Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere
Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at...
Saved in:
Published in: | Geophysical research letters Vol. 43; no. 7; pp. 3554 - 3562 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
John Wiley & Sons, Inc
16-04-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979–2014 period, exhibit an average stratospheric depletion of about 10–15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP‐induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.
Key Points
Evaluation of the EPP‐induced O3 variability on long time scales
EPP causes an average upper stratospheric O3 depletion of about 10–15% on a monthly basis
Discrimination between EPP and solar irradiance effects on ozone |
---|---|
AbstractList | Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45km in late June and descend later to 30km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Key Points * Evaluation of the EPP-induced O sub(3) variability on long time scales * EPP causes an average upper stratospheric O sub(3) depletion of about 10-15% on a monthly basis * Discrimination between EPP and solar irradiance effects on ozone Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979–2014 period, exhibit an average stratospheric depletion of about 10–15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP‐induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Key Points Evaluation of the EPP‐induced O3 variability on long time scales EPP causes an average upper stratospheric O3 depletion of about 10–15% on a monthly basis Discrimination between EPP and solar irradiance effects on ozone Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45km in late June and descend later to 30km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979–2014 period, exhibit an average stratospheric depletion of about 10–15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP‐induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Evaluation of the EPP‐induced O 3 variability on long time scales EPP causes an average upper stratospheric O 3 depletion of about 10–15% on a monthly basis Discrimination between EPP and solar irradiance effects on ozone |
Author | López Puertas, Manuel Santee, Michelle L. Damiani, Alessandro Cordero, Raul R. Funke, Bernd Watanabe, Shingo |
Author_xml | – sequence: 1 givenname: Alessandro surname: Damiani fullname: Damiani, Alessandro organization: Japan Agency for Marine‐Earth Science and Technology – sequence: 2 givenname: Bernd surname: Funke fullname: Funke, Bernd organization: Instituto de Astrofísica de Andalucía, CSIC – sequence: 3 givenname: Manuel surname: López Puertas fullname: López Puertas, Manuel organization: Instituto de Astrofísica de Andalucía, CSIC – sequence: 4 givenname: Michelle L. surname: Santee fullname: Santee, Michelle L. organization: California Institute of Technology – sequence: 5 givenname: Raul R. surname: Cordero fullname: Cordero, Raul R. organization: University of Santiago de Chile – sequence: 6 givenname: Shingo surname: Watanabe fullname: Watanabe, Shingo organization: Japan Agency for Marine‐Earth Science and Technology |
BookMark | eNqF0UFLwzAUB_AgCm7Tmx8g4MWD05c0bRJvY8wpDATRc0nbV5fRNTVpFf30RudBPOjphfDLP7z3xmS_dS0ScsLgggHwSw4sW64gU1zqPTJiWoipApD7ZASg45nL7JCMQ9gAQAIJG5H1okX_hL0taWd8LA3SzmNpO9ub3rr2is7o1mycp5W3L-ipq2m_Rure49-0GKr4mNr2627W9saXn1lD10Uaem96F7o1ejwiB7VpAh5_1wl5vF48zG-mq7vl7Xy2mpYZy_TUQCF5BdIwSLOq1kYZVgmOaVIkXJWyNpJVWOsqlbKqawSdGM1ZwVNdpKyUyYSc7XI7754HDH2-taHEpjEtuiHkTIECzYRQ_1OpQUuh46wm5PQX3bjBt7GRqJRItVSZjup8p0rvQvBY5523W-Pfcgb554bynxuKnO_4q23w7U-bL-9XqeBCJx8XmZNP |
CitedBy_id | crossref_primary_10_5194_acp_18_9075_2018 crossref_primary_10_1029_2023JA031371 crossref_primary_10_5194_acp_18_1079_2018 crossref_primary_10_1029_2017JA025161 crossref_primary_10_5194_angeo_39_189_2021 crossref_primary_10_1002_2017GL075949 crossref_primary_10_1029_2022JA030489 crossref_primary_10_3389_fspas_2024_1352020 crossref_primary_10_5194_acp_21_2819_2021 crossref_primary_10_1002_2016JD025015 crossref_primary_10_1007_s11214_017_0452_7 crossref_primary_10_1016_j_jastp_2017_07_003 crossref_primary_10_5194_angeo_38_1299_2020 crossref_primary_10_3390_atmos12020133 crossref_primary_10_1029_2017JD028211 crossref_primary_10_1029_2019GL083135 crossref_primary_10_1029_2022JA031194 crossref_primary_10_1038_s41467_022_34666_y crossref_primary_10_5194_acp_18_1115_2018 crossref_primary_10_5194_gmd_17_1217_2024 crossref_primary_10_1016_j_jastp_2021_105586 crossref_primary_10_2139_ssrn_3980612 crossref_primary_10_1029_2020JD033177 crossref_primary_10_2151_sola_13A_001 crossref_primary_10_1016_j_jastp_2020_105382 crossref_primary_10_5194_acp_20_14969_2020 crossref_primary_10_1002_2017GL075966 crossref_primary_10_5194_angeo_38_833_2020 crossref_primary_10_1029_2018JD029296 crossref_primary_10_1029_2022MS003579 crossref_primary_10_5194_acp_19_9485_2019 crossref_primary_10_5194_angeo_39_883_2021 crossref_primary_10_1002_2017JD027605 crossref_primary_10_5194_gmd_10_2247_2017 crossref_primary_10_5194_acp_22_8137_2022 crossref_primary_10_1029_2023JD039581 crossref_primary_10_1186_s40645_021_00433_8 crossref_primary_10_1002_joc_8290 |
Cites_doi | 10.1126/science.189.4201.457 10.1002/qj.2553 10.1016/0032-0633(81)90078-7 10.1038/ncomms6197 10.5194/amt-6-2533-2013 10.5194/acp-14-7681-2014 10.1029/2011JD016075 10.5194/angeo-26-361-2008 10.1029/2010JD014965 10.1029/2000JD000314 10.1038/315207a0 10.5194/acp-14-3945-2014 10.1029/2007JD008771 10.1002/2014MS000387 10.1007/s10712-012-9192-0 10.1029/2007JD008709 10.1029/2001GL013221 10.1016/j.jastp.2004.03.011 10.1029/2005JD006011 10.5194/acp-11-5045-2011 10.1029/2007JD008721 10.5194/acp-11-9089-2011 10.5194/acp-15-3327-2015 10.1029/98JD02407 10.5194/angeo-29-1341-2011 10.1029/2004GL022003 10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2 10.1002/2014JD022423 10.5194/acp-9-2729-2009 10.1175/JAS-D-13-052.1 10.1016/j.asr.2010.06.022 10.5194/acp-9-7045-2009 10.1029/2005JA011050 10.1029/2006JD007696 10.1029/2002JD002224 10.5194/acp-13-6887-2013 10.1029/2005GL025571 10.1029/JD095iD12p20507 10.5194/acp-15-3021-2015 |
ContentType | Journal Article |
Copyright | 2016. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
DOI | 10.1002/2016GL068279 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 3562 |
ExternalDocumentID | 4036476041 10_1002_2016GL068279 GRL54249 |
Genre | article |
GrantInformation_xml | – fundername: FONDECYT – fundername: SOUSEI program, MEXT, JAPAN – fundername: EC FEDER funds funderid: 1140239 – fundername: Spanish MINECO funderid: ESP2014‐54362‐P |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX ALXUD CITATION PYCSY 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
ID | FETCH-LOGICAL-c6169-a0b72d07a1056df9a8a1d42e53b328c7fa71def9d577dffe093a921b259b51c73 |
IEDL.DBID | 33P |
ISSN | 0094-8276 |
IngestDate | Fri Oct 25 05:14:13 EDT 2024 Fri Oct 25 05:31:41 EDT 2024 Thu Oct 10 21:05:06 EDT 2024 Thu Nov 21 20:52:17 EST 2024 Sat Aug 24 00:59:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6169-a0b72d07a1056df9a8a1d42e53b328c7fa71def9d577dffe093a921b259b51c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016GL068279 |
PQID | 1784597869 |
PQPubID | 54723 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1808091448 proquest_miscellaneous_1790974900 proquest_journals_1784597869 crossref_primary_10_1002_2016GL068279 wiley_primary_10_1002_2016GL068279_GRL54249 |
PublicationCentury | 2000 |
PublicationDate | 16 April 2016 |
PublicationDateYYYYMMDD | 2016-04-16 |
PublicationDate_xml | – month: 04 year: 2016 text: 16 April 2016 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1990; 95 2004; 66 2014; 119 2015; 15 2005; 110 2006; 33 2011b; 116 2011; 11 1981; 29 2001; 28 2013; 6 2012; 33 2001; 106 2007; 112 2011a; 116 2010; 46 1986; 43 2013; 13 2008; 26 2002; 107 2009; 9 2014; 14 2005; 32 1998; 103 1975; 189 1985; 315 2015 2014 2008; 113 2013 2011; 29 2014; 71 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 15 start-page: 3327 year: 2015 end-page: 3338 article-title: Energetic particle induced intra‐seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 5045 year: 2011 end-page: 5077 article-title: Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation publication-title: Atmos. Chem. Phys. – volume: 29 start-page: 1341 year: 2011 end-page: 1348 article-title: The correlation between solar and geomagnetic activity—Part 2: Long‐term trends publication-title: Ann. Geophys. – volume: 32 year: 2005 article-title: Stratospheric effects of energetic particle precipitation in 2003–2004 publication-title: Geophys. Res. Lett. – volume: 116 year: 2011a article-title: First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts publication-title: J. Geophys. Res. – volume: 9 start-page: 2729 year: 2009 end-page: 2740 article-title: Energetic particle precipitation in ECHAM5/MESSy1—Part 1: Downward transport of upper atmospheric NO produced by low energy electrons publication-title: Atmos. Chem. Phys. – volume: 71 start-page: 1956 year: 2014 end-page: 1984 article-title: Evolution of total atmospheric ozone from 1900 to 2100 estimated with statistical models publication-title: J. Atmos. Sci. – volume: 103 start-page: 28,421 year: 1998 end-page: 28,438 article-title: Solar atmosphere coupling by electrons (SOLACE): 2. Calculated stratospheric effects of precipitating electrons, 1979–1988 publication-title: J. Geophys. Res. – volume: 33 year: 2006 article-title: Destruction of the tertiary ozone maximum during a solar proton event publication-title: Geophys. Res. Lett. – volume: 46 start-page: 1225 year: 2010 end-page: 1235 article-title: The hydroxyl radical as an indicator of SEP fluxes in the high‐latitude terrestrial atmosphere publication-title: Adv. Space Res. – volume: 119 start-page: 13,565 year: 2014 end-page: 13,582 article-title: Hemispheric distributions and interannual variability of NO produced by energetic particle precipitation in 2002–2012 publication-title: J. Geophys. Res. Atmos. – volume: 43 start-page: 1319 year: 1986 end-page: 1339 article-title: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface publication-title: J. Atmos. Sci. – volume: 112 year: 2007 article-title: Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005 publication-title: J. Geophys. Res. – volume: 106 start-page: 23,115 year: 2001 end-page: 23,126 article-title: On the formation of HNO in the Antarctic mid to upper stratosphere in winter publication-title: J. Geophys. Res. – volume: 13 start-page: 6887 year: 2013 end-page: 6905 article-title: Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 7045 year: 2009 end-page: 7052 article-title: Nitric acid in the stratosphere based on Odin observations from 2001 to 2009—Part 2: High‐altitude polar enhancements publication-title: Atmos. Chem. Phys. – volume: 113 year: 2008 article-title: Validation of Aura Microwave Limb Sounder stratospheric ozone measurements publication-title: J. Geophys. Res. – volume: 189 start-page: 457 issue: 4201 year: 1975 end-page: 459 article-title: Solar proton events: Stratospheric sources of nitric oxide publication-title: Science – volume: 29 start-page: 885 year: 1981 end-page: 892 article-title: The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II odd hydrogen publication-title: Planet. Space Sci. – volume: 11 start-page: 9089 issue: 3 year: 2011 end-page: 9139 article-title: Composition changes after the “Halloween” solar proton event: The High‐Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study publication-title: Atmos. Chem. Phys. – volume: 116 year: 2011b article-title: Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events publication-title: J. Geophys. Res. – year: 2015 article-title: Solar signals in CMIP‐5 simulations: The ozone response publication-title: Q. J. R. Meteorol. Soc. – volume: 95 start-page: 20,507 year: 1990 end-page: 20,517 article-title: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation publication-title: J. Geophys. Res. – volume: 28 start-page: 2883 year: 2001 end-page: 2886 article-title: Northern Hemisphere atmospheric effects due to the July 2000 solar proton event publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003 publication-title: J. Geophys. Res. – volume: 26 start-page: 361 year: 2008 end-page: 370 article-title: Solar particles effects on minor components of the polar atmosphere publication-title: Ann. Geophys. – volume: 315 start-page: 207 year: 1985 end-page: 210 article-title: Large losses of total ozone in Antarctica reveal seasonal CLO /NO interaction publication-title: Nature – year: 2014 article-title: Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone publication-title: Nat. Commun. – volume: 66 start-page: 1019 issue: 12 year: 2004 end-page: 1025 article-title: Long‐term correlation between solar and geomagnetic activity publication-title: J. Atmos. Sol. Terr. Phys. – volume: 14 start-page: 3945 year: 2014 end-page: 3968 article-title: Long‐term changes in the upper stratospheric ozone at Syowa, Antarctica publication-title: Atmos. Chem. Phys. – volume: 15 start-page: 3021 year: 2015 end-page: 3043 article-title: Intercomparison of vertically resolved merged satellite ozone data sets: Interannual variability and long‐term trends publication-title: Atmos. Chem. Phys. – volume: 6 start-page: 2533 year: 2013 end-page: 2548 article-title: Solar Backscatter UV (SBUV) total ozone and profile algorithm publication-title: Atmos. Meas. Tech. – volume: 14 start-page: 7681 year: 2014 end-page: 7692 article-title: Variability of NO in the polar middle atmosphere from October 2003 to March 2004: Vertical transport vs. local production by energetic particles publication-title: Atmos. Chem. Phys. – volume: 33 start-page: 483 year: 2012 end-page: 501 article-title: Influence of the precipitating energetic particles on atmospheric chemistry and climate publication-title: Surv. Geophys. – year: 2015 article-title: Simulated solar cycle effects on the middle atmosphere: WACCM3 versus WACCM4 publication-title: J. Adv. Model. Earth Syst. – volume: 107 issue: D24 year: 2002 article-title: Dynamical response to the solar cycle: Winter stratopause and lower stratosphere publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: Observation of NO enhancements and ozone depletion in the Northern and Southern Hemispheres after the October–November 2003 solar proton events publication-title: J. Geophys. Res. – year: 2013 – volume: 112 year: 2007 article-title: Validation of the Aura Microwave Limb Sounder HNO3 measurements publication-title: J. Geophys. Res. – ident: e_1_2_6_7_1 doi: 10.1126/science.189.4201.457 – ident: e_1_2_6_18_1 doi: 10.1002/qj.2553 – ident: e_1_2_6_23_1 – ident: e_1_2_6_36_1 doi: 10.1016/0032-0633(81)90078-7 – ident: e_1_2_6_2_1 doi: 10.1038/ncomms6197 – ident: e_1_2_6_4_1 doi: 10.5194/amt-6-2533-2013 – ident: e_1_2_6_35_1 doi: 10.5194/acp-14-7681-2014 – ident: e_1_2_6_41_1 doi: 10.1029/2011JD016075 – ident: e_1_2_6_8_1 doi: 10.5194/angeo-26-361-2008 – ident: e_1_2_6_40_1 doi: 10.1029/2010JD014965 – ident: e_1_2_6_10_1 doi: 10.1029/2000JD000314 – ident: e_1_2_6_13_1 doi: 10.1038/315207a0 – ident: e_1_2_6_26_1 doi: 10.5194/acp-14-3945-2014 – ident: e_1_2_6_14_1 doi: 10.1029/2007JD008771 – ident: e_1_2_6_28_1 doi: 10.1002/2014MS000387 – ident: e_1_2_6_31_1 doi: 10.1007/s10712-012-9192-0 – ident: e_1_2_6_25_1 doi: 10.1029/2007JD008709 – ident: e_1_2_6_19_1 doi: 10.1029/2001GL013221 – ident: e_1_2_6_12_1 doi: 10.1016/j.jastp.2004.03.011 – ident: e_1_2_6_37_1 doi: 10.1029/2005JD006011 – ident: e_1_2_6_33_1 doi: 10.5194/acp-11-5045-2011 – ident: e_1_2_6_32_1 doi: 10.1029/2007JD008721 – ident: e_1_2_6_15_1 doi: 10.5194/acp-11-9089-2011 – ident: e_1_2_6_17_1 doi: 10.5194/acp-15-3327-2015 – ident: e_1_2_6_6_1 doi: 10.1029/98JD02407 – ident: e_1_2_6_11_1 doi: 10.5194/angeo-29-1341-2011 – ident: e_1_2_6_29_1 doi: 10.1029/2004GL022003 – ident: e_1_2_6_5_1 doi: 10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2 – ident: e_1_2_6_16_1 doi: 10.1002/2014JD022423 – ident: e_1_2_6_3_1 doi: 10.5194/acp-9-2729-2009 – ident: e_1_2_6_22_1 doi: 10.1175/JAS-D-13-052.1 – ident: e_1_2_6_9_1 doi: 10.1016/j.asr.2010.06.022 – ident: e_1_2_6_27_1 doi: 10.5194/acp-9-7045-2009 – ident: e_1_2_6_24_1 doi: 10.1029/2005JA011050 – ident: e_1_2_6_30_1 doi: 10.1029/2006JD007696 – ident: e_1_2_6_20_1 doi: 10.1029/2002JD002224 – ident: e_1_2_6_21_1 doi: 10.5194/acp-13-6887-2013 – ident: e_1_2_6_34_1 doi: 10.1029/2005GL025571 – ident: e_1_2_6_38_1 doi: 10.1029/JD095iD12p20507 – ident: e_1_2_6_39_1 doi: 10.5194/acp-15-3021-2015 |
SSID | ssj0003031 |
Score | 2.4308517 |
Snippet | Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3554 |
SubjectTerms | Antarctica Computer simulation Depletion Energetic particles EPP Geophysics Irradiance Ozone Polar environments Precipitation remote sensing Stratosphere Time Ultraviolet Winter |
Title | Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL068279 https://www.proquest.com/docview/1784597869 https://search.proquest.com/docview/1790974900 https://search.proquest.com/docview/1808091448 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpINBL82rp5oUC7amYSLJXjxwCS7LZHEIoTQu9GcmSaQuxzTo-JL8-M7J3s70EQm5GGhmh0YzmkzSfCPkC5UJgirJX3CaZcjyxRvjEgF8ARMRDv5V9datufuuLKdLknC1yYXp-iOWGG1pG9Ndo4Na1J8-kobByydk1k1oozN8DoBAzONLvS0cM3rl_MM9kCUjJ4d47ND9Zbfz_ivQcZq4Gq3G1udx8az-3yIchzqSTfmJsk7VQ7ZCNWXzH9wG-4s3Pot0lf6aY_YepjLQZphFtkPKiGdi7T-mE3tl_9Zz6OV7ioHVJIWqk9WNdBeo6D43p3yqWTap7MBz8V9c0IBpJeesWqQvCR_Lrcvrz_CoZnl9ICsmlSSxzSnimLIRg0pfGast9JsI4danQhSqt4j6Uxo-V8mUZmElBzdwBoHJjXqj0E1mvoCefCTWhtIIVzJlUI6W9KaQOTotMlRAgMDciXxcqyJueZSPv-ZRFvjp-I3Kw0E8-2Fqbc6UzgEVaQvXxshqsBI8-bBXqDmUMA-RkGHtBBik2DQBMPSLfokZf7Es--3E9zgC97r1Kep-8x3I8kOLygKzfz7twSN61vjuKs_cJnS_smQ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgSX8qzY0oKR4ISi2k7Wj16qFd3uIpYKQZG4RXbsCJBIot3mAL-emSS7XS6VELfIHkeW5-GZseczwCtsl5JKlIMWLsm0F4mzMiQW7QJGRCL2qez5Z33x1ZxNCSbndF0L0-NDbBJupBmdvSYFp4T08TVqKG5darbgykhtd-B2plAWqYYj_bgxxWif-yfzbJYgmRpuvuP44-3Rf-9J147mtrva7Tfn9_97pg9gb3A12aSXjYdwK1aP4M6se8r3F351lz-L1WP4NqUCQKpmZM0gSawh1ItmAPA-YRP20_2olyws6R4Hq0uGjiOrf9dVZL4NOJh9r7q2SXWFukP_apsGSTtc3npF6AXxCXw5n16-nSfDCwxJoYSyieNey8C1Qy9MhdI640TIZBynPpWm0KXTIsTShrHWoSwjtylyWniMqfxYFDrdh90KZ_IUmI2lk7zg3qaGUO1toUz0Rma6RB-B-xG8XvMgb3qgjbyHVJb59vqN4HDNoHxQt1UutMkwMjIKu19uulFR6PTDVbFuicZyDJ4s5zfQEMqmxRjTjOBNx9Ib55LPPi3GGQawB_9E_QLuzi8_LPLFu4v3z-Ae0dD5lFCHsHu1bOMR7KxC-7wT5T-jhPDB |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6ahJZc0vQRskmaqtCeiokke_XoobA0u5vSJYQ-oDcjWRJtILbZjQ_Jr8_I9m62l0DJzUgjIzSa0TeS5hPAeyznPKYoO8lMkknLEqO5SzT6BYyImO-2ss9-yPPf6nQcaXI-L3NhOn6I1YZbtIzWX0cDr104uScNxZVLTGdUKC71BmxliMQjd36aXqw8Mbrn7sU8nSUoJvqL79j-ZL31v0vSPc5cR6vtcjN5_tiO7sJODzTJqJsZL-CJL1_C02n7kO8NfrVXP4vFK_gzjul_MZeR1P08InXkvKh7-u5PZESuzGU1J24eb3GQKhCEjaS6rUpPbOOwMflbtmWj8hotJ_6rqWsUbVl5q0XkLvCv4ddk_PPLWdK_v5AUggmdGGold1QaxGDCBW2UYS7jfpjalKtCBiOZ80G7oZQuBE91inpmFiMqO2SFTPdgs8Se7APRPhhOC2p1qiKnvS6E8lbxTAZECNQO4MNSBXnd0WzkHaEyz9fHbwBHS_3kvbEtciZVhnGRElj9blWNZhLPPkzpqybKaIqhk6b0AZnIsakxwlQD-Nhq9MG-5NPvs2GG4evBf0m_hWcXp5N89vX82yFsR5F4OMXEEWxezxv_BjYWrjluJ_IdtaDvZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energetic+particle+precipitation%3A+A+major+driver+of+the+ozone+budget+in+the+Antarctic+upper+stratosphere&rft.jtitle=Geophysical+research+letters&rft.au=Damiani%2C+Alessandro&rft.au=Funke%2C+Bernd&rft.au=L%C3%B3pez+Puertas%2C+Manuel&rft.au=Santee%2C+Michelle+L.&rft.date=2016-04-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=7&rft.spage=3554&rft.epage=3562&rft_id=info:doi/10.1002%2F2016GL068279&rft.externalDBID=10.1002%252F2016GL068279&rft.externalDocID=GRL54249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |