Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere

Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 43; no. 7; pp. 3554 - 3562
Main Authors: Damiani, Alessandro, Funke, Bernd, López Puertas, Manuel, Santee, Michelle L., Cordero, Raul R., Watanabe, Shingo
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 16-04-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979–2014 period, exhibit an average stratospheric depletion of about 10–15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP‐induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Key Points Evaluation of the EPP‐induced O3 variability on long time scales EPP causes an average upper stratospheric O3 depletion of about 10–15% on a monthly basis Discrimination between EPP and solar irradiance effects on ozone
AbstractList Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45km in late June and descend later to 30km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Key Points * Evaluation of the EPP-induced O sub(3) variability on long time scales * EPP causes an average upper stratospheric O sub(3) depletion of about 10-15% on a monthly basis * Discrimination between EPP and solar irradiance effects on ozone
Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979–2014 period, exhibit an average stratospheric depletion of about 10–15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP‐induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Key Points Evaluation of the EPP‐induced O3 variability on long time scales EPP causes an average upper stratospheric O3 depletion of about 10–15% on a monthly basis Discrimination between EPP and solar irradiance effects on ozone
Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45km in late June and descend later to 30km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.
Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979–2014 period, exhibit an average stratospheric depletion of about 10–15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP‐induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis. Evaluation of the EPP‐induced O 3 variability on long time scales EPP causes an average upper stratospheric O 3 depletion of about 10–15% on a monthly basis Discrimination between EPP and solar irradiance effects on ozone
Author López Puertas, Manuel
Santee, Michelle L.
Damiani, Alessandro
Cordero, Raul R.
Funke, Bernd
Watanabe, Shingo
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Damiani
  fullname: Damiani, Alessandro
  organization: Japan Agency for Marine‐Earth Science and Technology
– sequence: 2
  givenname: Bernd
  surname: Funke
  fullname: Funke, Bernd
  organization: Instituto de Astrofísica de Andalucía, CSIC
– sequence: 3
  givenname: Manuel
  surname: López Puertas
  fullname: López Puertas, Manuel
  organization: Instituto de Astrofísica de Andalucía, CSIC
– sequence: 4
  givenname: Michelle L.
  surname: Santee
  fullname: Santee, Michelle L.
  organization: California Institute of Technology
– sequence: 5
  givenname: Raul R.
  surname: Cordero
  fullname: Cordero, Raul R.
  organization: University of Santiago de Chile
– sequence: 6
  givenname: Shingo
  surname: Watanabe
  fullname: Watanabe, Shingo
  organization: Japan Agency for Marine‐Earth Science and Technology
BookMark eNqF0UFLwzAUB_AgCm7Tmx8g4MWD05c0bRJvY8wpDATRc0nbV5fRNTVpFf30RudBPOjphfDLP7z3xmS_dS0ScsLgggHwSw4sW64gU1zqPTJiWoipApD7ZASg45nL7JCMQ9gAQAIJG5H1okX_hL0taWd8LA3SzmNpO9ub3rr2is7o1mycp5W3L-ipq2m_Rure49-0GKr4mNr2627W9saXn1lD10Uaem96F7o1ejwiB7VpAh5_1wl5vF48zG-mq7vl7Xy2mpYZy_TUQCF5BdIwSLOq1kYZVgmOaVIkXJWyNpJVWOsqlbKqawSdGM1ZwVNdpKyUyYSc7XI7754HDH2-taHEpjEtuiHkTIECzYRQ_1OpQUuh46wm5PQX3bjBt7GRqJRItVSZjup8p0rvQvBY5523W-Pfcgb554bynxuKnO_4q23w7U-bL-9XqeBCJx8XmZNP
CitedBy_id crossref_primary_10_5194_acp_18_9075_2018
crossref_primary_10_1029_2023JA031371
crossref_primary_10_5194_acp_18_1079_2018
crossref_primary_10_1029_2017JA025161
crossref_primary_10_5194_angeo_39_189_2021
crossref_primary_10_1002_2017GL075949
crossref_primary_10_1029_2022JA030489
crossref_primary_10_3389_fspas_2024_1352020
crossref_primary_10_5194_acp_21_2819_2021
crossref_primary_10_1002_2016JD025015
crossref_primary_10_1007_s11214_017_0452_7
crossref_primary_10_1016_j_jastp_2017_07_003
crossref_primary_10_5194_angeo_38_1299_2020
crossref_primary_10_3390_atmos12020133
crossref_primary_10_1029_2017JD028211
crossref_primary_10_1029_2019GL083135
crossref_primary_10_1029_2022JA031194
crossref_primary_10_1038_s41467_022_34666_y
crossref_primary_10_5194_acp_18_1115_2018
crossref_primary_10_5194_gmd_17_1217_2024
crossref_primary_10_1016_j_jastp_2021_105586
crossref_primary_10_2139_ssrn_3980612
crossref_primary_10_1029_2020JD033177
crossref_primary_10_2151_sola_13A_001
crossref_primary_10_1016_j_jastp_2020_105382
crossref_primary_10_5194_acp_20_14969_2020
crossref_primary_10_1002_2017GL075966
crossref_primary_10_5194_angeo_38_833_2020
crossref_primary_10_1029_2018JD029296
crossref_primary_10_1029_2022MS003579
crossref_primary_10_5194_acp_19_9485_2019
crossref_primary_10_5194_angeo_39_883_2021
crossref_primary_10_1002_2017JD027605
crossref_primary_10_5194_gmd_10_2247_2017
crossref_primary_10_5194_acp_22_8137_2022
crossref_primary_10_1029_2023JD039581
crossref_primary_10_1186_s40645_021_00433_8
crossref_primary_10_1002_joc_8290
Cites_doi 10.1126/science.189.4201.457
10.1002/qj.2553
10.1016/0032-0633(81)90078-7
10.1038/ncomms6197
10.5194/amt-6-2533-2013
10.5194/acp-14-7681-2014
10.1029/2011JD016075
10.5194/angeo-26-361-2008
10.1029/2010JD014965
10.1029/2000JD000314
10.1038/315207a0
10.5194/acp-14-3945-2014
10.1029/2007JD008771
10.1002/2014MS000387
10.1007/s10712-012-9192-0
10.1029/2007JD008709
10.1029/2001GL013221
10.1016/j.jastp.2004.03.011
10.1029/2005JD006011
10.5194/acp-11-5045-2011
10.1029/2007JD008721
10.5194/acp-11-9089-2011
10.5194/acp-15-3327-2015
10.1029/98JD02407
10.5194/angeo-29-1341-2011
10.1029/2004GL022003
10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2
10.1002/2014JD022423
10.5194/acp-9-2729-2009
10.1175/JAS-D-13-052.1
10.1016/j.asr.2010.06.022
10.5194/acp-9-7045-2009
10.1029/2005JA011050
10.1029/2006JD007696
10.1029/2002JD002224
10.5194/acp-13-6887-2013
10.1029/2005GL025571
10.1029/JD095iD12p20507
10.5194/acp-15-3021-2015
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
DOI 10.1002/2016GL068279
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database

Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 3562
ExternalDocumentID 4036476041
10_1002_2016GL068279
GRL54249
Genre article
GrantInformation_xml – fundername: FONDECYT
– fundername: SOUSEI program, MEXT, JAPAN
– fundername: EC FEDER funds
  funderid: 1140239
– fundername: Spanish MINECO
  funderid: ESP2014‐54362‐P
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
ALXUD
CITATION
PYCSY
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
ID FETCH-LOGICAL-c6169-a0b72d07a1056df9a8a1d42e53b328c7fa71def9d577dffe093a921b259b51c73
IEDL.DBID 33P
ISSN 0094-8276
IngestDate Fri Oct 25 05:14:13 EDT 2024
Fri Oct 25 05:31:41 EDT 2024
Thu Oct 10 21:05:06 EDT 2024
Thu Nov 21 20:52:17 EST 2024
Sat Aug 24 00:59:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6169-a0b72d07a1056df9a8a1d42e53b328c7fa71def9d577dffe093a921b259b51c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016GL068279
PQID 1784597869
PQPubID 54723
PageCount 9
ParticipantIDs proquest_miscellaneous_1808091448
proquest_miscellaneous_1790974900
proquest_journals_1784597869
crossref_primary_10_1002_2016GL068279
wiley_primary_10_1002_2016GL068279_GRL54249
PublicationCentury 2000
PublicationDate 16 April 2016
PublicationDateYYYYMMDD 2016-04-16
PublicationDate_xml – month: 04
  year: 2016
  text: 16 April 2016
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1990; 95
2004; 66
2014; 119
2015; 15
2005; 110
2006; 33
2011b; 116
2011; 11
1981; 29
2001; 28
2013; 6
2012; 33
2001; 106
2007; 112
2011a; 116
2010; 46
1986; 43
2013; 13
2008; 26
2002; 107
2009; 9
2014; 14
2005; 32
1998; 103
1975; 189
1985; 315
2015
2014
2008; 113
2013
2011; 29
2014; 71
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 15
  start-page: 3327
  year: 2015
  end-page: 3338
  article-title: Energetic particle induced intra‐seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data
  publication-title: Atmos. Chem. Phys.
– volume: 11
  start-page: 5045
  year: 2011
  end-page: 5077
  article-title: Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation
  publication-title: Atmos. Chem. Phys.
– volume: 29
  start-page: 1341
  year: 2011
  end-page: 1348
  article-title: The correlation between solar and geomagnetic activity—Part 2: Long‐term trends
  publication-title: Ann. Geophys.
– volume: 32
  year: 2005
  article-title: Stratospheric effects of energetic particle precipitation in 2003–2004
  publication-title: Geophys. Res. Lett.
– volume: 116
  year: 2011a
  article-title: First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: 2729
  year: 2009
  end-page: 2740
  article-title: Energetic particle precipitation in ECHAM5/MESSy1—Part 1: Downward transport of upper atmospheric NO produced by low energy electrons
  publication-title: Atmos. Chem. Phys.
– volume: 71
  start-page: 1956
  year: 2014
  end-page: 1984
  article-title: Evolution of total atmospheric ozone from 1900 to 2100 estimated with statistical models
  publication-title: J. Atmos. Sci.
– volume: 103
  start-page: 28,421
  year: 1998
  end-page: 28,438
  article-title: Solar atmosphere coupling by electrons (SOLACE): 2. Calculated stratospheric effects of precipitating electrons, 1979–1988
  publication-title: J. Geophys. Res.
– volume: 33
  year: 2006
  article-title: Destruction of the tertiary ozone maximum during a solar proton event
  publication-title: Geophys. Res. Lett.
– volume: 46
  start-page: 1225
  year: 2010
  end-page: 1235
  article-title: The hydroxyl radical as an indicator of SEP fluxes in the high‐latitude terrestrial atmosphere
  publication-title: Adv. Space Res.
– volume: 119
  start-page: 13,565
  year: 2014
  end-page: 13,582
  article-title: Hemispheric distributions and interannual variability of NO produced by energetic particle precipitation in 2002–2012
  publication-title: J. Geophys. Res. Atmos.
– volume: 43
  start-page: 1319
  year: 1986
  end-page: 1339
  article-title: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface
  publication-title: J. Atmos. Sci.
– volume: 112
  year: 2007
  article-title: Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 23,115
  year: 2001
  end-page: 23,126
  article-title: On the formation of HNO in the Antarctic mid to upper stratosphere in winter
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 6887
  year: 2013
  end-page: 6905
  article-title: Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 7045
  year: 2009
  end-page: 7052
  article-title: Nitric acid in the stratosphere based on Odin observations from 2001 to 2009—Part 2: High‐altitude polar enhancements
  publication-title: Atmos. Chem. Phys.
– volume: 113
  year: 2008
  article-title: Validation of Aura Microwave Limb Sounder stratospheric ozone measurements
  publication-title: J. Geophys. Res.
– volume: 189
  start-page: 457
  issue: 4201
  year: 1975
  end-page: 459
  article-title: Solar proton events: Stratospheric sources of nitric oxide
  publication-title: Science
– volume: 29
  start-page: 885
  year: 1981
  end-page: 892
  article-title: The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II odd hydrogen
  publication-title: Planet. Space Sci.
– volume: 11
  start-page: 9089
  issue: 3
  year: 2011
  end-page: 9139
  article-title: Composition changes after the “Halloween” solar proton event: The High‐Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
  publication-title: Atmos. Chem. Phys.
– volume: 116
  year: 2011b
  article-title: Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events
  publication-title: J. Geophys. Res.
– year: 2015
  article-title: Solar signals in CMIP‐5 simulations: The ozone response
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 95
  start-page: 20,507
  year: 1990
  end-page: 20,517
  article-title: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 2883
  year: 2001
  end-page: 2886
  article-title: Northern Hemisphere atmospheric effects due to the July 2000 solar proton event
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 361
  year: 2008
  end-page: 370
  article-title: Solar particles effects on minor components of the polar atmosphere
  publication-title: Ann. Geophys.
– volume: 315
  start-page: 207
  year: 1985
  end-page: 210
  article-title: Large losses of total ozone in Antarctica reveal seasonal CLO /NO interaction
  publication-title: Nature
– year: 2014
  article-title: Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone
  publication-title: Nat. Commun.
– volume: 66
  start-page: 1019
  issue: 12
  year: 2004
  end-page: 1025
  article-title: Long‐term correlation between solar and geomagnetic activity
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 14
  start-page: 3945
  year: 2014
  end-page: 3968
  article-title: Long‐term changes in the upper stratospheric ozone at Syowa, Antarctica
  publication-title: Atmos. Chem. Phys.
– volume: 15
  start-page: 3021
  year: 2015
  end-page: 3043
  article-title: Intercomparison of vertically resolved merged satellite ozone data sets: Interannual variability and long‐term trends
  publication-title: Atmos. Chem. Phys.
– volume: 6
  start-page: 2533
  year: 2013
  end-page: 2548
  article-title: Solar Backscatter UV (SBUV) total ozone and profile algorithm
  publication-title: Atmos. Meas. Tech.
– volume: 14
  start-page: 7681
  year: 2014
  end-page: 7692
  article-title: Variability of NO in the polar middle atmosphere from October 2003 to March 2004: Vertical transport vs. local production by energetic particles
  publication-title: Atmos. Chem. Phys.
– volume: 33
  start-page: 483
  year: 2012
  end-page: 501
  article-title: Influence of the precipitating energetic particles on atmospheric chemistry and climate
  publication-title: Surv. Geophys.
– year: 2015
  article-title: Simulated solar cycle effects on the middle atmosphere: WACCM3 versus WACCM4
  publication-title: J. Adv. Model. Earth Syst.
– volume: 107
  issue: D24
  year: 2002
  article-title: Dynamical response to the solar cycle: Winter stratopause and lower stratosphere
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: Observation of NO enhancements and ozone depletion in the Northern and Southern Hemispheres after the October–November 2003 solar proton events
  publication-title: J. Geophys. Res.
– year: 2013
– volume: 112
  year: 2007
  article-title: Validation of the Aura Microwave Limb Sounder HNO3 measurements
  publication-title: J. Geophys. Res.
– ident: e_1_2_6_7_1
  doi: 10.1126/science.189.4201.457
– ident: e_1_2_6_18_1
  doi: 10.1002/qj.2553
– ident: e_1_2_6_23_1
– ident: e_1_2_6_36_1
  doi: 10.1016/0032-0633(81)90078-7
– ident: e_1_2_6_2_1
  doi: 10.1038/ncomms6197
– ident: e_1_2_6_4_1
  doi: 10.5194/amt-6-2533-2013
– ident: e_1_2_6_35_1
  doi: 10.5194/acp-14-7681-2014
– ident: e_1_2_6_41_1
  doi: 10.1029/2011JD016075
– ident: e_1_2_6_8_1
  doi: 10.5194/angeo-26-361-2008
– ident: e_1_2_6_40_1
  doi: 10.1029/2010JD014965
– ident: e_1_2_6_10_1
  doi: 10.1029/2000JD000314
– ident: e_1_2_6_13_1
  doi: 10.1038/315207a0
– ident: e_1_2_6_26_1
  doi: 10.5194/acp-14-3945-2014
– ident: e_1_2_6_14_1
  doi: 10.1029/2007JD008771
– ident: e_1_2_6_28_1
  doi: 10.1002/2014MS000387
– ident: e_1_2_6_31_1
  doi: 10.1007/s10712-012-9192-0
– ident: e_1_2_6_25_1
  doi: 10.1029/2007JD008709
– ident: e_1_2_6_19_1
  doi: 10.1029/2001GL013221
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jastp.2004.03.011
– ident: e_1_2_6_37_1
  doi: 10.1029/2005JD006011
– ident: e_1_2_6_33_1
  doi: 10.5194/acp-11-5045-2011
– ident: e_1_2_6_32_1
  doi: 10.1029/2007JD008721
– ident: e_1_2_6_15_1
  doi: 10.5194/acp-11-9089-2011
– ident: e_1_2_6_17_1
  doi: 10.5194/acp-15-3327-2015
– ident: e_1_2_6_6_1
  doi: 10.1029/98JD02407
– ident: e_1_2_6_11_1
  doi: 10.5194/angeo-29-1341-2011
– ident: e_1_2_6_29_1
  doi: 10.1029/2004GL022003
– ident: e_1_2_6_5_1
  doi: 10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2
– ident: e_1_2_6_16_1
  doi: 10.1002/2014JD022423
– ident: e_1_2_6_3_1
  doi: 10.5194/acp-9-2729-2009
– ident: e_1_2_6_22_1
  doi: 10.1175/JAS-D-13-052.1
– ident: e_1_2_6_9_1
  doi: 10.1016/j.asr.2010.06.022
– ident: e_1_2_6_27_1
  doi: 10.5194/acp-9-7045-2009
– ident: e_1_2_6_24_1
  doi: 10.1029/2005JA011050
– ident: e_1_2_6_30_1
  doi: 10.1029/2006JD007696
– ident: e_1_2_6_20_1
  doi: 10.1029/2002JD002224
– ident: e_1_2_6_21_1
  doi: 10.5194/acp-13-6887-2013
– ident: e_1_2_6_34_1
  doi: 10.1029/2005GL025571
– ident: e_1_2_6_38_1
  doi: 10.1029/JD095iD12p20507
– ident: e_1_2_6_39_1
  doi: 10.5194/acp-15-3021-2015
SSID ssj0003031
Score 2.4308517
Snippet Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3554
SubjectTerms Antarctica
Computer simulation
Depletion
Energetic particles
EPP
Geophysics
Irradiance
Ozone
Polar environments
Precipitation
remote sensing
Stratosphere
Time
Ultraviolet
Winter
Title Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL068279
https://www.proquest.com/docview/1784597869
https://search.proquest.com/docview/1790974900
https://search.proquest.com/docview/1808091448
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZpINBL82rp5oUC7amYSLJXjxwCS7LZHEIoTQu9GcmSaQuxzTo-JL8-M7J3s70EQm5GGhmh0YzmkzSfCPkC5UJgirJX3CaZcjyxRvjEgF8ARMRDv5V9datufuuLKdLknC1yYXp-iOWGG1pG9Ndo4Na1J8-kobByydk1k1oozN8DoBAzONLvS0cM3rl_MM9kCUjJ4d47ND9Zbfz_ivQcZq4Gq3G1udx8az-3yIchzqSTfmJsk7VQ7ZCNWXzH9wG-4s3Pot0lf6aY_YepjLQZphFtkPKiGdi7T-mE3tl_9Zz6OV7ioHVJIWqk9WNdBeo6D43p3yqWTap7MBz8V9c0IBpJeesWqQvCR_Lrcvrz_CoZnl9ICsmlSSxzSnimLIRg0pfGast9JsI4danQhSqt4j6Uxo-V8mUZmElBzdwBoHJjXqj0E1mvoCefCTWhtIIVzJlUI6W9KaQOTotMlRAgMDciXxcqyJueZSPv-ZRFvjp-I3Kw0E8-2Fqbc6UzgEVaQvXxshqsBI8-bBXqDmUMA-RkGHtBBik2DQBMPSLfokZf7Es--3E9zgC97r1Kep-8x3I8kOLygKzfz7twSN61vjuKs_cJnS_smQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgSX8qzY0oKR4ISi2k7Wj16qFd3uIpYKQZG4RXbsCJBIot3mAL-emSS7XS6VELfIHkeW5-GZseczwCtsl5JKlIMWLsm0F4mzMiQW7QJGRCL2qez5Z33x1ZxNCSbndF0L0-NDbBJupBmdvSYFp4T08TVqKG5darbgykhtd-B2plAWqYYj_bgxxWif-yfzbJYgmRpuvuP44-3Rf-9J147mtrva7Tfn9_97pg9gb3A12aSXjYdwK1aP4M6se8r3F351lz-L1WP4NqUCQKpmZM0gSawh1ItmAPA-YRP20_2olyws6R4Hq0uGjiOrf9dVZL4NOJh9r7q2SXWFukP_apsGSTtc3npF6AXxCXw5n16-nSfDCwxJoYSyieNey8C1Qy9MhdI640TIZBynPpWm0KXTIsTShrHWoSwjtylyWniMqfxYFDrdh90KZ_IUmI2lk7zg3qaGUO1toUz0Rma6RB-B-xG8XvMgb3qgjbyHVJb59vqN4HDNoHxQt1UutMkwMjIKu19uulFR6PTDVbFuicZyDJ4s5zfQEMqmxRjTjOBNx9Ib55LPPi3GGQawB_9E_QLuzi8_LPLFu4v3z-Ae0dD5lFCHsHu1bOMR7KxC-7wT5T-jhPDB
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6ahJZc0vQRskmaqtCeiokke_XoobA0u5vSJYQ-oDcjWRJtILbZjQ_Jr8_I9m62l0DJzUgjIzSa0TeS5hPAeyznPKYoO8lMkknLEqO5SzT6BYyImO-2ss9-yPPf6nQcaXI-L3NhOn6I1YZbtIzWX0cDr104uScNxZVLTGdUKC71BmxliMQjd36aXqw8Mbrn7sU8nSUoJvqL79j-ZL31v0vSPc5cR6vtcjN5_tiO7sJODzTJqJsZL-CJL1_C02n7kO8NfrVXP4vFK_gzjul_MZeR1P08InXkvKh7-u5PZESuzGU1J24eb3GQKhCEjaS6rUpPbOOwMflbtmWj8hotJ_6rqWsUbVl5q0XkLvCv4ddk_PPLWdK_v5AUggmdGGold1QaxGDCBW2UYS7jfpjalKtCBiOZ80G7oZQuBE91inpmFiMqO2SFTPdgs8Se7APRPhhOC2p1qiKnvS6E8lbxTAZECNQO4MNSBXnd0WzkHaEyz9fHbwBHS_3kvbEtciZVhnGRElj9blWNZhLPPkzpqybKaIqhk6b0AZnIsakxwlQD-Nhq9MG-5NPvs2GG4evBf0m_hWcXp5N89vX82yFsR5F4OMXEEWxezxv_BjYWrjluJ_IdtaDvZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energetic+particle+precipitation%3A+A+major+driver+of+the+ozone+budget+in+the+Antarctic+upper+stratosphere&rft.jtitle=Geophysical+research+letters&rft.au=Damiani%2C+Alessandro&rft.au=Funke%2C+Bernd&rft.au=L%C3%B3pez+Puertas%2C+Manuel&rft.au=Santee%2C+Michelle+L.&rft.date=2016-04-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=7&rft.spage=3554&rft.epage=3562&rft_id=info:doi/10.1002%2F2016GL068279&rft.externalDBID=10.1002%252F2016GL068279&rft.externalDocID=GRL54249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon