Neurofilaments Are Transported Rapidly But Intermittently in Axons: Implications for Slow Axonal Transport

Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation....

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 20; no. 18; pp. 6849 - 6861
Main Authors: Roy, Subhojit, Coffee, Pilar, Smith, George, Liem, Ronald K. H, Brady, Scott T, Black, Mark M
Format: Journal Article
Language:English
Published: United States Soc Neuroscience 15-09-2000
Society for Neuroscience
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.
AbstractList Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.
Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.
Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP–NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP–NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of ≈0.6–0.7 μm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.
Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 mu m/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.
Author Smith, George
Roy, Subhojit
Brady, Scott T
Liem, Ronald K. H
Black, Mark M
Coffee, Pilar
AuthorAffiliation 2 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235
4 Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032
3 Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, and
1 Department of Anatomy and Cell Biology, Temple University Medical School, Philadelphia, Pennsylvania 19140
AuthorAffiliation_xml – name: 4 Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032
– name: 3 Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, and
– name: 1 Department of Anatomy and Cell Biology, Temple University Medical School, Philadelphia, Pennsylvania 19140
– name: 2 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235
Author_xml – sequence: 1
  fullname: Roy, Subhojit
– sequence: 2
  fullname: Coffee, Pilar
– sequence: 3
  fullname: Smith, George
– sequence: 4
  fullname: Liem, Ronald K. H
– sequence: 5
  fullname: Brady, Scott T
– sequence: 6
  fullname: Black, Mark M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10995829$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLcLfwFFHOCUYjsfdnpAWlYFFlWt1I-zNUnsrleOHeyE0H-P01RQTpxszzzzaKz3BB1ZZyVC7wg-JQXNPh6sHL0LjT6lOCU8xSXPq3jH-AVaRaJKaY7JEVphynBa5iw_RichHCLAMGGv0DHBVVVwWq3Q4XJ2KW2gk3YIycbL5NaDDb3zg2yTa-h1ax6Sz-OQ7OwgfaeHIZKxpG2y-eVsOEt2XW90A4OOr0Q5n9wYNz02wfy1vUYvFZgg3zyda3T35fx2-y29uPq6224u0qbEfEiBKcpJ0XKCKa9pA7IEwCoDoIoSqtqiYk2d1TmnOCONIrwoWwlQgayVlCRbo0-Ltx_rTrZN3NaDEb3XHfgH4UCLfztW78W9-ylKxugsXaP3TwLvfowyDKLToZHGgJVuDILRiGW0-i9IGGclZ3kEzxawibkFL9WfbQgWc6bi--X53fXVzXYnaKxw8ZipmDONw2-f_-fZ6BJiBD4swF7f7yftpQgdGBNxIqZpWoSzL_sNOFuzEA
CitedBy_id crossref_primary_10_1523_JNEUROSCI_0309_08_2008
crossref_primary_10_1523_JNEUROSCI_3829_08_2009
crossref_primary_10_1016_S0166_2236_00_01919_6
crossref_primary_10_1016_j_ejcb_2008_11_004
crossref_primary_10_1083_jcb_200202037
crossref_primary_10_1016_j_jns_2005_03_015
crossref_primary_10_1523_JNEUROSCI_3032_06_2006
crossref_primary_10_4161_cc_9_18_12716
crossref_primary_10_1038_ncomms2037
crossref_primary_10_1046_j_1432_1327_2001_02025_x
crossref_primary_10_1002_neu_10314
crossref_primary_10_1038_nrn_2017_129
crossref_primary_10_1016_j_bbadis_2006_09_003
crossref_primary_10_1523_JNEUROSCI_21_24_09655_2001
crossref_primary_10_1002_cm_20089
crossref_primary_10_1002_cm_20122
crossref_primary_10_1002_jnr_10212
crossref_primary_10_1002_neu_10270
crossref_primary_10_1016_j_molbrainres_2003_10_008
crossref_primary_10_1177_1073858413498306
crossref_primary_10_15407_fz56_01_127
crossref_primary_10_1002_neu_20230
crossref_primary_10_1007_s00401_004_0952_x
crossref_primary_10_1091_mbc_E23_01_0024
crossref_primary_10_1016_j_neuron_2016_04_046
crossref_primary_10_1083_jcb_201305098
crossref_primary_10_1016_j_yexcr_2007_03_011
crossref_primary_10_1083_jcb_200202027
crossref_primary_10_1242_jcs_079046
crossref_primary_10_1083_jcb_200407191
crossref_primary_10_1016_j_nbd_2014_07_002
crossref_primary_10_1016_S0014_4886_03_00291_7
crossref_primary_10_1098_rspa_2022_0672
crossref_primary_10_1016_j_molmed_2009_11_002
crossref_primary_10_1083_jcb_201711022
crossref_primary_10_1091_mbc_e09_04_0304
crossref_primary_10_1523_JNEUROSCI_2001_05_2005
crossref_primary_10_1002_neu_10320
crossref_primary_10_1242_bio_028795
crossref_primary_10_1523_JNEUROSCI_1942_09_2009
crossref_primary_10_1083_jcb_200303138
crossref_primary_10_1111_joim_12030
crossref_primary_10_1002_cm_21448
crossref_primary_10_1115_1_4056915
crossref_primary_10_1007_s00401_013_1133_6
crossref_primary_10_1523_JNEUROSCI_3794_09_2009
crossref_primary_10_1002_jnr_10186
crossref_primary_10_1002_neu_10281
crossref_primary_10_1016_j_yexcr_2007_04_008
crossref_primary_10_1142_S0219635216500230
crossref_primary_10_1002_cm_21083
crossref_primary_10_1523_JNEUROSCI_23_28_09452_2003
crossref_primary_10_1046_j_1471_4159_2003_01653_x
crossref_primary_10_1016_j_neuroimage_2015_04_048
crossref_primary_10_1016_j_bpj_2021_12_041
crossref_primary_10_1083_jcb_200212017
crossref_primary_10_1111_j_1600_0854_2006_00403_x
crossref_primary_10_1016_j_jneumeth_2006_10_010
crossref_primary_10_1146_annurev_neuro_31_061307_090711
crossref_primary_10_1016_j_brainres_2006_09_108
crossref_primary_10_3390_ijms19010159
crossref_primary_10_1002_jbm_a_35627
crossref_primary_10_1016_j_neuroscience_2005_08_077
crossref_primary_10_1242_dev_199717
crossref_primary_10_1242_jcs_00526
crossref_primary_10_3389_fncel_2019_00540
crossref_primary_10_1016_S1359_0294_03_00010_4
crossref_primary_10_1038_35040102
crossref_primary_10_1523_JNEUROSCI_1974_04_2004
crossref_primary_10_1016_j_bbadis_2006_04_002
crossref_primary_10_1002_cm_21597
crossref_primary_10_1038_nprot_2011_428
crossref_primary_10_1083_jcb_200308076
crossref_primary_10_1155_2014_458601
crossref_primary_10_1042_BC20100093
crossref_primary_10_1091_mbc_e04_05_0401
crossref_primary_10_1523_JNEUROSCI_4502_13_2014
crossref_primary_10_1083_jcb_201604028
crossref_primary_10_1016_j_ceb_2024_102326
crossref_primary_10_1002_jnr_21448
crossref_primary_10_1016_j_molbrainres_2005_08_009
crossref_primary_10_1097_PRS_0b013e3181ccdbd4
crossref_primary_10_2217_fnl_09_4
crossref_primary_10_1046_j_1471_4159_2003_02166_x
crossref_primary_10_1083_jcb_200108057
crossref_primary_10_1091_mbc_12_10_3257
crossref_primary_10_1016_j_ejcb_2004_09_001
crossref_primary_10_1016_S0960_9822_02_01078_3
crossref_primary_10_1242_jcs_051318
crossref_primary_10_3389_fnins_2018_00467
crossref_primary_10_1111_j_1529_8027_2012_00434_x
crossref_primary_10_1111_j_1600_0854_2012_01361_x
crossref_primary_10_1523_ENEURO_0138_22_2022
crossref_primary_10_1523_JNEUROSCI_4227_06_2007
crossref_primary_10_1016_j_jtbi_2005_04_018
crossref_primary_10_1016_S0959_4388_00_00248_8
crossref_primary_10_1523_JNEUROSCI_3399_09_2009
crossref_primary_10_1007_s12035_008_8033_0
crossref_primary_10_1091_mbc_e04_05_0371
crossref_primary_10_1523_JNEUROSCI_23_26_08967_2003
crossref_primary_10_1002_bies_201500142
crossref_primary_10_1111_j_1365_2990_2011_01178_x
crossref_primary_10_1083_jcb_201008095
crossref_primary_10_1016_j_ejcb_2004_12_004
crossref_primary_10_1016_S0955_0674_01_00294_0
crossref_primary_10_1088_1478_3975_6_4_046002
crossref_primary_10_1093_jnen_nlw114
crossref_primary_10_1371_journal_pgen_0020124
crossref_primary_10_1016_j_bbrc_2005_02_187
crossref_primary_10_1523_JNEUROSCI_4999_06_2007
crossref_primary_10_1016_j_nbd_2012_01_013
crossref_primary_10_1111_j_1471_4159_2006_03932_x
crossref_primary_10_1523_JNEUROSCI_0927_07_2007
crossref_primary_10_1002_cm_21019
crossref_primary_10_1016_S0361_9230_01_00575_5
crossref_primary_10_1002_cm_21411
crossref_primary_10_1002_cm_20045
crossref_primary_10_1093_brain_awaa098
crossref_primary_10_1080_10255842_2015_1043628
crossref_primary_10_1091_mbc_e03_09_0707
crossref_primary_10_1523_JNEUROSCI_1665_04_2004
crossref_primary_10_1002_jnr_1147
crossref_primary_10_1038_nrn3380
crossref_primary_10_1016_j_neuroimage_2014_06_009
crossref_primary_10_1016_j_ceb_2020_10_011
crossref_primary_10_1038_nrm1438
crossref_primary_10_1016_j_conb_2020_03_015
crossref_primary_10_3389_fnins_2021_679199
crossref_primary_10_1101_cshperspect_a021980
crossref_primary_10_1002_cm_10084
crossref_primary_10_3109_01677063_2012_699564
crossref_primary_10_1242_jcs_00936
crossref_primary_10_3390_ijms12129057
crossref_primary_10_1002_cm_21087
crossref_primary_10_1002_cm_20395
crossref_primary_10_1016_j_jneuroim_2010_01_004
crossref_primary_10_1111_j_1460_9568_2008_06165_x
crossref_primary_10_1364_BOE_4_000364
crossref_primary_10_1002_jmri_22284
crossref_primary_10_1101_cshperspect_a018309
crossref_primary_10_1523_JNEUROSCI_22_14_05982_2002
crossref_primary_10_1016_j_pneurobio_2009_07_006
crossref_primary_10_1016_j_neuron_2011_03_022
crossref_primary_10_1016_j_yexcr_2008_03_004
crossref_primary_10_1016_S0955_0674_00_00181_2
crossref_primary_10_1038_ncb0704_569
crossref_primary_10_1080_10255842_2023_2197541
crossref_primary_10_3390_ijms21218009
crossref_primary_10_1002_jnr_20399
crossref_primary_10_1002_bies_10251
crossref_primary_10_1016_j_yexcr_2007_04_010
crossref_primary_10_1242_jcs_115_7_1453
crossref_primary_10_1146_annurev_cellbio_19_111401_092306
crossref_primary_10_1038_ncb1139
crossref_primary_10_1002_cm_21030
crossref_primary_10_1002_cm_20184
crossref_primary_10_1016_j_tcb_2007_11_004
crossref_primary_10_3389_fcell_2023_1275155
crossref_primary_10_1016_j_neures_2003_08_005
crossref_primary_10_1016_j_pbiomolbio_2019_10_004
crossref_primary_10_1091_mbc_e05_02_0141
crossref_primary_10_1016_j_bpj_2014_04_037
crossref_primary_10_3389_fncel_2014_00429
crossref_primary_10_1016_j_cell_2008_11_043
crossref_primary_10_1134_S0006297908130063
crossref_primary_10_1523_JNEUROSCI_1148_13_2013
crossref_primary_10_1002_cm_10131
crossref_primary_10_1016_j_ijdevneu_2005_11_013
crossref_primary_10_1523_JNEUROSCI_5299_06_2007
crossref_primary_10_1016_j_neuron_2016_05_026
crossref_primary_10_1016_j_neulet_2005_10_029
crossref_primary_10_1523_ENEURO_0029_23_2023
crossref_primary_10_1039_c3nr02254d
crossref_primary_10_1046_j_1471_4159_2003_02201_x
crossref_primary_10_1152_ajpgi_00283_2003
crossref_primary_10_1038_s41598_018_26176_z
ContentType Journal Article
Copyright Copyright © 2000 Society for Neuroscience 2000
Copyright_xml – notice: Copyright © 2000 Society for Neuroscience 2000
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
DOI 10.1523/jneurosci.20-18-06849.2000
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 6861
ExternalDocumentID 10_1523_JNEUROSCI_20_18_06849_2000
10995829
www20_18_6849
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS017681
– fundername: NINDS NIH HHS
  grantid: R01 NS023320
– fundername: NINDS NIH HHS
  grantid: NS23868
– fundername: NINDS NIH HHS
  grantid: NS34809
– fundername: NINDS NIH HHS
  grantid: R01 NS034809
– fundername: NINDS NIH HHS
  grantid: R56 NS023868
– fundername: NINDS NIH HHS
  grantid: NS17681
– fundername: NINDS NIH HHS
  grantid: R01 NS015182
– fundername: NINDS NIH HHS
  grantid: R01 NS023868
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AI.
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
YYP
AAYXX
CITATION
7TK
7X8
5PM
ID FETCH-LOGICAL-c608t-a7f2815d81028b2cae6aa0f3aa2f212fd597cb3b482031cf1856deaa9aebfee13
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:09:48 EDT 2024
Sat Oct 26 04:36:52 EDT 2024
Fri Oct 25 03:52:27 EDT 2024
Thu Sep 26 17:00:43 EDT 2024
Sat Nov 02 12:12:37 EDT 2024
Tue Nov 10 19:48:34 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Non-programmatic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-a7f2815d81028b2cae6aa0f3aa2f212fd597cb3b482031cf1856deaa9aebfee13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/20/18/6849.full.pdf
PMID 10995829
PQID 17876874
PQPubID 23462
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6772820
proquest_miscellaneous_72282329
proquest_miscellaneous_17876874
crossref_primary_10_1523_JNEUROSCI_20_18_06849_2000
pubmed_primary_10995829
highwire_smallpub1_www20_18_6849
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20000915
2000-Sep-15
2000-09-15
PublicationDateYYYYMMDD 2000-09-15
PublicationDate_xml – month: 09
  year: 2000
  text: 20000915
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2000
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
SSID ssj0007017
Score 2.17673
Snippet Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6849
SubjectTerms Adrenergic Fibers - metabolism
Adrenergic Fibers - ultrastructure
Animals
Axonal Transport - physiology
Axons - metabolism
Axons - ultrastructure
Cells, Cultured
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Green Fluorescent Proteins
Luminescent Proteins - genetics
Neurofilament Proteins - genetics
Neurofilament Proteins - metabolism
Neurons - cytology
Neurons - metabolism
Rats
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Time Factors
Transfection
Title Neurofilaments Are Transported Rapidly But Intermittently in Axons: Implications for Slow Axonal Transport
URI http://www.jneurosci.org/cgi/content/abstract/20/18/6849
https://www.ncbi.nlm.nih.gov/pubmed/10995829
https://search.proquest.com/docview/17876874
https://www.proquest.com/docview/72282329
https://pubmed.ncbi.nlm.nih.gov/PMC6772820
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pj5QwGG2cPXkx6vpj_LH2YLyxQ1ug4G0cd7OjcWMcTbw1BdosBpiJw0T3v_e1wDhr9OKNQCFNvwffe-XrKyEvY8GFAY6CzEKuQn9ZHJk8yAvBdMhNJplbjXyxkpdf07dnziYnHtfC-KL9Iq9O27o5basrX1u5aYrZWCc2-_hhkYASInPNJmQCbjhK9OHzK0O_zS7kFnRRJKPBaRSCa_bu0pXHrRZL6MKApW7DlahfrOK8Q8GV4tRTzYMENZoG_42A_llHeZCYzu-SOwOjpPO-5_fILdPeJ8fzFmq6uaavqK_x9JPnx-Rb78VRAQaugAI3Gfrb3rykn_SmKutr-mbXUT9X2FQdSHWHU1VL5z8B0dd0eVCETsF56ape__AX0Y390x6QL-dnnxcXwbDbQlAkYdoFWlqesrhMHeXIeaFNonVohdbcIr_ZEtKjyEUeYeQFKywSfVIa7dy9c2sMEw_JUbtuzWNCM-Q8kSU8LFMTaYhgaUURRTm3Ji4ZE1MixiFWm95UQzkxghipfYwUx5lU-Ri5zTLDKaFjNNS20XWNwWcKgOkbunZT8mKMksJr4v596Nasd1vF8GFKUhn9u4XkwJTgeMajPqoHXeuRMSXyRrz3DZxF980rQK636h6Q-uS_73xKbveL_7OAxc_IUfd9Z56TybbcnUAALN-fePD_AhlzCKM
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH5i4wAXNhiMMmA-IG5ZYzuJk91Kt6mFrUJ0SNwsJ7FFUJJWNNXYv-fZSUqH4LJbFDtRou857_uc588A70LOuMY48hKDchX1l8EjnXppxqnymU4EtauRJ3Mx-xafnVubnLBfC-OK9rO0OKnL6qQuvrvaymWVDfs6seHnq3GElBAz13AHHuJ49f1epHcfYOG7jXZRcKEyCkTQeY2i5Bp-nNkCufl4isrQo7HdciVol6tY91BkS2HsyOZWiuptg_9FQf-upNxKTRd793ypfXjScVEyapufwgNdP4ODUY06vLol74mrDnXT7gfwo3XxKDCAbOkFXqTJH2P0nHxRyyIvb8mHdUPcLGNVNEjHGzxV1GT0C4P7lEy3ytcJsmUyLxc3rhEfY3O35_D14vx6PPG6fRq8LPLjxlPCsJiGeWzJSsoypSOlfMOVYgYzo8lRtGQpTwN8PU4zgxQhyrWyvuCp0ZryF7BbL2r9EkiC2ZInEfPzWAcK5bMwPAuClBkd5pTyAfAeGrls7TiklTGIrdxgKxmeiaXD1m6z6Q-A9CjKVaXKEkGjElFpO9p-Azju0ZU4wOxfE1XrxXolKX7SolgE_-8hGALHGd7jsI2GrUdrI2oA4k6cbDpYc--7LRgezuS7C4dX977yGB5Nrq8u5eV09ukIHrcWAolHw9ew2_xc6zews8rXb93Q-Q0BRh0y
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXYkBAvMBgfZYP5AfGWJbaT2OGt61atfFQTBYk3y4ltEZSkFU0F-_dcO0npELzAW5XcRInOde456c25CL1MGGUG8ijILMhV0F8Wfpk8yAtGVERNxon7GvlyweefxfmFs8nZjvryTftFXp42VX3alF98b-WqLsKhTyy8ej9JgRJC5QpX2oZ76Das2YgOQr1_CPPID9sF0QXqKOZx7zcKsit8M3dNcovJDNRhQIQbuxJ3n6w4B1FgTInwhHOnTA3WwX-iob93U-6Up-n9_7ixA3Sv56R43IU8QLdM8xAdjhvQ4_U1foV9l6h__X6IvnZuHiUkkmvBgIMM_mWQrvEHtSp1dY3PNi32bxvrsgVa3sKmssHjH5Dkr_Fsp40dA2vGi2r53e-Ey9ie7RH6NL34OLkM-nkNQZFGog0Ut1SQRAtHWnJaKJMqFVmmFLVQIa0G8VLkLI_hFhkpLFCFVBvl_MFzawxhj9F-s2zMU4QzqJosS2mkhYkVyGhuWRHHObUm0YSwEWIDPHLV2XJIJ2cAX7nFV1LYIqTH143bjEYID0jKda2qCoAjEpDpAl3cCJ0MCEtYaO7fE9WY5WYtCTzaUsHjv0dwCuAxCud40mXEzqV1WTVC_EaubAOcyffNPZAi3uy7T4ln_3zkCbpzdT6V72bzt0fobuckkAUkOUb77beNeY721nrzwq-en-nkH7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurofilaments+Are+Transported+Rapidly+But+Intermittently+in+Axons%3A+Implications+for+Slow+Axonal+Transport&rft.jtitle=The+Journal+of+neuroscience&rft.au=Roy%2C+S&rft.au=Coffee%2C+P&rft.au=Smith%2C+G&rft.au=Liem%2C+RKH&rft.date=2000-09-15&rft.issn=0270-6474&rft.volume=20&rft.issue=18&rft.spage=6849&rft.epage=6861&rft_id=info:doi/10.1523%2Fjneurosci.20-18-06849.2000&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon