A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue

Mutations in the leptin gene ( ob ) result in a metabolic disorder that includes severe obesity 1 , and defects in thermogenesis 2 and lipolysis 3 , both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalitie...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 583; no. 7818; pp. 839 - 844
Main Authors: Wang, Putianqi, Loh, Ken H., Wu, Michelle, Morgan, Donald A., Schneeberger, Marc, Yu, Xiaofei, Chi, Jingyi, Kosse, Christin, Kim, Damian, Rahmouni, Kamal, Cohen, Paul, Friedman, Jeffrey
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30-07-2020
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutations in the leptin gene ( ob ) result in a metabolic disorder that includes severe obesity 1 , and defects in thermogenesis 2 and lipolysis 3 , both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNF PVH ). Deletion of BDNF PVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis. The authors show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-020-2527-y