141 10.1038/sj.jid.5700340 10.1016/j.addr.2006.09.008 10.1371/journal.pone.0021770 10.1042/bj1390043 10.1016/S0021-9258(19)83842-5 10.1002/chem.201002782 10.1021/nl401215n 10.1039/c3tb21052a 10.1002/adma.201205292 10.1263/jbb.99.95 10.1039/C3TB21849J 10.1039/C2CS35312A 10.1039/c1jm12407b 10.2217/nnm.11.92 10.1002/chem.200802114 10.1021/nn901398j 10.1039/C1CS15240H 10.1016/S1389-0344(01)00088-0 10.1021/ar400091e 10.1016/S0898-8838(00)51001-0 10.1002/chem.201301802 10.1016/0378-4274(86)90147-5 10.1002/adma.201204685 10.1039/C0JM02012E |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
DOI | 10.1002/smll.201401559 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 4795 |
ExternalDocumentID | 3501871321 10_1002_smll_201401559 25160910 SMLL201401559 ark_67375_WNG_2FK7J9RX_2 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Taiwan University and the Ministry of Science and Technology (MOST) of Taiwan |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c6179-e52d674aa83d38695ef1aa0c2a12f4f59e74bf3d1eec6616e93198959b36d8d13 |
IEDL.DBID | 33P |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 00:53:46 EDT 2024 Fri Aug 16 09:21:33 EDT 2024 Thu Oct 10 16:46:24 EDT 2024 Fri Aug 23 01:08:39 EDT 2024 Sat Sep 28 08:12:41 EDT 2024 Sat Aug 24 00:53:42 EDT 2024 Wed Oct 30 09:52:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | enzymes protein/enzyme therapy biomaterials hollow silica nanospheres proteins nanoreactors |
Language | English |
License | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6179-e52d674aa83d38695ef1aa0c2a12f4f59e74bf3d1eec6616e93198959b36d8d13 |
Notes | istex:413DF3C694C80F1E9FFB7073D28A91D2FD25904A ark:/67375/WNG-2FK7J9RX-2 ArticleID:SMLL201401559 National Taiwan University and the Ministry of Science and Technology (MOST) of Taiwan ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25160910 |
PQID | 1626160936 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1642303897 proquest_miscellaneous_1627078366 proquest_journals_1626160936 crossref_primary_10_1002_smll_201401559 pubmed_primary_25160910 wiley_primary_10_1002_smll_201401559_SMLL201401559 istex_primary_ark_67375_WNG_2FK7J9RX_2 |
PublicationCentury | 2000 |
PublicationDate | 2014-Nov |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-Nov |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | B. R. Lokesh, M. L. Cunningham, Toxicol. Lett. 1986, 34, 75. C.-J. Tsou, Y. Hung, C.-Y. Mou, Microporous Mesoporous Mater. 2014, 190, 181. A. C. Hunter, Adv. Drug Delivery Rev. 2006, 58, 1523. E. Hood, E. Simone, P. Wattamwar, T. Dziubla, V. Muzykantov, Nanomedicine 2011, 6, 1257. W. Siti, H. P. M. de Hoog, O. Fischer, W. Y. Shan, N. Tomczak, M. Nallani, B. Liedberg, J. Mater. Chem. B 2014, 2, 2733. S. F. M. van Dongen, M. Nallani, J. L. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, Chem.-Eur. J. 2009, 15, 1107. F. Chen, H. Hong, Y. Zhang, H. F. Valdovinos, S. Shi, G. S. Kwon, C. P. Theuer, T. E. Barnhart, W. Cai, ACS Nano 2013, 7, 9027. W. T. Godbey, K. K. Wu, A. G. Mikos, J. Controlled Release 1999, 60, 149. N. Hadzi-Petrushev, N. Jankulovski, M. Milev, P. Filipovska, H. Gagov, E. Gjorgievska, D. Mitrov, R. Sopi, K. Hristov, M. Mladenov, J. Therm. Biol. 2012, 37, 361. S. P. Hudson, R. F. Padera, R. Langer, D. S. Kohane, Biomaterials 2008, 29, 4045. W. I. Lin, C. Y. Lin, Y. S. Lin, S. H. Wu, Y. R. Huang, Y. Hung, C. Chang, C. Y. Mou, J. Mater. Chem. B 2013, 1, 639. C. J. Tsou, C. Y. Chu, Y. Hung, C. Y. Mou, J. Mater. Chem. B 2013, 1, 5557. H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J. I. Zink, A. E. Nel, ACS Nano 2010, 4, 4539. Y. Chen, P. Xu, H. Chen, Y. Li, W. Bu, Z. Shu, J. Zhang, L. Zhang, L. Pan, X. Cui, Z. Hua, J. Wang, J. Shi, Adv. Mater. 2013, 25, 3100. S. H. Cheng, C. H. Lee, M. C. Chen, J. S. Souris, F. G. Tseng, C. S. Yang, C. Y. Mou, C. T. Chen, L. W. Lo, J. Mater. Chem. 2010, 20, 6149. X. L. Wang, Z. Li, J. F. Shi, H. Wu, Z. Y. Jiang, W. Y. Zhang, X. K. Song, Q. H. Ai, ACS Catal. 2014, 4, 962. Y. Chen, H. R. Chen, J. L. Shi, Acc. Chem. Res. 2014, 47, 125. P. Nicholls, I. Fita, P. C. Loewen, Adv. Inorg. Chem. 2001, 51, 51. J. Futami, M. Kitazoe, T. Maeda, E. Nukui, M. Sakaguchi, J. Kosaka, M. Miyazaki, M. Kosaka, H. Tada, M. Seno, Y. Sasaki, N. H. Huh, M. Namba, H. Yamada, J. Biosci. Bioeng. 2005, 99, 95. Q. Yu, T. Wang, X. Zhou, J. Wu, X. Chen, Y. Liu, D. Wu, Q. Zhai, PLoS One 2011, 6, e21770. C. G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Chem. Soc. Rev. 2012, 41, 2800. Y. Chen, H. R. Chen, J. L. Shi, Adv. Mater. 2013, 25, 3144. F. P. Chang, Y. Hung, J. H. Chang, C. H. Lin, C. Y. Mou, ACS Appl. Mater. Interfaces 2014, 6, 6883. M. Marguet, C. Bonduelle, S. Lecommandoux, Chem. Soc. Rev. 2013, 42, 512. S. A. Meeuwissen, A. Rioz-Martinez, G. de Gonzalo, M. W. Fraaije, V. Gotor, J. C. M. van Hest, J. Mater. Chem. 2011, 21, 18 923. S.-H. Wu, C.-Y. Mou, H.-P. Lin, Chem. Soc. Rev. 2013, 42, 3862. M. Perez-Lorenzo, B. Vaz, V. Salgueirino, M. A. Correa-Duarte, Chem. Eur. J. 2013, 19, 12 196. Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng, J. Shi, ACS Nano 2010, 4, 6001. D. R. Bickers, M. Athar, J. Invest. Dermatol. 2006, 126, 2565. Y.-S. Lin, S.-H. Wu, C.-T. Tseng, Y. Hung, C. Chang, C.-Y. Mou, Chem. Commun. 2009, 3542. S. H. Wu, C. T. Tseng, Y. S. Lin, C. H. Lin, Y. Hung, C. Y. Mou, J. Mater. Chem. 2011, 21, 789. Y. C. Fang, Y. P. Chen, C. T. Chen, T. S. Lin, C. Y. Mou, J. Mater. Chem. B 2013, 1, 6042. R. C. Bray, S. A. Cockle, E. M. Fielden, P. B. Roberts, G. Rotilio, L. Calabres, Biochem. J. 1974, 139, 43. P. Tanner, O. Onaca, V. Balasubramanian, W. Meier, C. G. Palivan, Chem.-Eur. J. 2011, 17, 4552. H. Baumler, R. Georgieva, Biomacromolecules 2010, 11, 1480. J. M. Rosenholm, V. Mamaeva, C. Sahlgren, M. Linden, Nanomedicine 2012, 7, 111. Y. Kono, I. Fridovich, J. Biol. Chem. 1982, 257, 5751. Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, ACS Nano 2010, 4, 529. P. Tanner, S. Egli, V. Balasubramanian, O. Onaca, C. G. Palivan, W. Meier, FEBS Lett. 2011, 585, 1699. R. J. R. W. Peters, M. Marguet, S. Marais, M. W. Fraaije, J. C. M. van Hest, S. Lecommandoux, Angew. Chem., Int. Ed. 2014, 53, 146. S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, A. Szewczyk, Mol. Ther. 2005, 11, 990. J. M. McCord, I. Fridovich, J. Biol. Chem. 1969, 244, 6049. P. Walde, S. Ichikawa, Biomol. Eng. 2001, 18, 143. D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, N. S. Hatzakis, S. M. Kuiper, R. J. M. Nolte, A. E. Rowan, J. C. M. van Hest, Angew. Chem., Int. Ed. 2007, 46, 7378. P. Tanner, V. Balasubramanian, C. G. Palivan, Nano Lett. 2013, 13, 2875. 2010; 11 2013; 25 2013; 1 1986; 34 2013; 42 2006; 58 2014; 190 2009 2014; 47 2012; 37 2011; 17 2013; 7 1999; 60 2011; 6 1969; 244 2013; 19 2010; 20 2014; 4 2014; 2 2013; 13 2008; 29 1974; 139 2011; 21 2001; 18 1982; 257 2012; 7 2006; 126 2014; 6 2010; 4 2011; 585 2007; 46 2001; 51 2005; 99 2005; 11 2009; 15 2012; 41 2014; 53 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_26_1 Kono Y. (e_1_2_6_38_1) 1982; 257 |
References_xml | – volume: 47 start-page: 125 year: 2014 publication-title: Acc. Chem. Res. – volume: 20 start-page: 6149 year: 2010 publication-title: J. Mater. Chem. – volume: 6 start-page: 6883 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 962 year: 2014 publication-title: ACS Catal. – volume: 13 start-page: 2875 year: 2013 publication-title: Nano Lett. – volume: 42 start-page: 3862 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1257 year: 2011 publication-title: Nanomedicine – volume: 42 start-page: 512 year: 2013 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 5557 year: 2013 publication-title: J. Mater. Chem. B – volume: 4 start-page: 529 year: 2010 publication-title: ACS Nano – volume: 190 start-page: 181 year: 2014 publication-title: Microporous Mesoporous Mater. – volume: 7 start-page: 111 year: 2012 publication-title: Nanomedicine – volume: 37 start-page: 361 year: 2012 publication-title: J. Therm. Biol. – volume: 41 start-page: 2800 year: 2012 publication-title: Chem. Soc. Rev. – volume: 18 start-page: 143 year: 2001 publication-title: Biomol. Eng. – volume: 29 start-page: 4045 year: 2008 publication-title: Biomaterials – volume: 6 start-page: e21770 year: 2011 publication-title: PLoS One – volume: 51 start-page: 51 year: 2001 publication-title: Adv. Inorg. Chem. – volume: 1 start-page: 6042 year: 2013 publication-title: J. Mater. Chem. B – volume: 19 start-page: 12 196 year: 2013 publication-title: Chem. Eur. J. – volume: 244 start-page: 6049 year: 1969 publication-title: J. Biol. Chem. – volume: 21 start-page: 789 year: 2011 publication-title: J. Mater. Chem. – volume: 139 start-page: 43 year: 1974 publication-title: Biochem. J. – volume: 7 start-page: 9027 year: 2013 publication-title: ACS Nano – volume: 2 start-page: 2733 year: 2014 publication-title: J. Mater. Chem. B – volume: 4 start-page: 4539 year: 2010 publication-title: ACS Nano – volume: 46 start-page: 7378 year: 2007 publication-title: Angew. Chem., Int. Ed. – start-page: 3542 year: 2009 publication-title: Chem. Commun. – volume: 126 start-page: 2565 year: 2006 publication-title: J. Invest. Dermatol. – volume: 585 start-page: 1699 year: 2011 publication-title: FEBS Lett. – volume: 11 start-page: 990 year: 2005 publication-title: Mol. Ther. – volume: 15 start-page: 1107 year: 2009 publication-title: Chem.‐Eur. J. – volume: 4 start-page: 6001 year: 2010 publication-title: ACS Nano – volume: 11 start-page: 1480 year: 2010 publication-title: Biomacromolecules – volume: 21 start-page: 18 923 year: 2011 publication-title: J. Mater. Chem. – volume: 25 start-page: 3100 year: 2013 publication-title: Adv. Mater. – volume: 1 start-page: 639 year: 2013 publication-title: J. Mater. Chem. B – volume: 53 start-page: 146 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 4552 year: 2011 publication-title: Chem.‐Eur. J. – volume: 25 start-page: 3144 year: 2013 publication-title: Adv. Mater. – volume: 60 start-page: 149 year: 1999 publication-title: J. Controlled Release – volume: 257 start-page: 5751 year: 1982 publication-title: J. Biol. Chem. – volume: 99 start-page: 95 year: 2005 publication-title: J. Biosci. Bioeng. – volume: 58 start-page: 1523 year: 2006 publication-title: Adv. Drug Delivery Rev. – volume: 34 start-page: 75 year: 1986 publication-title: Toxicol. Lett. – ident: e_1_2_6_42_1 doi: 10.1039/c3cs35405a – ident: e_1_2_6_36_1 doi: 10.1016/j.jtherbio.2011.12.013 – ident: e_1_2_6_5_1 doi: 10.1021/bm1001125 – ident: e_1_2_6_15_1 doi: 10.1021/nn403617j – ident: e_1_2_6_43_1 doi: 10.1039/c0jm00645a – ident: e_1_2_6_2_1 doi: 10.1016/j.febslet.2011.05.003 – ident: e_1_2_6_45_1 doi: 10.1016/S0021-9258(18)63504-5 – ident: e_1_2_6_9_1 doi: 10.1002/anie.200701125 – ident: e_1_2_6_16_1 doi: 10.2217/nnm.11.166 – ident: e_1_2_6_31_1 doi: 10.1016/S0168-3659(99)00090-5 – ident: e_1_2_6_19_1 doi: 10.1039/c3tb21009j – ident: e_1_2_6_20_1 doi: 10.1016/j.micromeso.2014.02.011 – ident: e_1_2_6_12_1 doi: 10.1021/cs401096c – ident: e_1_2_6_17_1 doi: 10.1016/j.biomaterials.2008.07.007 – ident: e_1_2_6_33_1 doi: 10.1016/j.ymthe.2005.02.010 – ident: e_1_2_6_34_1 doi: 10.1021/nn100690m – ident: e_1_2_6_44_1 doi: 10.1039/b902681a – ident: e_1_2_6_13_1 doi: 10.1021/am500701c – ident: e_1_2_6_21_1 doi: 10.1039/C2TB00283C – ident: e_1_2_6_25_1 doi: 10.1021/nn1015117 – ident: e_1_2_6_4_1 doi: 10.1002/anie.201308141 – ident: e_1_2_6_39_1 doi: 10.1038/sj.jid.5700340 – ident: e_1_2_6_32_1 doi: 10.1016/j.addr.2006.09.008 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0021770 – ident: e_1_2_6_35_1 doi: 10.1042/bj1390043 – volume: 257 start-page: 5751 year: 1982 ident: e_1_2_6_38_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)83842-5 contributor: fullname: Kono Y. – ident: e_1_2_6_7_1 doi: 10.1002/chem.201002782 – ident: e_1_2_6_28_1 doi: 10.1021/nl401215n – ident: e_1_2_6_40_1 doi: 10.1039/c3tb21052a – ident: e_1_2_6_24_1 doi: 10.1002/adma.201205292 – ident: e_1_2_6_30_1 doi: 10.1263/jbb.99.95 – ident: e_1_2_6_10_1 doi: 10.1039/C3TB21849J – ident: e_1_2_6_11_1 doi: 10.1039/C2CS35312A – ident: e_1_2_6_8_1 doi: 10.1039/c1jm12407b – ident: e_1_2_6_27_1 doi: 10.2217/nnm.11.92 – ident: e_1_2_6_6_1 doi: 10.1002/chem.200802114 – ident: e_1_2_6_23_1 doi: 10.1021/nn901398j – ident: e_1_2_6_1_1 doi: 10.1039/C1CS15240H – ident: e_1_2_6_3_1 doi: 10.1016/S1389-0344(01)00088-0 – ident: e_1_2_6_22_1 doi: 10.1021/ar400091e – ident: e_1_2_6_26_1 doi: 10.1016/S0898-8838(00)51001-0 – ident: e_1_2_6_18_1 doi: 10.1002/chem.201301802 – ident: e_1_2_6_37_1 doi: 10.1016/0378-4274(86)90147-5 – ident: e_1_2_6_29_1 doi: 10.1002/adma.201204685 – ident: e_1_2_6_14_1 doi: 10.1039/C0JM02012E |
SSID | ssj0031247 |
Score | 2.4811788 |
Snippet | An approach for enzyme therapeutics is elaborated with cell‐implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres... An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4785 |
SubjectTerms | biomaterials Cascades Catalase Catalase - metabolism Encapsulation Enzymes hollow silica nanospheres Microscopy, Electron, Transmission nanoreactors Nanospheres Nanostructure Nanotechnology protein/enzyme therapy proteins Silicon dioxide Silicon Dioxide - chemistry Superoxide dismutase Superoxide Dismutase - metabolism |
Title | Intracellular Implantation of Enzymes in Hollow Silica Nanospheres for Protein Therapy: Cascade System of Superoxide Dismutase and Catalase |
URI | https://api.istex.fr/ark:/67375/WNG-2FK7J9RX-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201401559 https://www.ncbi.nlm.nih.gov/pubmed/25160910 https://www.proquest.com/docview/1626160936 https://search.proquest.com/docview/1627078366 https://search.proquest.com/docview/1642303897 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgXOBQvmmgICMhOEVN7MROuKF2lwVKVbFF9GZNYlta0U2qpqu2_AX-NDPxbmAlBBLckngcOfaM_TyZeWbsRQ1J5jy4GNK0irPU13Fhcx1XvrIWvE10Ta7syVQfHBd7I6LJGbL4Az_E4HAjy-jnazJwqLqdn6Sh3fyEfh3QBgFRMU7CeNXncMjD1VQscfHqT1fBNSsm4q0Va2Midtarr61KN6iDL38HOdcRbL8EjW__f-PvsM0l_ORvgr7cZddcc4_d-oWU8D77_o78veTQpwhVTvTBEPKTGt56Pmq-Xc1dx2cNn6AOtRd8OiPHH8d5uu2IpAALEQnzQ2KAQKmjwFvwmu9CR8H4PJCk07umC6Ipv5zhw71ZN6fwcMehsSh6Tvmd7gH7PB4d7U7i5ZENcY1QqIxdLqzSGUAhrSxUmTufAiS1gFT4zOel01nlpU2dqxEZKFdKCtrKy0oqW9hUPmQbTdu4LcZtXXlRQA2kTqBK0HlpdSKc0yALryP2ajVk5jQwc5jAwSwMda8ZujdiL_sRHcTg7CvFs-ncfDl4a8T4g35ffjo2ImLbqyE3S1PuTIpbvlQlpVQRez4UoxHSQEDj2kUvQ6xJUv1RBpEr0Rliyx8FdRoahCBTEXCLmOi15i8fZKYf9_eHu8f_UukJu0nXIatym22cny3cU3a9s4tnvQn9AD7eHco |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbY9gA8MH4TGGAkBE_REjuxY96mraVjXTXRIvZmXWJbqqAJWlYx-Bf2T8-XNBmVEEiIx9jnyLHv7M-Xu8-EvC4gSqwDG0Ic52ESuyLMTCrD3OXGgDORLNCVPZrKyWl2MECanL0uF6blh-gdbmgZzXqNBo4O6d1r1tB68RX_HeAJwcPiDbKViETh7Q2cn3SLMffbV3O_it-1QqTe6ngbI7a73n5tX9rCIb74Hehcx7DNJjTc_g_dv0vurBAo3WtV5h65Ycv75PYvvIQPyOUhunzRp49BqhQZhKFNUSpp5eig_PljYWs6L-nIq1H1nU7n6PujfqmuauQp8JUeDNMTJIHwUrOWuuAd3Yca4_Fpy5OO75oukan8Yu4LD-b1AiPELYXSeNFzTPG0D8mn4WC2PwpXtzaEhUdDKrQpM0ImABk3PBMqtS4GiAoGMXOJS5WVSe64ia0tPDgQVnGM20pVzoXJTMwfkc2yKu0TQk2RO5ZBAahRIBTIVBkZMWsl8MzJgLzt5kx_a8k5dEvDzDQOr-6HNyBvmintxeDsC4a0yVR_nrzXbHgkP6iPp5oFZKebc72y5lrH_tQXi0hxEZBXfbW3Q5wIKG21bGSQOImLP8p48IqMhr7nj1t96jvkcaZA7BYQ1qjNXz5IT4_H4_7p6b80eklujmbHYz0-nBw9I7ewvE2y3CGb52dL-5xs1Gb5orGnKyYPIes |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xTULwwPg1CAwwEoKnaImdxAlv09rSsVJVdIi9WZfYlqqtybSsYvAv7J-eL2kDlRBI8Bj7HDn2nf35cvcZ4E2BQWQsGh_DMPej0BZ-qmPp5zbXGq0OZEGu7OFUjk_SXp9ocros_pYfonO4kWU06zUZ-Lm2ez9JQ-v5Gf06oAOCQ8UbsBURFqckDjFZrcXC7V7N9Spu0_KJeWtF2xjwvfX2a9vSFo3w1e8w5zqEbfagwfb_9_4-3FviT7bfKswDuGXKh3D3F1bCR3B9SA5f8uhTiCoj_mBsE5RKVlnWL398n5uazUo2dEpUfWPTGXn-mFuoq5pYClylg8JsQhQQTuq4JS54zw6wpmh81rKk07umC-Ipv5q5wt6snlN8uGFYaid6SQme5jF8GfSPD4b-8s4Gv3BYKPNNzHUiI8RUaJEmWWxsiBgUHENuIxtnRka5FTo0pnDQIDGZoKitOMtFolMdih3YLKvSPAWmi9zyFAskfcIkQxlnWgbcGIkitdKDd6spU-ctNYdqSZi5ouFV3fB68LaZ0U4ML04poE3G6uv4g-KDI_kx-3yiuAe7qylXS1uuVejOfGESZCLx4HVX7ayQJgJLUy0aGaJNEskfZRx0JT5D1_MnrTp1HXIoMyHk5gFvtOYvH6Smn0aj7unZvzR6BbcnvYEaHY6PnsMdKm4zLHdh8_JiYV7ARq0XLxtrugGevyCa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+Implantation+of+Enzymes+in+Hollow+Silica+Nanospheres+for+Protein+Therapy%3A+Cascade+System+of+Superoxide+Dismutase+and+Catalase&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chang%2C+Feng%E2%80%90Peng&rft.au=Chen%2C+Yi%E2%80%90Ping&rft.au=Mou%2C+Chung%E2%80%90Yuan&rft.date=2014-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=10&rft.issue=22&rft.spage=4785&rft.epage=4795&rft_id=info:doi/10.1002%2Fsmll.201401559&rft.externalDBID=10.1002%252Fsmll.201401559&rft.externalDocID=SMLL201401559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |