Estimating fine age structure and time trends in human contact patterns from coarse contact data: The Bayesian rate consistency model

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the fundamental changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. Here, we present a model-based Baye...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology Vol. 19; no. 6; p. e1011191
Main Authors: Dan, Shozen, Chen, Yu, Chen, Yining, Monod, Melodie, Jaeger, Veronika K, Bhatt, Samir, Karch, André, Ratmann, Oliver
Format: Journal Article
Language:English
Published: United States Public Library of Science 01-06-2023
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the fundamental changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. Here, we present a model-based Bayesian approach that can reconstruct contact patterns at 1-year resolution even when the age of the contacts is reported coarsely by 5 or 10-year age bands. This innovation is rooted in population-level consistency constraints in how contacts between groups must add up, which prompts us to call the approach presented here the Bayesian rate consistency model. The model can also quantify time trends and adjust for reporting fatigue emerging in longitudinal surveys through the use of computationally efficient Hilbert Space Gaussian process priors. We illustrate estimation accuracy on simulated data as well as social contact data from Europe and Africa for which the exact age of contacts is reported, and then apply the model to social contact data with coarse information on the age of contacts that were collected in Germany during the COVID-19 pandemic from April to June 2020 across five longitudinal survey waves. We estimate the fine age structure in social contacts during the early stages of the pandemic and demonstrate that social contact intensities rebounded in an age-structured, non-homogeneous manner. The Bayesian rate consistency model provides a model-based, non-parametric, computationally tractable approach for estimating the fine structure and longitudinal trends in social contacts and is applicable to contemporary survey data with coarsely reported age of contacts as long as the exact age of survey participants is reported.
AbstractList Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the fundamental changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. Here, we present a model-based Bayesian approach that can reconstruct contact patterns at 1-year resolution even when the age of the contacts is reported coarsely by 5 or 10-year age bands. This innovation is rooted in population-level consistency constraints in how contacts between groups must add up, which prompts us to call the approach presented here the Bayesian rate consistency model. The model can also quantify time trends and adjust for reporting fatigue emerging in longitudinal surveys through the use of computationally efficient Hilbert Space Gaussian process priors. We illustrate estimation accuracy on simulated data as well as social contact data from Europe and Africa for which the exact age of contacts is reported, and then apply the model to social contact data with coarse information on the age of contacts that were collected in Germany during the COVID-19 pandemic from April to June 2020 across five longitudinal survey waves. We estimate the fine age structure in social contacts during the early stages of the pandemic and demonstrate that social contact intensities rebounded in an age-structured, non-homogeneous manner. The Bayesian rate consistency model provides a model-based, non-parametric, computationally tractable approach for estimating the fine structure and longitudinal trends in social contacts and is applicable to contemporary survey data with coarsely reported age of contacts as long as the exact age of survey participants is reported.
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the fundamental changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. Here, we present a model-based Bayesian approach that can reconstruct contact patterns at 1-year resolution even when the age of the contacts is reported coarsely by 5 or 10-year age bands. This innovation is rooted in population-level consistency constraints in how contacts between groups must add up, which prompts us to call the approach presented here the Bayesian rate consistency model. The model can also quantify time trends and adjust for reporting fatigue emerging in longitudinal surveys through the use of computationally efficient Hilbert Space Gaussian process priors. We illustrate estimation accuracy on simulated data as well as social contact data from Europe and Africa for which the exact age of contacts is reported, and then apply the model to social contact data with coarse information on the age of contacts that were collected in Germany during the COVID-19 pandemic from April to June 2020 across five longitudinal survey waves. We estimate the fine age structure in social contacts during the early stages of the pandemic and demonstrate that social contact intensities rebounded in an age-structured, non-homogeneous manner. The Bayesian rate consistency model provides a model-based, non-parametric, computationally tractable approach for estimating the fine structure and longitudinal trends in social contacts and is applicable to contemporary survey data with coarsely reported age of contacts as long as the exact age of survey participants is reported. The transmission of respiratory infectious diseases occurs during close social contacts. Hence, measuring the intensity and patterns in social contacts leads to a better understanding of disease spread and provides essential data to estimate central quantities such as the reproduction number in real-time. Unlike pre-pandemic surveys, which largely recorded contacts’ age in one-year age intervals, most COVID-era studies only recorded the age of contacts in broad age categories to facilitate reporting. Some studies allowed participants to report an estimate for the total number of contacts for which they could not remember age and gender information. Many studies were partially longitudinal, which introduced the issue of reporting fatigue. Thus, directly applying existing statistical methods for estimating social contact matrices may result in losing age detail and confounded estimates. To this end, we develop a model-based approach which estimates fine-age contact patterns from coarse-age data by exploiting particular constraints that must hold mathematically in closed populations. The model can also adjust for the confounding effects of aggregate contact reporting and reporting fatigue and estimate the time trends in social contact dynamics. We hope this statistical model is a useful addition to the global pandemic preparedness toolkit to reconstruct the fine structure of social contact patterns and measure real-time effective reproduction numbers with greater precision.
Audience Academic
Author Karch, André
Dan, Shozen
Bhatt, Samir
Chen, Yining
Jaeger, Veronika K
Ratmann, Oliver
Chen, Yu
Monod, Melodie
AuthorAffiliation 1 Department of Mathematics, Imperial College London, London, England, United Kingdom
2 Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
4 Department of Public Health, University of Copenhagen, Copenhagen, Denmark
Yale School of Public Health, UNITED STATES
3 School of Public Health, Imperial College London, London, England, United Kingdom
AuthorAffiliation_xml – name: 4 Department of Public Health, University of Copenhagen, Copenhagen, Denmark
– name: 3 School of Public Health, Imperial College London, London, England, United Kingdom
– name: 2 Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
– name: Yale School of Public Health, UNITED STATES
– name: 1 Department of Mathematics, Imperial College London, London, England, United Kingdom
Author_xml – sequence: 1
  givenname: Shozen
  orcidid: 0000-0001-5575-641X
  surname: Dan
  fullname: Dan, Shozen
  organization: Department of Mathematics, Imperial College London, London, England, United Kingdom
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-7528-2298
  surname: Chen
  fullname: Chen, Yu
  organization: Department of Mathematics, Imperial College London, London, England, United Kingdom
– sequence: 3
  givenname: Yining
  surname: Chen
  fullname: Chen, Yining
  organization: Department of Mathematics, Imperial College London, London, England, United Kingdom
– sequence: 4
  givenname: Melodie
  surname: Monod
  fullname: Monod, Melodie
  organization: Department of Mathematics, Imperial College London, London, England, United Kingdom
– sequence: 5
  givenname: Veronika K
  orcidid: 0000-0002-6913-0976
  surname: Jaeger
  fullname: Jaeger, Veronika K
  organization: Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
– sequence: 6
  givenname: Samir
  surname: Bhatt
  fullname: Bhatt, Samir
  organization: Department of Public Health, University of Copenhagen, Copenhagen, Denmark
– sequence: 7
  givenname: André
  surname: Karch
  fullname: Karch, André
  organization: Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
– sequence: 8
  givenname: Oliver
  orcidid: 0000-0001-8667-4118
  surname: Ratmann
  fullname: Ratmann, Oliver
  organization: Department of Mathematics, Imperial College London, London, England, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37276210$$D View this record in MEDLINE/PubMed
BookMark eNqVU12P1CAUbcwa90P_gVESX_RhRigttL6YdbPqJBtNdH0mFG47bFoYgRrnB_i_pTvdyY7ZF8MDcO85B-6Be5odWWchy54TvCSUk7c3bvRW9suNasySYEJITR5lJ6Qs6YLTsjq6tz7OTkO4wTgta_YkO6Y85ywn-CT7cxmiGWQ0tkOtsYBkByhEP6o4-rSzGqU8oOjB6oCMRetxkBYpZ6NUEW1kjOBtQK13Q4pKH2Cf1DLKd-h6DeiD3EIwiedlvM0HEyJYtUWD09A_zR63sg_wbJ7Psh8fL68vPi-uvn5aXZxfLRQjJC4IYZpKzamqgRVEVYrSCutcYlW1VS1JITEjNceNVrShXDUVg5JgzglpKqLoWfZyp7vpXRCzg0HkFa0oLZI5CbHaIbSTN2Ljkzd-K5w04jbgfCekj0b1ICilDeCGtiWuCs1ZDbVkXFeq1jkueJu03s-njc0AWoGNXvYHoocZa9aic78EwTnHZU2SwutZwbufI4QoBhMU9L204Mbp4jnFBWZlkaCv_oE-XN6M6mSqwNjWpYPVJCrOeckoxqyetJYPoNLQMJj0eNCaFD8gvDkgTB8AfsdOjiGI1fdv_4H9cogtdljlXQge2r15BIupC-6KFFMXiLkLEu3FfeP3pLtvT_8CO4oFLg
Cites_doi 10.1093/aje/kwj317
10.7551/mitpress/3206.001.0001
10.1186/s12916-021-02133-y
10.1038/s41579-021-00535-6
10.1371/journal.pone.0170459
10.1007/978-0-387-48536-2
10.2807/1560-7917.ES.2021.26.8.2000994
10.1017/S0950268806006418
10.1038/s41467-021-20990-2
10.1093/biostatistics/kxad005
10.1007/s11222-019-09886-w
10.1073/pnas.0908491107
10.1371/journal.pmed.0050074
10.1186/s12879-016-1981-5
10.1186/s12916-020-01597-8
10.1038/s41598-020-78540-7
10.18637/jss.v076.i01
10.1126/sciadv.abf9868
10.1214/16-AOAS1006
10.1038/s41586-020-2405-7
10.1098/rsif.2022.0094
10.1198/016214504000001754
10.1126/science.abe8372
10.1186/1471-2334-9-5
10.1186/s12916-021-02139-6
10.1038/s41467-021-27163-1
10.1371/journal.pmed.1003907
10.1186/1471-2334-14-365
10.1038/s41562-021-01079-8
10.1126/sciadv.abf1374
10.1214/20-BA1221
ContentType Journal Article
Copyright Copyright: © 2023 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Dan et al 2023 Dan et al
Copyright_xml – notice: Copyright: © 2023 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Dan et al 2023 Dan et al
CorporateAuthor Machine Learning & Global Health network
on behalf of the Machine Learning & Global Health network
CorporateAuthor_xml – name: Machine Learning & Global Health network
– name: on behalf of the Machine Learning & Global Health network
DBID NPM
AAYXX
CITATION
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1011191
DatabaseName PubMed
CrossRef
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Estimating fine age structure and time trends in human contact patterns
EISSN 1553-7358
Editor Pitzer, Virginia E.
Editor_xml – sequence: 1
  givenname: Virginia E.
  surname: Pitzer
  fullname: Pitzer, Virginia E.
EndPage e1011191
ExternalDocumentID 2838334589
oai_doaj_org_article_333be0b3f5084d769e9a67d8c9d2047f
A756300694
10_1371_journal_pcbi_1011191
37276210
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/V038109/1
– fundername: ;
– fundername: ;
  grantid: 458526380
– fundername: ;
  grantid: OPP1175094
– fundername: ;
  grantid: MR/V038109/1
– fundername: ;
  grantid: 01KX2021
– fundername: ;
  grantid: MR/R015600/1
– fundername: ;
  grantid: 031L0299J
– fundername: ;
  grantid: MRC/FCDO Concordat agreement
– fundername: ;
  grantid: EDCTP2 programme
– fundername: ;
  grantid: G-22-63345
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M0N
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
AFPKN
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
K9.
P64
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c611t-116d3ad73c9e641c8c3380d2a0c8f89a14a061970bdc3b37cb86e5107711b81c3
IEDL.DBID RPM
ISSN 1553-7358
1553-734X
IngestDate Sun Aug 06 00:39:28 EDT 2023
Tue Oct 22 14:55:18 EDT 2024
Tue Sep 17 21:29:59 EDT 2024
Fri Oct 25 07:02:05 EDT 2024
Thu Oct 10 15:49:02 EDT 2024
Tue Nov 19 21:43:34 EST 2024
Tue Nov 12 23:55:32 EST 2024
Sat Sep 28 21:38:19 EDT 2024
Sat Sep 28 21:25:37 EDT 2024
Fri Nov 22 00:16:37 EST 2024
Wed Oct 16 00:39:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2023 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-116d3ad73c9e641c8c3380d2a0c8f89a14a061970bdc3b37cb86e5107711b81c3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors share first authorship on this work.
Current Address: Imperial College London, Exhibition Road, London, United Kingdom
The authors have declared that no competing interests exist.
ORCID 0000-0001-5575-641X
0000-0002-6913-0976
0000-0002-7528-2298
0000-0001-8667-4118
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270591/
PMID 37276210
PQID 2838334589
PQPubID 1436340
PageCount e1011191
ParticipantIDs plos_journals_2838334589
doaj_primary_oai_doaj_org_article_333be0b3f5084d769e9a67d8c9d2047f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10270591
proquest_miscellaneous_2823040654
proquest_journals_2838334589
gale_infotracmisc_A756300694
gale_infotracacademiconefile_A756300694
gale_incontextgauss_ISR_A756300694
gale_incontextgauss_ISN_A756300694
crossref_primary_10_1371_journal_pcbi_1011191
pubmed_primary_37276210
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pcbi.1011191.ref030
F Verelst (pcbi.1011191.ref007) 2021; 19
A Solin (pcbi.1011191.ref016) 2020; 30
pcbi.1011191.ref034
pcbi.1011191.ref011
JA Backer (pcbi.1011191.ref015) 2021; 26
pcbi.1011191.ref033
pcbi.1011191.ref017
T Hale (pcbi.1011191.ref019) 2021; 5
M Baguelin (pcbi.1011191.ref038) 2021; 12
pcbi.1011191.ref037
P Beutels (pcbi.1011191.ref035) 2006; 134
J Wallinga (pcbi.1011191.ref023) 2006; 164
N Hens (pcbi.1011191.ref021) 2009; 9
S Flaxman (pcbi.1011191.ref032) 2020; 584
J van de Kassteele (pcbi.1011191.ref010) 2017; 11
CP Farrington (pcbi.1011191.ref012) 2005; 100
NB Wikle (pcbi.1011191.ref039) 2022; 8
M Eichner (pcbi.1011191.ref003) 2014; 14
pcbi.1011191.ref020
E Semenova (pcbi.1011191.ref036) 2022; 19
pcbi.1011191.ref041
A Melegaro (pcbi.1011191.ref031) 2017; 12
NHL Leung (pcbi.1011191.ref005) 2021; 19
pcbi.1011191.ref024
N Goeyvaerts (pcbi.1011191.ref002) 2010; 59
DV Tomori (pcbi.1011191.ref009) 2021; 19
L Matrajt (pcbi.1011191.ref042) 2021; 7
J Mossong (pcbi.1011191.ref001) 2008; 5
pcbi.1011191.ref026
pcbi.1011191.ref025
J Wallinga (pcbi.1011191.ref006) 2010; 107
P Coletti (pcbi.1011191.ref014) 2020; 10
pcbi.1011191.ref029
A Gimma (pcbi.1011191.ref013) 2022; 19
DM Feehan (pcbi.1011191.ref008) 2021; 12
B Carpenter (pcbi.1011191.ref027) 2017; 76
cr-split#-pcbi.1011191.ref022.1
R Schmidt-Ott (pcbi.1011191.ref004) 2016; 16
cr-split#-pcbi.1011191.ref022.2
M Monod (pcbi.1011191.ref040) 2021; 371
CI Jarvis (pcbi.1011191.ref018) 2020; 18
A Vehtari (pcbi.1011191.ref028) 2021; 16
References_xml – volume: 164
  start-page: 936
  issue: 10
  year: 2006
  ident: pcbi.1011191.ref023
  article-title: Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/kwj317
  contributor:
    fullname: J Wallinga
– ident: pcbi.1011191.ref025
– ident: pcbi.1011191.ref026
  doi: 10.7551/mitpress/3206.001.0001
– ident: #cr-split#-pcbi.1011191.ref022.2
– volume: 19
  start-page: 254
  issue: 1
  year: 2021
  ident: pcbi.1011191.ref007
  article-title: SOCRATES-CoMix: a platform for timely and open-source contact mixing data during and in between COVID-19 surges and interventions in over 20 European countries
  publication-title: BMC Medicine
  doi: 10.1186/s12916-021-02133-y
  contributor:
    fullname: F Verelst
– volume: 19
  start-page: 528
  issue: 8
  year: 2021
  ident: pcbi.1011191.ref005
  article-title: Transmissibility and transmission of respiratory viruses
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/s41579-021-00535-6
  contributor:
    fullname: NHL Leung
– volume: 12
  issue: 1
  year: 2017
  ident: pcbi.1011191.ref031
  article-title: Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0170459
  contributor:
    fullname: A Melegaro
– ident: pcbi.1011191.ref017
– ident: pcbi.1011191.ref033
  doi: 10.1007/978-0-387-48536-2
– volume: 26
  start-page: 2000994
  issue: 8
  year: 2021
  ident: pcbi.1011191.ref015
  article-title: Impact of physical distancing measures against COVID-19 on contacts and mixing patterns: repeated cross-sectional surveys, the Netherlands, 2016–17, April 2020 and June 2020
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2021.26.8.2000994
  contributor:
    fullname: JA Backer
– volume: 134
  start-page: 1158
  issue: 6
  year: 2006
  ident: pcbi.1011191.ref035
  article-title: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface
  publication-title: Epidemiology & Infection
  doi: 10.1017/S0950268806006418
  contributor:
    fullname: P Beutels
– ident: pcbi.1011191.ref034
– volume: 12
  start-page: 893
  issue: 1
  year: 2021
  ident: pcbi.1011191.ref008
  article-title: Quantifying population contact patterns in the United States during the COVID-19 pandemic
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-20990-2
  contributor:
    fullname: DM Feehan
– ident: #cr-split#-pcbi.1011191.ref022.1
  doi: 10.1093/biostatistics/kxad005
– volume: 30
  start-page: 419
  issue: 2
  year: 2020
  ident: pcbi.1011191.ref016
  article-title: Hilbert space methods for reduced-rank Gaussian process regression
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-019-09886-w
  contributor:
    fullname: A Solin
– volume: 107
  start-page: 923
  issue: 2
  year: 2010
  ident: pcbi.1011191.ref006
  article-title: Optimizing infectious disease interventions during an emerging epidemic
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0908491107
  contributor:
    fullname: J Wallinga
– volume: 59
  start-page: 255
  issue: 2
  year: 2010
  ident: pcbi.1011191.ref002
  article-title: Estimating infectious disease parameters from data on social contacts and serological status
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
  contributor:
    fullname: N Goeyvaerts
– ident: pcbi.1011191.ref041
– volume: 5
  start-page: e74
  issue: 3
  year: 2008
  ident: pcbi.1011191.ref001
  article-title: Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.0050074
  contributor:
    fullname: J Mossong
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: pcbi.1011191.ref004
  article-title: Influence of social contact patterns and demographic factors on influenza simulation results
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-016-1981-5
  contributor:
    fullname: R Schmidt-Ott
– volume: 18
  start-page: 124
  issue: 1
  year: 2020
  ident: pcbi.1011191.ref018
  article-title: Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK
  publication-title: BMC Medicine
  doi: 10.1186/s12916-020-01597-8
  contributor:
    fullname: CI Jarvis
– ident: pcbi.1011191.ref020
– volume: 10
  start-page: 21885
  issue: 1
  year: 2020
  ident: pcbi.1011191.ref014
  article-title: CoMix: comparing mixing patterns in the Belgian population during and after lockdown
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-78540-7
  contributor:
    fullname: P Coletti
– ident: pcbi.1011191.ref024
– volume: 76
  start-page: 1
  year: 2017
  ident: pcbi.1011191.ref027
  article-title: Stan: A Probabilistic Programming Language
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v076.i01
  contributor:
    fullname: B Carpenter
– volume: 8
  start-page: eabf9868
  issue: 4
  year: 2022
  ident: pcbi.1011191.ref039
  article-title: SARS-CoV-2 epidemic after social and economic reopening in three U.S. states reveals shifts in age structure and clinical characteristics
  publication-title: Science Advances
  doi: 10.1126/sciadv.abf9868
  contributor:
    fullname: NB Wikle
– ident: pcbi.1011191.ref030
– volume: 11
  start-page: 320
  issue: 1
  year: 2017
  ident: pcbi.1011191.ref010
  article-title: Efficient estimation of age-specific social contact rates between men and women
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/16-AOAS1006
  contributor:
    fullname: J van de Kassteele
– volume: 584
  start-page: 257
  issue: 7820
  year: 2020
  ident: pcbi.1011191.ref032
  article-title: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe
  publication-title: Nature
  doi: 10.1038/s41586-020-2405-7
  contributor:
    fullname: S Flaxman
– volume: 19
  start-page: 20220094
  issue: 191
  year: 2022
  ident: pcbi.1011191.ref036
  article-title: PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2022.0094
  contributor:
    fullname: E Semenova
– volume: 100
  start-page: 370
  issue: 470
  year: 2005
  ident: pcbi.1011191.ref012
  article-title: Contact Surface Models for Infectious Diseases
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001754
  contributor:
    fullname: CP Farrington
– ident: pcbi.1011191.ref011
– volume: 371
  start-page: eabe8372
  issue: 6536
  year: 2021
  ident: pcbi.1011191.ref040
  article-title: Age groups that sustain resurging COVID-19 epidemics in the United States
  publication-title: Science
  doi: 10.1126/science.abe8372
  contributor:
    fullname: M Monod
– volume: 9
  start-page: 1
  issue: 1
  year: 2009
  ident: pcbi.1011191.ref021
  article-title: Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium
  publication-title: BMC Infectious Diseases
  doi: 10.1186/1471-2334-9-5
  contributor:
    fullname: N Hens
– ident: pcbi.1011191.ref037
– volume: 19
  start-page: 271
  issue: 1
  year: 2021
  ident: pcbi.1011191.ref009
  article-title: Individual social contact data and population mobility data as early markers of SARS-CoV-2 transmission dynamics during the first wave in Germany—an analysis based on the COVIMOD study
  publication-title: BMC Medicine
  doi: 10.1186/s12916-021-02139-6
  contributor:
    fullname: DV Tomori
– volume: 12
  start-page: 6895
  issue: 1
  year: 2021
  ident: pcbi.1011191.ref038
  article-title: SARS-CoV-2 transmission across age groups in France and implications for control
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-27163-1
  contributor:
    fullname: M Baguelin
– volume: 19
  issue: 3
  year: 2022
  ident: pcbi.1011191.ref013
  article-title: Changes in social contacts in England during the COVID-19 pandemic between March 2020 and March 2021 as measured by the CoMix survey: A repeated cross-sectional study
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1003907
  contributor:
    fullname: A Gimma
– ident: pcbi.1011191.ref029
– volume: 14
  start-page: 365
  year: 2014
  ident: pcbi.1011191.ref003
  article-title: 4Flu—an individual based simulation tool to study the effects of quadrivalent vaccination on seasonal influenza in Germany
  publication-title: BMC infectious diseases
  doi: 10.1186/1471-2334-14-365
  contributor:
    fullname: M Eichner
– volume: 5
  start-page: 529
  issue: 4
  year: 2021
  ident: pcbi.1011191.ref019
  article-title: A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)
  publication-title: Nature Humam Behaviour
  doi: 10.1038/s41562-021-01079-8
  contributor:
    fullname: T Hale
– volume: 7
  start-page: eabf1374
  issue: 6
  year: 2021
  ident: pcbi.1011191.ref042
  article-title: Vaccine optimization for COVID-19: Who to vaccinate first?
  publication-title: Science Advances
  doi: 10.1126/sciadv.abf1374
  contributor:
    fullname: L Matrajt
– volume: 16
  start-page: 667
  issue: 2
  year: 2021
  ident: pcbi.1011191.ref028
  article-title: Rank-Normalization, Folding, and Localization: An Improved Ȓ for Assessing Convergence of MCMC (with Discussion)
  publication-title: Bayesian Analysis
  doi: 10.1214/20-BA1221
  contributor:
    fullname: A Vehtari
SSID ssj0035896
Score 2.4611979
Snippet Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1011191
SubjectTerms Age
Age composition
Analysis
Bayesian analysis
Bayesian statistical decision theory
Consistency
Contact tracing
Coronaviruses
COVID-19
Disease transmission
Estimates
Estimation
Fine structure
Gaussian process
Gender
Hilbert space
Longitudinal studies
Medicine and Health Sciences
Methods
Pandemics
People and Places
Physical Sciences
Polls & surveys
Questionnaires
Research and Analysis Methods
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Surveys
Trends
Ultrastructure
Viral diseases
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELYgEhIXxLuBggxC4rR0vXbWNrcWUsGlBwpSb5ZfWyJVTsQmh_4A_jcz9mbFoiIuHLMziWTPN-PxZuYbQt7oKLTSbVNx53glvPWVUotQLZAoRgq4vqk8xPZcnl2oj0ukyRlHfWFNWKEHLht3xDl3sXa8g0xCBNnqqG0rg_I6NLWQXY6-tdxfpkoM5guVJ3PhUJxKcnExNM1xyY4GG73beLfCuysynE0OpczdP0bo2eZq3d-Ufv5ZRfnbsXR6n9wb8kl6XNbxgNyK6SG5UyZMXj8iP5fgwpiUpkvaQUJJIXzQwhm7-wGfUqA4XZ5uc2ksXSWah_ZRrGC3fks3mX4z9RTbUOApXIPjKMTq0vcUgEZP7HXEbkyKxBMo7xE9ELdpnrTzmHw7XX798KkaJi9UvmVsWzHWBm6D5F7HVjCvPNxk69DY2qtOacuEhTxAy9oFzx2X3qk2gndLyZhTzPMnZJbWKR4QCiGkRQadrrON6BZew4HoWachLWPSWTEn1X7rzaYQbJj8L5uEi0nZQ4OmMoOp5uQE7TPqIj12fgCgMQNozL9AMyev0boGCTASVthc2l3fm8_nZ-ZYImMatgP_VenLROntoNStAQWA9dLVAItHYq2J5uFEE9zYT8QHiLT9mnsDeZ_iXACS4Zt79N0sfjWK8Uexai7F9Q518JU_tg_PydMC1nHfOCSuLXjOnKgJjCcbO5Wk1ffMPw45qYSsnD37H6Z4Tu42kDeW6rtDMgMPiC_I7T7sXmaX_gWrhU50
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimating fine age structure and time trends in human contact patterns from coarse contact data: The Bayesian rate consistency model
URI https://www.ncbi.nlm.nih.gov/pubmed/37276210
https://www.proquest.com/docview/2838334589
https://search.proquest.com/docview/2823040654
https://pubmed.ncbi.nlm.nih.gov/PMC10270591
https://doaj.org/article/333be0b3f5084d769e9a67d8c9d2047f
http://dx.doi.org/10.1371/journal.pcbi.1011191
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYlZC4IMqrgVIZhMQpu-vYG9vc2rIVHKgQBam3yHGc7UqtEzW7h_4A_ndnnIcaVC4cNzP7iP2N_Tk78w0hH7UTWuk0iXme81hYY2OllkW8RKEYKeD4pkIT23N5dqG-rFAmJ-1rYULSvs03M391PfOby5BbWV_beZ8nNv_x_QQ2RQm0gM0nZALksD-jt-svX6rQlQsb4sSSi4uuYI5LNu_mZ1bjNzBss66xVQyHTTxNsIj23t4UJPyHhXpaX1XNQyz072TKe7vT6TPytKOV9Kj9-XvkkfPPyeO20eTtC_JnBZGM3NSvaQm8ksIqQlvp2N0NvPIFxSbzdBsyZOnG09C7j2Iiu7FbWgcVTt9QrEaBq3AadoMRk0w_U8AbPTa3DosyKepPoL1BEMHyTUPDnZfk9-nq18nXuGvAENuUsW3MWFpwU0hutUsFs8rCgXZRJGZhVam0YcIAHdBykReW51zaXKUOglxKxnLFLH9Fpr7ybp9QWElSFNIpS5OIcmk17IuWlRrYGZO5ERGJ-6HP6lZnIwt_tkk4n7RjmOGsZd2sReQY52fwRZXscKG6WWcdVjLOee4WOS-BhYpCptppk8pCWV0kCyHLiHzA2c1QB8Njos3a7Jom-3Z-lh1JFE7DquB_Ov0cOX3qnMoKUACQb4sb4OZRX2vkeTDyhGi2I_M-Iq2_5yYD-qc4FwBqeGePvofN7wczfigmz3lX7dAHn_xjFXFEXrdgHcath35E1AjGo4EdWyAqgwx5H4Vv_v-tb8mTBEhjm3p3QKaAe_eOTJpidxgejhyGyL4DkLtQXg
link.rule.ids 230,315,729,782,786,866,887,2107,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdYEYIXvmGFAQYh8ZQ2jt3Y5m0bnTaxVYgNaW-W4ySl0uZGS_uwP4D_mzsnqRY0XvaY3CWRfR--U-5-R8hnXQitdJpEPMt4JJx1kVKTPJogUIwUkL6pMMT2VM7O1bcpwuSkXS9MKNp32WLkLy5HfvE71FZWl27c1YmNf5zsw6EoISxg4y1yHww2TrosvfHAfKLCXC4ciRNJLs7bljku2biV0KjCbzActK5xWAyHYzxNsI32xukUQPw3rnpQXSzr2-LQf8spb5xPB0_uurKn5HEbkdLdhv6M3Cv8c_KgmVF5_YL8mYITwLDWz2kJISkFB0Qb1Nn1FVz5nOJ8eroKxbV04WkY-0exBt66Fa0CgKevKTaywF1IpIsNEetTv1JQVbpnrwvs56QIXYH0GvUPPD8Ns3pekl8H07P9w6id3RC5lLFVxFiac5tL7nSRCuaUg1w4zhMbO1UqbZmwEEloGWe54xmXLlNpAf5BSsYyxRx_RQZ-6YttQsEJpYjBU5Y2EeXEaThSHSs1BHZMZlYMSdTJzFQNRIcJ_-kkpDbNHhoUt2nFPSR7KNgNLwJshxvLq7lphWE451kRZ7yEAFbkMtWFtqnMldN5EgtZDsknVAuDEBoea3Tmdl3X5uh0ZnYlYq5hQ_F_mX72mL60TOUS1AespemLgMUjNFePc6fHCY7A9cjbqKLdmmsDkaPiXIA1wJOd2t5O_rgh40ux7s4XyzXy4E8DbEAekteNlm_2rbOZIVE9_e9tbJ8Cah8QzDs1f3P3Rz-Qh4dnJ8fm-Gj2_S15lEDs2VTw7ZAB2EDxjmzV-fp9cAx_AVjOZR0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboIhAX3qULBQxC4pTdOPbGdm99raiAVUVB6s1KbGdZqc1Gze6hP4D_zYyTrBpULnBMZpLInqeVmW8I-aC90EqnScTznEfCZjZSauKiCQLFSAHHNxWG2J7J2bk6OkaYnL2uFyYU7dt8MSovLkfl4meorawu7birExuffj2EoCghLWDjyhXjLXIXjDYW3Um98cJ8osJsLhyLE0kuztu2OS7ZuJXSqMLvMBy2rnFgDIdQnibYSnsjQgUg_427HlQXy_q2XPTPksobMWr66H9W95g8bDNTut_wPCF3fPmU3GtmVV4_I7-OwRlgelvOaQGpKQVHRBv02fUVXJWO4px6ugpFtnRR0jD-j2ItfGZXtApAnmVNsaEF7sKB2m-IWKe6R0Fl6UF27bGvkyKEBdJr1EOIADTM7HlOfkyPvx9-itoZDpFNGVtFjKWOZ05yq30qmFUWzsSxS7LYqkLpjIkMMgot49xZnnNpc5V68BNSMpYrZvk2GZTL0u8QCs4oRSyeosgSUUyshtBqWaEhwWMyz8SQRJ3cTNVAdZjwv07CEafZQ4MiN63Ih-QAhbvhRaDtcGN5NTetQAznPPdxzgtIZIWTqfY6S6VTVrskFrIYkveoGgahNEqs1Zln67o2J2czsy8Rew0bi__K9K3H9LFlKpagQmA1TX8ELB4hunqcuz1OcAi2R95BNe3WXBvIIBXnAiwCnuxU93byuw0ZX4r1d6VfrpEHfx5gI_KQvGg0fbNvnd0MierZQG9j-xRQ_YBk3qn6y39_9C25f3o0NV9OZp9fkQcJpKBNId8uGYAJ-Ndkq3brN8E3_AZ3Tmed
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+fine+age+structure+and+time+trends+in+human+contact+patterns+from+coarse+contact+data%3A+The+Bayesian+rate+consistency+model&rft.jtitle=PLoS+computational+biology&rft.date=2023-06-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=19&rft.issue=6&rft.spage=e1011191&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011191&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon