The geometry of modified Riemannian extensions
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 465; no. 2107; pp. 2023 - 2040 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
The Royal Society
08-07-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry. |
---|---|
AbstractList | We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry. We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry. |
Author | García-Río, E. Vázquez-Lorenzo, R. Calviño-Louzao, E. Gilkey, P. |
Author_xml | – sequence: 1 fullname: E. Calviño-Louzao – sequence: 2 fullname: E. García-Río – sequence: 3 fullname: P. Gilkey – sequence: 4 fullname: R. Vázquez-Lorenzo |
BookMark | eNp9kV9v0zAUxS00JLbCK29I-QIJ1_9i541pMIaYBCpjmnix3OZ6ddfGkZ3CyqfHWdCkCrEn27rnd-458gk56kKHhLymUFFo9NuYelsxgKYCEPUzckyFoiVrRH2U77wWpQRGX5CTlNaQZVKrY1JdrbC4xbDFIe6L4IptaL3z2BZzj1vbdd52Bd4P2CUfuvSSPHd2k_DV33NGvp9_uDq7KC-_fPx0dnpZLmsqhhKVUpoyDnkrbRFzPEtpq5WS2knbCNQCWr3AVnKAhbbSUYYNWCfEolkwPiPV5LuMIaWIzvTRb23cGwpmbGvGtmZsa8a2GeATEMM-BwtLj8PerMMudvn5f-ruKWr-7evpT1FLzygoA5pTEEJzZX77frLKQ-NT2qF5kBza_7vtzbRtnYYQHxtxYEKOvjNSTnOfBrx_nNt4Z2rFlTTXWpj59fubzzc_qLnIejbpV_529ctHNAc18qOPacr4kI4B4xl69yQ0Rl6GLn_4cEgat9tsTN86_geCB79f |
CitedBy_id | crossref_primary_10_1007_s00022_018_0411_9 crossref_primary_10_36890_iejg_542783 crossref_primary_10_1002_mana_201600099 crossref_primary_10_1007_s00025_011_0116_y crossref_primary_10_2200_S00197ED1V01Y200906MAS005 crossref_primary_10_1007_s00025_018_0895_5 crossref_primary_10_1088_0264_9381_30_15_155015 crossref_primary_10_1007_s12220_017_9934_9 crossref_primary_10_1016_j_difgeo_2012_10_007 crossref_primary_10_1007_s12215_015_0189_7 crossref_primary_10_2200_S00502ED1V01Y201305MAS013 crossref_primary_10_1007_s00022_016_0364_9 crossref_primary_10_3390_math8112079 crossref_primary_10_1098_rspa_2016_0043 crossref_primary_10_5269_bspm_64108 crossref_primary_10_1063_1_5080319 crossref_primary_10_1007_s10455_023_09918_9 crossref_primary_10_1007_s00025_023_01911_9 crossref_primary_10_46939_J_Sci_Arts_20_4_a13 crossref_primary_10_2140_pjm_2018_293_75 crossref_primary_10_1007_s10711_011_9595_y crossref_primary_10_2200_S00770ED1V03Y201704MAS018 crossref_primary_10_1007_s00229_017_0987_7 crossref_primary_10_1002_mana_201200299 crossref_primary_10_1142_S0129167X18500027 crossref_primary_10_1007_s10455_015_9463_3 crossref_primary_10_31801_cfsuasmas_1067247 crossref_primary_10_1007_s11784_014_0203_2 |
Cites_doi | 10.1098/rspa.2005.1621 10.1093/qmath/3.1.19 10.1112/S0024609396002238 10.1017/S1446788700003001 10.1007/b83213 10.1016/S0926-2245(96)00037-X 10.1007/s12220-008-9066-3 10.1142/4812 10.1007/BF02930986 10.2140/pjm.1993.158.177 10.1216/rmjm/1181072105 10.1007/s00220-008-0561-y 10.1007/s00025-008-0307-3 10.14492/hokmj/1381757717 10.1093/qmath/5.1.312 10.1023/B:AGAG.0000023245.73639.93 10.1007/BF02844767 10.1016/j.difgeo.2006.02.006 10.1112/S0024609302001339 10.1090/S0002-9939-98-04659-0 10.1098/rspa.2001.0918 10.1090/conm/337/06052 10.2748/tmj/1199649875 10.1023/A:1005014507809 10.1016/S0926-2245(99)00029-7 10.1016/j.difgeo.2005.06.002 10.1093/qmath/1.1.69 10.24033/bsmf.2300 10.1007/BF01243903 10.1016/j.geomphys.2006.02.007 |
ContentType | Journal Article |
Copyright | Copyright 2009 The Royal Society 2009 The Royal Society |
Copyright_xml | – notice: Copyright 2009 The Royal Society – notice: 2009 The Royal Society |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1098/rspa.2009.0046 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1471-2946 |
EndPage | 2040 |
ExternalDocumentID | 10_1098_rspa_2009_0046 30245448 ark_67375_V84_RVDXKXZ1_H royprsa_465_2107_2023 |
GroupedDBID | 02 4.4 53G 5VS ABBHK ABPTK ABXXB ACIWK ACNCT ADACO ADBBV ADODI ADULT ADZLD AELPN AEUPB AFXKK ALMA_UNASSIGNED_HOLDINGS AS BGBPD DCCCD DNJUQ DOOOF DQDLB DSRWC DWIUU EBS ECEWR EFSUC EJD FEDTE FRP H13 HH5 HQ3 HQ6 HTVGU JLS JMS JPM JSG JSODD JST K-O KQ8 MV1 NSAHA OK1 OP1 RHF RNS RRY SA0 V1E ZCG 18M AACGO AANCE ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACIPV ACMTB ACQIA ACTMH ADACV AEXZC AFVYC AJZGM ALMYZ AQVQM AS~ BSCLL BTFSW IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF MRS TR2 W8F XSW YF5 ~02 ICLEN AAYXX CITATION |
ID | FETCH-LOGICAL-c614t-e777812303641dee098a11d87758f5a94e840d8bed5300b8a5f12e90af44b9b23 |
IEDL.DBID | JLS |
ISSN | 1364-5021 |
IngestDate | Thu Nov 21 21:22:47 EST 2024 Tue May 24 16:18:31 EDT 2022 Wed Jan 17 02:37:25 EST 2024 Fri Feb 02 07:01:31 EST 2024 Wed Oct 30 09:21:30 EDT 2024 Mon May 06 12:07:28 EDT 2019 Tue Jan 05 21:49:47 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2107 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c614t-e777812303641dee098a11d87758f5a94e840d8bed5300b8a5f12e90af44b9b23 |
Notes | href:2023.pdf istex:A3DFBC0184DEFECE12A67774132243C60A4C4134 ark:/67375/V84-RVDXKXZ1-H ArticleID:rspa20090046 |
OpenAccessLink | http://arxiv.org/pdf/0901.1633 |
PageCount | 18 |
ParticipantIDs | istex_primary_ark_67375_V84_RVDXKXZ1_H royalsociety_journals_RSPAv465i2107_0831044837_zip_rspa_465_issue_2107_rspa_2009_0046_rspa_2009_0046 jstor_primary_30245448 highwire_royalsociety_royprsa_465_2107_2023 royalsociety_journals_10_1098_rspa_2009_0046 crossref_primary_10_1098_rspa_2009_0046 |
ProviderPackageCode | RHF |
PublicationCentury | 2000 |
PublicationDate | 2009-07-08 |
PublicationDateYYYYMMDD | 2009-07-08 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | PROC R SOC A |
PublicationYear | 2009 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_2_27_1 Hitchin N. (e_1_3_2_28_1) 1990; 124 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
References_xml | – ident: e_1_3_2_9_1 doi: 10.1098/rspa.2005.1621 – ident: e_1_3_2_35_1 doi: 10.1093/qmath/3.1.19 – ident: e_1_3_2_5_1 doi: 10.1112/S0024609396002238 – ident: e_1_3_2_6_1 doi: 10.1017/S1446788700003001 – ident: e_1_3_2_24_1 doi: 10.1007/b83213 – ident: e_1_3_2_22_1 doi: 10.1016/S0926-2245(96)00037-X – ident: e_1_3_2_15_1 doi: 10.1007/s12220-008-9066-3 – ident: e_1_3_2_25_1 doi: 10.1142/4812 – ident: e_1_3_2_39_1 – ident: e_1_3_2_19_1 doi: 10.1007/BF02930986 – ident: e_1_3_2_34_1 doi: 10.2140/pjm.1993.158.177 – ident: e_1_3_2_12_1 doi: 10.1216/rmjm/1181072105 – ident: e_1_3_2_32_1 doi: 10.1007/s00220-008-0561-y – ident: e_1_3_2_10_1 – ident: e_1_3_2_14_1 doi: 10.1007/s00025-008-0307-3 – ident: e_1_3_2_33_1 doi: 10.14492/hokmj/1381757717 – ident: e_1_3_2_16_1 – ident: e_1_3_2_21_1 – ident: e_1_3_2_2_1 doi: 10.1093/qmath/5.1.312 – ident: e_1_3_2_29_1 doi: 10.1023/B:AGAG.0000023245.73639.93 – ident: e_1_3_2_7_1 doi: 10.1007/BF02844767 – ident: e_1_3_2_18_1 doi: 10.1016/j.difgeo.2006.02.006 – ident: e_1_3_2_26_1 doi: 10.1112/S0024609302001339 – volume: 124 start-page: 169 year: 1990 ident: e_1_3_2_28_1 article-title: Hypersymplectic quotients publication-title: Acta Acad. Sci. Tauriensis contributor: fullname: Hitchin N. – ident: e_1_3_2_38_1 – ident: e_1_3_2_8_1 doi: 10.1090/S0002-9939-98-04659-0 – ident: e_1_3_2_20_1 doi: 10.1098/rspa.2001.0918 – ident: e_1_3_2_27_1 doi: 10.1090/conm/337/06052 – ident: e_1_3_2_17_1 doi: 10.2748/tmj/1199649875 – ident: e_1_3_2_30_1 doi: 10.1023/A:1005014507809 – ident: e_1_3_2_23_1 doi: 10.1016/S0926-2245(99)00029-7 – ident: e_1_3_2_3_1 – ident: e_1_3_2_31_1 doi: 10.1016/j.difgeo.2005.06.002 – ident: e_1_3_2_37_1 doi: 10.1093/qmath/1.1.69 – ident: e_1_3_2_4_1 doi: 10.24033/bsmf.2300 – ident: e_1_3_2_11_1 – ident: e_1_3_2_36_1 doi: 10.1007/BF01243903 – ident: e_1_3_2_13_1 doi: 10.1016/j.geomphys.2006.02.007 |
SSID | ssj0009587 |
Score | 2.2041543 |
Snippet | We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and
sufficient conditions for a modified... We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified... |
SourceID | crossref royalsociety jstor istex highwire |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 2023 |
SubjectTerms | Affine Connection Coordinate systems Curvature Eigenvalues Einstein Geometry Jacobi Operator Mathematical theorems Modified Riemannian Extension Osserman Manifold Para-Kaehler Riemann manifold Signatures Symmetry Tensors |
Title | The geometry of modified Riemannian extensions |
URI | http://rspa.royalsocietypublishing.org/content/465/2107/2023.abstract?cited-by=yes&legid=royprsa;465/2107/2023 https://api.istex.fr/ark:/67375/V84-RVDXKXZ1-H/fulltext.pdf https://www.jstor.org/stable/30245448 https://royalsocietypublishing.org/doi/full/10.1098/rspa.2009.0046 |
Volume | 465 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_RPcEDsMFE-JjywKcgLEmd2n6cWEclNIQ6mCpeLDu2pQpIq6RDg7-eOyepWkQlHi3543zny93pLr8DeFrip8_70idSlGXCJEsT47ROgi9sJbMyZPAnF_zjTJyOCSbnWf8vDJVVhrrAkMVHB8l8d8dDyg9iHDGAgUhFW7e3gawbuuBlwxHDE_JsjcwojjEy1D0kJXm4m5anRwNGp5T4ed3XI6IBqilwb9qiyQ1jc3bnP8m8C7c7bzI-acW_DzdcdQC3ztdQrM0B7Hfa28QvO4jpV_fgLb6O-L1b_HCr-le88PH5ws49eqPxdI4rqwofTTy-DtXt-Czvw5ez8ed3k6TrnJCUaG5XieOco-Um88Qy6xwyQ2eZFRyjA19oyRzGdVYYZ4thmhqhC5_lTqbaM2akyYeHsFctKvcA4qG3LDO6LDmzzHCpc26EQ6teap2bEY_gRc9VtWwBMlSb2BaK-E99LqUi_kfwume62mQxDZZ1oxUbFQojUK6opXsEcsds2pTq-KkL8dYSRRkLtbQ-gudBpmuCdP2NCth4oS4FU9PL09mH2ddMTSI4DFJcT-xFGMGbrUM7xW52Xs3-e_r04tPJTyRyHogMXd0YYfir3_NluwfdIKhYe4_tff8aPtxF7iO42Wa5eJKKx7C3qq_cExg09uooKMtR6KTxB1Y7EEk |
link.rule.ids | 315,782,786,808,811,27933,27934,58025,58037,58258,58270 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x8QA8ABtMhM888CmWLR9ObT9OrKNo64S6MVW8WHZsSxWQVkk3bfz1nJ2kahGVeLTkj_P5Lnenu_wO4HWBnz5rCxtxVhQR4SSOlJEy8r6w5kRzn8EfnNHTMTvsO5icN92_MK6s0tcF-iw-Okjqp9nPXH4Q44gNuJ2zOKNN5d4Stq7vg5dkPYJnpMkCm5HtY2woO1BK5-Mu254ODxjdUsfR664iEU1Q5UL3uimbXDI3Rw_-k9CHcL_1J8ODRgC24JYpt-HecAHGWm_DVqu_dfi-BZn-8Aj2UD7Cz2b6y8yrm3Bqw-FUTyz6o-FogivLEsUm7F_7-nYUzMfw7ah__mkQtb0TogIN7jwylFK03c5AkUQbg8yQSaIZxfjA5pITg5GdZsroPItjxWRuk9TwWFpCFFdptgOb5bQ0TyDMrCaJkkVBiSaKcplSxQza9ULKVPVoAO86ropZA5EhmtQ2E47_rtMlF47_AXzsmC6WWewGs6qWgvRygTEoFa6pewB8zWy3qavkd32IV5YIl7MQM20DeOvfdEGQrH64EjaaiwtGxOjicHw8_p6IQQA7_hUXE7snDGB35dBWteu1V9P_nj46-3pwhUROPJG-rxtxKP7i92TW7OFu4JWsucfqvn8Nn64j9xXcGZwPT8TJl9PjZ3C3yXnRKGbPYXNeXZoXsFHry5decf4AWD8Slw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xISF4ADaYCJ95QMAEoflwavtxoi1FY9PUwVTtxbJjW6qAtEo6NPjrOTtJ1SL6wKMlf5zvzrk73eV3AC8L_PRZW9iIs6KICCdxpIyUkfeFNSea-wz--JyeTtlg6GByDrt_YVxZpa8L9Fl8dJDUd9NbaNvLXI4QY4kduJljVMOa5gBr-Lq-F16S9QmekyYrfEbWw_hQdsCUzs9dtz8dJjC6po6r111VIpqhyoXvdVM6uWZyRvf-g9j7cLf1K8OjRhH24IYp9-HOyQqUtd6HvfYd1-GbFmz68AG8Rz0JP5r5D7OsfoVzG57M9cyiXxpOZriyLFF9wuG1r3NHBX0IX0fDLx_GUdtDISrQ8C4jQylFG-4MFUm0McgQmSSaUYwTbC45MRjhaaaMzrM4VkzmNkkNj6UlRHGVZgewW85L8wjCzGqSKFkUlGiiKJcpVcygfS-kTFWfBvC646xYNFAZoklxM-Fk4DpecuFkEMDbjvFinc1usKhqKUg_FxiLUuGauwfAt8x2m7qKftePeGOJcLkLgZII4JWX64ogWX1zpWw0FxeMiMnFYHo8vUzEOIADL8nVxE6EAbzbOLR94vXWq-l_T5-cnx39RCJnnkjf3404NH_xe7Zo9nA38I-tucfmvn8NH28j9wXcOhuMxOdPp8dP4HaT-qJRzJ7C7rK6Ms9gp9ZXz_3b-QMwCRUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Geometry+of+Modified+Riemannian+Extensions&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Calvi%C3%B1o-Louzao%2C+E.&rft.au=Garc%C3%ADa-R%C3%ADo%2C+E.&rft.au=Gilkey%2C+P.&rft.au=V%C3%A1zquez-Lorenzo%2C+R.&rft.date=2009-07-08&rft.pub=The+Royal+Society&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=465&rft.issue=2107&rft.spage=2023&rft.epage=2040&rft_id=info:doi/10.1098%2Frspa.2009.0046&rft.externalDocID=30245448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon |