Neurofilaments Are Transported Rapidly But Intermittently in Axons: Implications for Slow Axonal Transport
Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation....
Saved in:
Published in: | The Journal of neuroscience Vol. 20; no. 18; pp. 6849 - 6861 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Soc Neuroscience
15-09-2000
Society for Neuroscience |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments. |
---|---|
AbstractList | Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments. Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments. Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP–NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP–NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of ≈0.6–0.7 μm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments. Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 mu m/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments. |
Author | Smith, George Roy, Subhojit Brady, Scott T Liem, Ronald K. H Black, Mark M Coffee, Pilar |
AuthorAffiliation | 2 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 4 Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032 3 Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, and 1 Department of Anatomy and Cell Biology, Temple University Medical School, Philadelphia, Pennsylvania 19140 |
AuthorAffiliation_xml | – name: 4 Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032 – name: 3 Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, and – name: 1 Department of Anatomy and Cell Biology, Temple University Medical School, Philadelphia, Pennsylvania 19140 – name: 2 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 |
Author_xml | – sequence: 1 fullname: Roy, Subhojit – sequence: 2 fullname: Coffee, Pilar – sequence: 3 fullname: Smith, George – sequence: 4 fullname: Liem, Ronald K. H – sequence: 5 fullname: Brady, Scott T – sequence: 6 fullname: Black, Mark M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10995829$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLcLfwFFHOCUYjsfdnpAWlYFFlWt1I-zNUnsrleOHeyE0H-P01RQTpxszzzzaKz3BB1ZZyVC7wg-JQXNPh6sHL0LjT6lOCU8xSXPq3jH-AVaRaJKaY7JEVphynBa5iw_RichHCLAMGGv0DHBVVVwWq3Q4XJ2KW2gk3YIycbL5NaDDb3zg2yTa-h1ax6Sz-OQ7OwgfaeHIZKxpG2y-eVsOEt2XW90A4OOr0Q5n9wYNz02wfy1vUYvFZgg3zyda3T35fx2-y29uPq6224u0qbEfEiBKcpJ0XKCKa9pA7IEwCoDoIoSqtqiYk2d1TmnOCONIrwoWwlQgayVlCRbo0-Ltx_rTrZN3NaDEb3XHfgH4UCLfztW78W9-ylKxugsXaP3TwLvfowyDKLToZHGgJVuDILRiGW0-i9IGGclZ3kEzxawibkFL9WfbQgWc6bi--X53fXVzXYnaKxw8ZipmDONw2-f_-fZ6BJiBD4swF7f7yftpQgdGBNxIqZpWoSzL_sNOFuzEA |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_0309_08_2008 crossref_primary_10_1523_JNEUROSCI_3829_08_2009 crossref_primary_10_1016_S0166_2236_00_01919_6 crossref_primary_10_1016_j_ejcb_2008_11_004 crossref_primary_10_1083_jcb_200202037 crossref_primary_10_1016_j_jns_2005_03_015 crossref_primary_10_1523_JNEUROSCI_3032_06_2006 crossref_primary_10_4161_cc_9_18_12716 crossref_primary_10_1038_ncomms2037 crossref_primary_10_1046_j_1432_1327_2001_02025_x crossref_primary_10_1002_neu_10314 crossref_primary_10_1038_nrn_2017_129 crossref_primary_10_1016_j_bbadis_2006_09_003 crossref_primary_10_1523_JNEUROSCI_21_24_09655_2001 crossref_primary_10_1002_cm_20089 crossref_primary_10_1002_cm_20122 crossref_primary_10_1002_jnr_10212 crossref_primary_10_1002_neu_10270 crossref_primary_10_1016_j_molbrainres_2003_10_008 crossref_primary_10_1177_1073858413498306 crossref_primary_10_15407_fz56_01_127 crossref_primary_10_1002_neu_20230 crossref_primary_10_1007_s00401_004_0952_x crossref_primary_10_1091_mbc_E23_01_0024 crossref_primary_10_1016_j_neuron_2016_04_046 crossref_primary_10_1083_jcb_201305098 crossref_primary_10_1016_j_yexcr_2007_03_011 crossref_primary_10_1083_jcb_200202027 crossref_primary_10_1242_jcs_079046 crossref_primary_10_1083_jcb_200407191 crossref_primary_10_1016_j_nbd_2014_07_002 crossref_primary_10_1016_S0014_4886_03_00291_7 crossref_primary_10_1098_rspa_2022_0672 crossref_primary_10_1016_j_molmed_2009_11_002 crossref_primary_10_1083_jcb_201711022 crossref_primary_10_1091_mbc_e09_04_0304 crossref_primary_10_1523_JNEUROSCI_2001_05_2005 crossref_primary_10_1002_neu_10320 crossref_primary_10_1242_bio_028795 crossref_primary_10_1523_JNEUROSCI_1942_09_2009 crossref_primary_10_1083_jcb_200303138 crossref_primary_10_1111_joim_12030 crossref_primary_10_1002_cm_21448 crossref_primary_10_1115_1_4056915 crossref_primary_10_1007_s00401_013_1133_6 crossref_primary_10_1523_JNEUROSCI_3794_09_2009 crossref_primary_10_1002_jnr_10186 crossref_primary_10_1002_neu_10281 crossref_primary_10_1016_j_yexcr_2007_04_008 crossref_primary_10_1142_S0219635216500230 crossref_primary_10_1002_cm_21083 crossref_primary_10_1523_JNEUROSCI_23_28_09452_2003 crossref_primary_10_1046_j_1471_4159_2003_01653_x crossref_primary_10_1016_j_neuroimage_2015_04_048 crossref_primary_10_1016_j_bpj_2021_12_041 crossref_primary_10_1083_jcb_200212017 crossref_primary_10_1111_j_1600_0854_2006_00403_x crossref_primary_10_1016_j_jneumeth_2006_10_010 crossref_primary_10_1146_annurev_neuro_31_061307_090711 crossref_primary_10_1016_j_brainres_2006_09_108 crossref_primary_10_3390_ijms19010159 crossref_primary_10_1002_jbm_a_35627 crossref_primary_10_1016_j_neuroscience_2005_08_077 crossref_primary_10_1242_dev_199717 crossref_primary_10_1242_jcs_00526 crossref_primary_10_3389_fncel_2019_00540 crossref_primary_10_1016_S1359_0294_03_00010_4 crossref_primary_10_1038_35040102 crossref_primary_10_1523_JNEUROSCI_1974_04_2004 crossref_primary_10_1016_j_bbadis_2006_04_002 crossref_primary_10_1002_cm_21597 crossref_primary_10_1038_nprot_2011_428 crossref_primary_10_1083_jcb_200308076 crossref_primary_10_1155_2014_458601 crossref_primary_10_1042_BC20100093 crossref_primary_10_1091_mbc_e04_05_0401 crossref_primary_10_1523_JNEUROSCI_4502_13_2014 crossref_primary_10_1083_jcb_201604028 crossref_primary_10_1016_j_ceb_2024_102326 crossref_primary_10_1002_jnr_21448 crossref_primary_10_1016_j_molbrainres_2005_08_009 crossref_primary_10_1097_PRS_0b013e3181ccdbd4 crossref_primary_10_2217_fnl_09_4 crossref_primary_10_1046_j_1471_4159_2003_02166_x crossref_primary_10_1083_jcb_200108057 crossref_primary_10_1091_mbc_12_10_3257 crossref_primary_10_1016_j_ejcb_2004_09_001 crossref_primary_10_1016_S0960_9822_02_01078_3 crossref_primary_10_1242_jcs_051318 crossref_primary_10_3389_fnins_2018_00467 crossref_primary_10_1111_j_1529_8027_2012_00434_x crossref_primary_10_1111_j_1600_0854_2012_01361_x crossref_primary_10_1523_ENEURO_0138_22_2022 crossref_primary_10_1523_JNEUROSCI_4227_06_2007 crossref_primary_10_1016_j_jtbi_2005_04_018 crossref_primary_10_1016_S0959_4388_00_00248_8 crossref_primary_10_1523_JNEUROSCI_3399_09_2009 crossref_primary_10_1007_s12035_008_8033_0 crossref_primary_10_1091_mbc_e04_05_0371 crossref_primary_10_1523_JNEUROSCI_23_26_08967_2003 crossref_primary_10_1002_bies_201500142 crossref_primary_10_1111_j_1365_2990_2011_01178_x crossref_primary_10_1083_jcb_201008095 crossref_primary_10_1016_j_ejcb_2004_12_004 crossref_primary_10_1016_S0955_0674_01_00294_0 crossref_primary_10_1088_1478_3975_6_4_046002 crossref_primary_10_1093_jnen_nlw114 crossref_primary_10_1371_journal_pgen_0020124 crossref_primary_10_1016_j_bbrc_2005_02_187 crossref_primary_10_1523_JNEUROSCI_4999_06_2007 crossref_primary_10_1016_j_nbd_2012_01_013 crossref_primary_10_1111_j_1471_4159_2006_03932_x crossref_primary_10_1523_JNEUROSCI_0927_07_2007 crossref_primary_10_1002_cm_21019 crossref_primary_10_1016_S0361_9230_01_00575_5 crossref_primary_10_1002_cm_21411 crossref_primary_10_1002_cm_20045 crossref_primary_10_1093_brain_awaa098 crossref_primary_10_1080_10255842_2015_1043628 crossref_primary_10_1091_mbc_e03_09_0707 crossref_primary_10_1523_JNEUROSCI_1665_04_2004 crossref_primary_10_1002_jnr_1147 crossref_primary_10_1038_nrn3380 crossref_primary_10_1016_j_neuroimage_2014_06_009 crossref_primary_10_1016_j_ceb_2020_10_011 crossref_primary_10_1038_nrm1438 crossref_primary_10_1016_j_conb_2020_03_015 crossref_primary_10_3389_fnins_2021_679199 crossref_primary_10_1101_cshperspect_a021980 crossref_primary_10_1002_cm_10084 crossref_primary_10_3109_01677063_2012_699564 crossref_primary_10_1242_jcs_00936 crossref_primary_10_3390_ijms12129057 crossref_primary_10_1002_cm_21087 crossref_primary_10_1002_cm_20395 crossref_primary_10_1016_j_jneuroim_2010_01_004 crossref_primary_10_1111_j_1460_9568_2008_06165_x crossref_primary_10_1364_BOE_4_000364 crossref_primary_10_1002_jmri_22284 crossref_primary_10_1101_cshperspect_a018309 crossref_primary_10_1523_JNEUROSCI_22_14_05982_2002 crossref_primary_10_1016_j_pneurobio_2009_07_006 crossref_primary_10_1016_j_neuron_2011_03_022 crossref_primary_10_1016_j_yexcr_2008_03_004 crossref_primary_10_1016_S0955_0674_00_00181_2 crossref_primary_10_1038_ncb0704_569 crossref_primary_10_1080_10255842_2023_2197541 crossref_primary_10_3390_ijms21218009 crossref_primary_10_1002_jnr_20399 crossref_primary_10_1002_bies_10251 crossref_primary_10_1016_j_yexcr_2007_04_010 crossref_primary_10_1242_jcs_115_7_1453 crossref_primary_10_1146_annurev_cellbio_19_111401_092306 crossref_primary_10_1038_ncb1139 crossref_primary_10_1002_cm_21030 crossref_primary_10_1002_cm_20184 crossref_primary_10_1016_j_tcb_2007_11_004 crossref_primary_10_3389_fcell_2023_1275155 crossref_primary_10_1016_j_neures_2003_08_005 crossref_primary_10_1016_j_pbiomolbio_2019_10_004 crossref_primary_10_1091_mbc_e05_02_0141 crossref_primary_10_1016_j_bpj_2014_04_037 crossref_primary_10_3389_fncel_2014_00429 crossref_primary_10_1016_j_cell_2008_11_043 crossref_primary_10_1134_S0006297908130063 crossref_primary_10_1523_JNEUROSCI_1148_13_2013 crossref_primary_10_1002_cm_10131 crossref_primary_10_1016_j_ijdevneu_2005_11_013 crossref_primary_10_1523_JNEUROSCI_5299_06_2007 crossref_primary_10_1016_j_neuron_2016_05_026 crossref_primary_10_1016_j_neulet_2005_10_029 crossref_primary_10_1523_ENEURO_0029_23_2023 crossref_primary_10_1039_c3nr02254d crossref_primary_10_1046_j_1471_4159_2003_02201_x crossref_primary_10_1152_ajpgi_00283_2003 crossref_primary_10_1038_s41598_018_26176_z |
ContentType | Journal Article |
Copyright | Copyright © 2000 Society for Neuroscience 2000 |
Copyright_xml | – notice: Copyright © 2000 Society for Neuroscience 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
DOI | 10.1523/jneurosci.20-18-06849.2000 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 6861 |
ExternalDocumentID | 10_1523_JNEUROSCI_20_18_06849_2000 10995829 www20_18_6849 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS017681 – fundername: NINDS NIH HHS grantid: R01 NS023320 – fundername: NINDS NIH HHS grantid: NS23868 – fundername: NINDS NIH HHS grantid: NS34809 – fundername: NINDS NIH HHS grantid: R01 NS034809 – fundername: NINDS NIH HHS grantid: R56 NS023868 – fundername: NINDS NIH HHS grantid: NS17681 – fundername: NINDS NIH HHS grantid: R01 NS015182 – fundername: NINDS NIH HHS grantid: R01 NS023868 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ ABBAR ACGUR AFCFT AFHIN AFOSN AHWXS AI. AOIJS BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F YBU YHG YKV YNH YSK YYP AAYXX CITATION 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c608t-a7f2815d81028b2cae6aa0f3aa2f212fd597cb3b482031cf1856deaa9aebfee13 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 21:09:48 EDT 2024 Sat Oct 26 04:36:52 EDT 2024 Fri Oct 25 03:52:27 EDT 2024 Thu Sep 26 17:00:43 EDT 2024 Sat Nov 02 12:12:37 EDT 2024 Tue Nov 10 19:48:34 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Non-programmatic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-a7f2815d81028b2cae6aa0f3aa2f212fd597cb3b482031cf1856deaa9aebfee13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/20/18/6849.full.pdf |
PMID | 10995829 |
PQID | 17876874 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6772820 proquest_miscellaneous_72282329 proquest_miscellaneous_17876874 crossref_primary_10_1523_JNEUROSCI_20_18_06849_2000 pubmed_primary_10995829 highwire_smallpub1_www20_18_6849 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 20000915 2000-Sep-15 2000-09-15 |
PublicationDateYYYYMMDD | 2000-09-15 |
PublicationDate_xml | – month: 09 year: 2000 text: 20000915 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2000 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
SSID | ssj0007017 |
Score | 2.17673 |
Snippet | Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6849 |
SubjectTerms | Adrenergic Fibers - metabolism Adrenergic Fibers - ultrastructure Animals Axonal Transport - physiology Axons - metabolism Axons - ultrastructure Cells, Cultured Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Green Fluorescent Proteins Luminescent Proteins - genetics Neurofilament Proteins - genetics Neurofilament Proteins - metabolism Neurons - cytology Neurons - metabolism Rats Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Time Factors Transfection |
Title | Neurofilaments Are Transported Rapidly But Intermittently in Axons: Implications for Slow Axonal Transport |
URI | http://www.jneurosci.org/cgi/content/abstract/20/18/6849 https://www.ncbi.nlm.nih.gov/pubmed/10995829 https://search.proquest.com/docview/17876874 https://www.proquest.com/docview/72282329 https://pubmed.ncbi.nlm.nih.gov/PMC6772820 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pj5QwGG2cPXkx6vpj_LH2YLyxQ1ug4G0cd7OjcWMcTbw1BdosBpiJw0T3v_e1wDhr9OKNQCFNvwffe-XrKyEvY8GFAY6CzEKuQn9ZHJk8yAvBdMhNJplbjXyxkpdf07dnziYnHtfC-KL9Iq9O27o5basrX1u5aYrZWCc2-_hhkYASInPNJmQCbjhK9OHzK0O_zS7kFnRRJKPBaRSCa_bu0pXHrRZL6MKApW7DlahfrOK8Q8GV4tRTzYMENZoG_42A_llHeZCYzu-SOwOjpPO-5_fILdPeJ8fzFmq6uaavqK_x9JPnx-Rb78VRAQaugAI3Gfrb3rykn_SmKutr-mbXUT9X2FQdSHWHU1VL5z8B0dd0eVCETsF56ape__AX0Y390x6QL-dnnxcXwbDbQlAkYdoFWlqesrhMHeXIeaFNonVohdbcIr_ZEtKjyEUeYeQFKywSfVIa7dy9c2sMEw_JUbtuzWNCM-Q8kSU8LFMTaYhgaUURRTm3Ji4ZE1MixiFWm95UQzkxghipfYwUx5lU-Ri5zTLDKaFjNNS20XWNwWcKgOkbunZT8mKMksJr4v596Nasd1vF8GFKUhn9u4XkwJTgeMajPqoHXeuRMSXyRrz3DZxF980rQK636h6Q-uS_73xKbveL_7OAxc_IUfd9Z56TybbcnUAALN-fePD_AhlzCKM |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH5i4wAXNhiMMmA-IG5ZYzuJk91Kt6mFrUJ0SNwsJ7FFUJJWNNXYv-fZSUqH4LJbFDtRou857_uc588A70LOuMY48hKDchX1l8EjnXppxqnymU4EtauRJ3Mx-xafnVubnLBfC-OK9rO0OKnL6qQuvrvaymWVDfs6seHnq3GElBAz13AHHuJ49f1epHcfYOG7jXZRcKEyCkTQeY2i5Bp-nNkCufl4isrQo7HdciVol6tY91BkS2HsyOZWiuptg_9FQf-upNxKTRd793ypfXjScVEyapufwgNdP4ODUY06vLol74mrDnXT7gfwo3XxKDCAbOkFXqTJH2P0nHxRyyIvb8mHdUPcLGNVNEjHGzxV1GT0C4P7lEy3ytcJsmUyLxc3rhEfY3O35_D14vx6PPG6fRq8LPLjxlPCsJiGeWzJSsoypSOlfMOVYgYzo8lRtGQpTwN8PU4zgxQhyrWyvuCp0ZryF7BbL2r9EkiC2ZInEfPzWAcK5bMwPAuClBkd5pTyAfAeGrls7TiklTGIrdxgKxmeiaXD1m6z6Q-A9CjKVaXKEkGjElFpO9p-Azju0ZU4wOxfE1XrxXolKX7SolgE_-8hGALHGd7jsI2GrUdrI2oA4k6cbDpYc--7LRgezuS7C4dX977yGB5Nrq8u5eV09ukIHrcWAolHw9ew2_xc6zews8rXb93Q-Q0BRh0y |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXYkBAvMBgfZYP5AfGWJbaT2OGt61atfFQTBYk3y4ltEZSkFU0F-_dcO0npELzAW5XcRInOde456c25CL1MGGUG8ijILMhV0F8Wfpk8yAtGVERNxon7GvlyweefxfmFs8nZjvryTftFXp42VX3alF98b-WqLsKhTyy8ej9JgRJC5QpX2oZ76Das2YgOQr1_CPPID9sF0QXqKOZx7zcKsit8M3dNcovJDNRhQIQbuxJ3n6w4B1FgTInwhHOnTA3WwX-iob93U-6Up-n9_7ixA3Sv56R43IU8QLdM8xAdjhvQ4_U1foV9l6h__X6IvnZuHiUkkmvBgIMM_mWQrvEHtSp1dY3PNi32bxvrsgVa3sKmssHjH5Dkr_Fsp40dA2vGi2r53e-Ey9ie7RH6NL34OLkM-nkNQZFGog0Ut1SQRAtHWnJaKJMqFVmmFLVQIa0G8VLkLI_hFhkpLFCFVBvl_MFzawxhj9F-s2zMU4QzqJosS2mkhYkVyGhuWRHHObUm0YSwEWIDPHLV2XJIJ2cAX7nFV1LYIqTH143bjEYID0jKda2qCoAjEpDpAl3cCJ0MCEtYaO7fE9WY5WYtCTzaUsHjv0dwCuAxCud40mXEzqV1WTVC_EaubAOcyffNPZAi3uy7T4ln_3zkCbpzdT6V72bzt0fobuckkAUkOUb77beNeY721nrzwq-en-nkH7I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurofilaments+Are+Transported+Rapidly+But+Intermittently+in+Axons%3A+Implications+for+Slow+Axonal+Transport&rft.jtitle=The+Journal+of+neuroscience&rft.au=Roy%2C+S&rft.au=Coffee%2C+P&rft.au=Smith%2C+G&rft.au=Liem%2C+RKH&rft.date=2000-09-15&rft.issn=0270-6474&rft.volume=20&rft.issue=18&rft.spage=6849&rft.epage=6861&rft_id=info:doi/10.1523%2Fjneurosci.20-18-06849.2000&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |