The geometry of modified Riemannian extensions

We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 465; no. 2107; pp. 2023 - 2040
Main Authors: E. Calviño-Louzao, E. García-Río, P. Gilkey, R. Vázquez-Lorenzo
Format: Journal Article
Language:English
Published: London The Royal Society 08-07-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry.
AbstractList We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry.
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry.
Author García-Río, E.
Vázquez-Lorenzo, R.
Calviño-Louzao, E.
Gilkey, P.
Author_xml – sequence: 1
  fullname: E. Calviño-Louzao
– sequence: 2
  fullname: E. García-Río
– sequence: 3
  fullname: P. Gilkey
– sequence: 4
  fullname: R. Vázquez-Lorenzo
BookMark eNp9kV9v0zAUxS00JLbCK29I-QIJ1_9i541pMIaYBCpjmnix3OZ6ddfGkZ3CyqfHWdCkCrEn27rnd-458gk56kKHhLymUFFo9NuYelsxgKYCEPUzckyFoiVrRH2U77wWpQRGX5CTlNaQZVKrY1JdrbC4xbDFIe6L4IptaL3z2BZzj1vbdd52Bd4P2CUfuvSSPHd2k_DV33NGvp9_uDq7KC-_fPx0dnpZLmsqhhKVUpoyDnkrbRFzPEtpq5WS2knbCNQCWr3AVnKAhbbSUYYNWCfEolkwPiPV5LuMIaWIzvTRb23cGwpmbGvGtmZsa8a2GeATEMM-BwtLj8PerMMudvn5f-ruKWr-7evpT1FLzygoA5pTEEJzZX77frLKQ-NT2qF5kBza_7vtzbRtnYYQHxtxYEKOvjNSTnOfBrx_nNt4Z2rFlTTXWpj59fubzzc_qLnIejbpV_529ctHNAc18qOPacr4kI4B4xl69yQ0Rl6GLn_4cEgat9tsTN86_geCB79f
CitedBy_id crossref_primary_10_1007_s00022_018_0411_9
crossref_primary_10_36890_iejg_542783
crossref_primary_10_1002_mana_201600099
crossref_primary_10_1007_s00025_011_0116_y
crossref_primary_10_2200_S00197ED1V01Y200906MAS005
crossref_primary_10_1007_s00025_018_0895_5
crossref_primary_10_1088_0264_9381_30_15_155015
crossref_primary_10_1007_s12220_017_9934_9
crossref_primary_10_1016_j_difgeo_2012_10_007
crossref_primary_10_1007_s12215_015_0189_7
crossref_primary_10_2200_S00502ED1V01Y201305MAS013
crossref_primary_10_1007_s00022_016_0364_9
crossref_primary_10_3390_math8112079
crossref_primary_10_1098_rspa_2016_0043
crossref_primary_10_5269_bspm_64108
crossref_primary_10_1063_1_5080319
crossref_primary_10_1007_s10455_023_09918_9
crossref_primary_10_1007_s00025_023_01911_9
crossref_primary_10_46939_J_Sci_Arts_20_4_a13
crossref_primary_10_2140_pjm_2018_293_75
crossref_primary_10_1007_s10711_011_9595_y
crossref_primary_10_2200_S00770ED1V03Y201704MAS018
crossref_primary_10_1007_s00229_017_0987_7
crossref_primary_10_1002_mana_201200299
crossref_primary_10_1142_S0129167X18500027
crossref_primary_10_1007_s10455_015_9463_3
crossref_primary_10_31801_cfsuasmas_1067247
crossref_primary_10_1007_s11784_014_0203_2
Cites_doi 10.1098/rspa.2005.1621
10.1093/qmath/3.1.19
10.1112/S0024609396002238
10.1017/S1446788700003001
10.1007/b83213
10.1016/S0926-2245(96)00037-X
10.1007/s12220-008-9066-3
10.1142/4812
10.1007/BF02930986
10.2140/pjm.1993.158.177
10.1216/rmjm/1181072105
10.1007/s00220-008-0561-y
10.1007/s00025-008-0307-3
10.14492/hokmj/1381757717
10.1093/qmath/5.1.312
10.1023/B:AGAG.0000023245.73639.93
10.1007/BF02844767
10.1016/j.difgeo.2006.02.006
10.1112/S0024609302001339
10.1090/S0002-9939-98-04659-0
10.1098/rspa.2001.0918
10.1090/conm/337/06052
10.2748/tmj/1199649875
10.1023/A:1005014507809
10.1016/S0926-2245(99)00029-7
10.1016/j.difgeo.2005.06.002
10.1093/qmath/1.1.69
10.24033/bsmf.2300
10.1007/BF01243903
10.1016/j.geomphys.2006.02.007
ContentType Journal Article
Copyright Copyright 2009 The Royal Society
2009 The Royal Society
Copyright_xml – notice: Copyright 2009 The Royal Society
– notice: 2009 The Royal Society
DBID BSCLL
AAYXX
CITATION
DOI 10.1098/rspa.2009.0046
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList



CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1471-2946
EndPage 2040
ExternalDocumentID 10_1098_rspa_2009_0046
30245448
ark_67375_V84_RVDXKXZ1_H
royprsa_465_2107_2023
GroupedDBID 02
4.4
53G
5VS
ABBHK
ABPTK
ABXXB
ACIWK
ACNCT
ADACO
ADBBV
ADODI
ADULT
ADZLD
AELPN
AEUPB
AFXKK
ALMA_UNASSIGNED_HOLDINGS
AS
BGBPD
DCCCD
DNJUQ
DOOOF
DQDLB
DSRWC
DWIUU
EBS
ECEWR
EFSUC
EJD
FEDTE
FRP
H13
HH5
HQ3
HQ6
HTVGU
JLS
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MV1
NSAHA
OK1
OP1
RHF
RNS
RRY
SA0
V1E
ZCG
18M
AACGO
AANCE
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACIPV
ACMTB
ACQIA
ACTMH
ADACV
AEXZC
AFVYC
AJZGM
ALMYZ
AQVQM
AS~
BSCLL
BTFSW
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
MRS
TR2
W8F
XSW
YF5
~02
ICLEN
AAYXX
CITATION
ID FETCH-LOGICAL-c614t-e777812303641dee098a11d87758f5a94e840d8bed5300b8a5f12e90af44b9b23
IEDL.DBID JLS
ISSN 1364-5021
IngestDate Thu Nov 21 21:22:47 EST 2024
Tue May 24 16:18:31 EDT 2022
Wed Jan 17 02:37:25 EST 2024
Fri Feb 02 07:01:31 EST 2024
Wed Oct 30 09:21:30 EDT 2024
Mon May 06 12:07:28 EDT 2019
Tue Jan 05 21:49:47 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2107
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c614t-e777812303641dee098a11d87758f5a94e840d8bed5300b8a5f12e90af44b9b23
Notes href:2023.pdf
istex:A3DFBC0184DEFECE12A67774132243C60A4C4134
ark:/67375/V84-RVDXKXZ1-H
ArticleID:rspa20090046
OpenAccessLink http://arxiv.org/pdf/0901.1633
PageCount 18
ParticipantIDs istex_primary_ark_67375_V84_RVDXKXZ1_H
royalsociety_journals_RSPAv465i2107_0831044837_zip_rspa_465_issue_2107_rspa_2009_0046_rspa_2009_0046
jstor_primary_30245448
highwire_royalsociety_royprsa_465_2107_2023
royalsociety_journals_10_1098_rspa_2009_0046
crossref_primary_10_1098_rspa_2009_0046
ProviderPackageCode RHF
PublicationCentury 2000
PublicationDate 2009-07-08
PublicationDateYYYYMMDD 2009-07-08
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-08
  day: 08
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationTitleAlternate PROC R SOC A
PublicationYear 2009
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_27_1
Hitchin N. (e_1_3_2_28_1) 1990; 124
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_9_1
  doi: 10.1098/rspa.2005.1621
– ident: e_1_3_2_35_1
  doi: 10.1093/qmath/3.1.19
– ident: e_1_3_2_5_1
  doi: 10.1112/S0024609396002238
– ident: e_1_3_2_6_1
  doi: 10.1017/S1446788700003001
– ident: e_1_3_2_24_1
  doi: 10.1007/b83213
– ident: e_1_3_2_22_1
  doi: 10.1016/S0926-2245(96)00037-X
– ident: e_1_3_2_15_1
  doi: 10.1007/s12220-008-9066-3
– ident: e_1_3_2_25_1
  doi: 10.1142/4812
– ident: e_1_3_2_39_1
– ident: e_1_3_2_19_1
  doi: 10.1007/BF02930986
– ident: e_1_3_2_34_1
  doi: 10.2140/pjm.1993.158.177
– ident: e_1_3_2_12_1
  doi: 10.1216/rmjm/1181072105
– ident: e_1_3_2_32_1
  doi: 10.1007/s00220-008-0561-y
– ident: e_1_3_2_10_1
– ident: e_1_3_2_14_1
  doi: 10.1007/s00025-008-0307-3
– ident: e_1_3_2_33_1
  doi: 10.14492/hokmj/1381757717
– ident: e_1_3_2_16_1
– ident: e_1_3_2_21_1
– ident: e_1_3_2_2_1
  doi: 10.1093/qmath/5.1.312
– ident: e_1_3_2_29_1
  doi: 10.1023/B:AGAG.0000023245.73639.93
– ident: e_1_3_2_7_1
  doi: 10.1007/BF02844767
– ident: e_1_3_2_18_1
  doi: 10.1016/j.difgeo.2006.02.006
– ident: e_1_3_2_26_1
  doi: 10.1112/S0024609302001339
– volume: 124
  start-page: 169
  year: 1990
  ident: e_1_3_2_28_1
  article-title: Hypersymplectic quotients
  publication-title: Acta Acad. Sci. Tauriensis
  contributor:
    fullname: Hitchin N.
– ident: e_1_3_2_38_1
– ident: e_1_3_2_8_1
  doi: 10.1090/S0002-9939-98-04659-0
– ident: e_1_3_2_20_1
  doi: 10.1098/rspa.2001.0918
– ident: e_1_3_2_27_1
  doi: 10.1090/conm/337/06052
– ident: e_1_3_2_17_1
  doi: 10.2748/tmj/1199649875
– ident: e_1_3_2_30_1
  doi: 10.1023/A:1005014507809
– ident: e_1_3_2_23_1
  doi: 10.1016/S0926-2245(99)00029-7
– ident: e_1_3_2_3_1
– ident: e_1_3_2_31_1
  doi: 10.1016/j.difgeo.2005.06.002
– ident: e_1_3_2_37_1
  doi: 10.1093/qmath/1.1.69
– ident: e_1_3_2_4_1
  doi: 10.24033/bsmf.2300
– ident: e_1_3_2_11_1
– ident: e_1_3_2_36_1
  doi: 10.1007/BF01243903
– ident: e_1_3_2_13_1
  doi: 10.1016/j.geomphys.2006.02.007
SSID ssj0009587
Score 2.2041543
Snippet We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified...
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified...
SourceID crossref
royalsociety
jstor
istex
highwire
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 2023
SubjectTerms Affine Connection
Coordinate systems
Curvature
Eigenvalues
Einstein
Geometry
Jacobi Operator
Mathematical theorems
Modified Riemannian Extension
Osserman Manifold
Para-Kaehler
Riemann manifold
Signatures
Symmetry
Tensors
Title The geometry of modified Riemannian extensions
URI http://rspa.royalsocietypublishing.org/content/465/2107/2023.abstract?cited-by=yes&legid=royprsa;465/2107/2023
https://api.istex.fr/ark:/67375/V84-RVDXKXZ1-H/fulltext.pdf
https://www.jstor.org/stable/30245448
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2009.0046
Volume 465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_RPcEDsMFE-JjywKcgLEmd2n6cWEclNIQ6mCpeLDu2pQpIq6RDg7-eOyepWkQlHi3543zny93pLr8DeFrip8_70idSlGXCJEsT47ROgi9sJbMyZPAnF_zjTJyOCSbnWf8vDJVVhrrAkMVHB8l8d8dDyg9iHDGAgUhFW7e3gawbuuBlwxHDE_JsjcwojjEy1D0kJXm4m5anRwNGp5T4ed3XI6IBqilwb9qiyQ1jc3bnP8m8C7c7bzI-acW_DzdcdQC3ztdQrM0B7Hfa28QvO4jpV_fgLb6O-L1b_HCr-le88PH5ws49eqPxdI4rqwofTTy-DtXt-Czvw5ez8ed3k6TrnJCUaG5XieOco-Um88Qy6xwyQ2eZFRyjA19oyRzGdVYYZ4thmhqhC5_lTqbaM2akyYeHsFctKvcA4qG3LDO6LDmzzHCpc26EQ6teap2bEY_gRc9VtWwBMlSb2BaK-E99LqUi_kfwume62mQxDZZ1oxUbFQojUK6opXsEcsds2pTq-KkL8dYSRRkLtbQ-gudBpmuCdP2NCth4oS4FU9PL09mH2ddMTSI4DFJcT-xFGMGbrUM7xW52Xs3-e_r04tPJTyRyHogMXd0YYfir3_NluwfdIKhYe4_tff8aPtxF7iO42Wa5eJKKx7C3qq_cExg09uooKMtR6KTxB1Y7EEk
link.rule.ids 315,782,786,808,811,27933,27934,58025,58037,58258,58270
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x8QA8ABtMhM888CmWLR9ObT9OrKNo64S6MVW8WHZsSxWQVkk3bfz1nJ2kahGVeLTkj_P5Lnenu_wO4HWBnz5rCxtxVhQR4SSOlJEy8r6w5kRzn8EfnNHTMTvsO5icN92_MK6s0tcF-iw-Okjqp9nPXH4Q44gNuJ2zOKNN5d4Stq7vg5dkPYJnpMkCm5HtY2woO1BK5-Mu254ODxjdUsfR664iEU1Q5UL3uimbXDI3Rw_-k9CHcL_1J8ODRgC24JYpt-HecAHGWm_DVqu_dfi-BZn-8Aj2UD7Cz2b6y8yrm3Bqw-FUTyz6o-FogivLEsUm7F_7-nYUzMfw7ah__mkQtb0TogIN7jwylFK03c5AkUQbg8yQSaIZxfjA5pITg5GdZsroPItjxWRuk9TwWFpCFFdptgOb5bQ0TyDMrCaJkkVBiSaKcplSxQza9ULKVPVoAO86ropZA5EhmtQ2E47_rtMlF47_AXzsmC6WWewGs6qWgvRygTEoFa6pewB8zWy3qavkd32IV5YIl7MQM20DeOvfdEGQrH64EjaaiwtGxOjicHw8_p6IQQA7_hUXE7snDGB35dBWteu1V9P_nj46-3pwhUROPJG-rxtxKP7i92TW7OFu4JWsucfqvn8Nn64j9xXcGZwPT8TJl9PjZ3C3yXnRKGbPYXNeXZoXsFHry5decf4AWD8Slw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xISF4ADaYCJ95QMAEoflwavtxoi1FY9PUwVTtxbJjW6qAtEo6NPjrOTtJ1SL6wKMlf5zvzrk73eV3AC8L_PRZW9iIs6KICCdxpIyUkfeFNSea-wz--JyeTtlg6GByDrt_YVxZpa8L9Fl8dJDUd9NbaNvLXI4QY4kduJljVMOa5gBr-Lq-F16S9QmekyYrfEbWw_hQdsCUzs9dtz8dJjC6po6r111VIpqhyoXvdVM6uWZyRvf-g9j7cLf1K8OjRhH24IYp9-HOyQqUtd6HvfYd1-GbFmz68AG8Rz0JP5r5D7OsfoVzG57M9cyiXxpOZriyLFF9wuG1r3NHBX0IX0fDLx_GUdtDISrQ8C4jQylFG-4MFUm0McgQmSSaUYwTbC45MRjhaaaMzrM4VkzmNkkNj6UlRHGVZgewW85L8wjCzGqSKFkUlGiiKJcpVcygfS-kTFWfBvC646xYNFAZoklxM-Fk4DpecuFkEMDbjvFinc1usKhqKUg_FxiLUuGauwfAt8x2m7qKftePeGOJcLkLgZII4JWX64ogWX1zpWw0FxeMiMnFYHo8vUzEOIADL8nVxE6EAbzbOLR94vXWq-l_T5-cnx39RCJnnkjf3404NH_xe7Zo9nA38I-tucfmvn8NH28j9wXcOhuMxOdPp8dP4HaT-qJRzJ7C7rK6Ms9gp9ZXz_3b-QMwCRUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Geometry+of+Modified+Riemannian+Extensions&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Calvi%C3%B1o-Louzao%2C+E.&rft.au=Garc%C3%ADa-R%C3%ADo%2C+E.&rft.au=Gilkey%2C+P.&rft.au=V%C3%A1zquez-Lorenzo%2C+R.&rft.date=2009-07-08&rft.pub=The+Royal+Society&rft.issn=1364-5021&rft.eissn=1471-2946&rft.volume=465&rft.issue=2107&rft.spage=2023&rft.epage=2040&rft_id=info:doi/10.1098%2Frspa.2009.0046&rft.externalDocID=30245448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon