The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules

Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsula...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 33; no. 11; pp. 3143 - 3152
Main Authors: Shin, Hyeongho, Olsen, Bradley D, Khademhosseini, Ali
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01-04-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues.
AbstractList Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues.
A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues.
A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues.
Author Shin, Hyeongho
Olsen, Bradley D
Khademhosseini, Ali
AuthorAffiliation e Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
d Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
AuthorAffiliation_xml – name: d Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: b Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
– name: c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: e Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
Author_xml – sequence: 1
  fullname: Shin, Hyeongho
– sequence: 2
  fullname: Olsen, Bradley D
– sequence: 3
  fullname: Khademhosseini, Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22265786$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URKeFV0AW-wRfJjcWlVDLTarEgiKxsxz7ZOIZx47spJAX4XlxZqAqrJAXtuX__4-Ov3OBzpx3gNArSnJKaPl6n7fGD3KCYKSNOSOU5pTlpCBP0IbWVZ0VDSnO0IbQLcuakrJzdBHjnqQ72bJn6JwxVhZVXW7Qz7se8ACql84oafEY_AhhMhCxdBqrZfKT_2GUmRbsO6zA2sxKDQ5rP7cWMgfTdx8OuF908DuwEbcygsbe4bFPXhV8jNa4g0xqnARyMu6Ync5WOrybB3zsJykHb0HNFuJz9LRLvcGL3_sl-vr-3d31x-z284dP129vM1WSaspo0W5JrduuY6ThSqqqqaguoSaVlLqoGs6qqgFekJqUaemO1gC0blrKeduW_BJdnXLHuR1AK3BTkFaMwQwyLMJLI_5-caYXO38vOKsZLYsU8OYUcOwzQPfgpUSstMRePKYlVlqCMpFoJfPLx9UfrH_wJMHNSZD-Fe4NBBGVAadAmwBqEtqb_6tz9U-MSkRW3gdYIO79HNzqoSImg_iyzs06NjQFF5x_478Am_HJ4w
CitedBy_id crossref_primary_10_3390_polym8050170
crossref_primary_10_2217_rme_14_52
crossref_primary_10_1002_eem2_12066
crossref_primary_10_1016_j_ijbiomac_2023_127735
crossref_primary_10_1021_acs_biomac_5b00041
crossref_primary_10_1007_s10924_019_01636_3
crossref_primary_10_1007_s10570_020_03080_2
crossref_primary_10_1021_acssuschemeng_8b03460
crossref_primary_10_1088_1748_605X_abc1b1
crossref_primary_10_1016_j_ijbiomac_2020_08_093
crossref_primary_10_1515_epoly_2021_0002
crossref_primary_10_1002_adem_202100477
crossref_primary_10_1007_s40846_021_00629_9
crossref_primary_10_1021_acsami_5b10378
crossref_primary_10_1016_j_tibtech_2014_09_001
crossref_primary_10_3390_jfb12010017
crossref_primary_10_1016_j_biotechadv_2017_05_006
crossref_primary_10_1021_acsami_6b02740
crossref_primary_10_1002_adma_201302042
crossref_primary_10_1016_j_carbpol_2013_04_043
crossref_primary_10_1002_adhm_202102366
crossref_primary_10_3390_gels7020070
crossref_primary_10_1021_acsami_0c01497
crossref_primary_10_1557_jmr_2017_255
crossref_primary_10_1021_acs_biomac_0c01408
crossref_primary_10_1016_j_crphar_2022_100100
crossref_primary_10_1016_j_actbio_2014_03_014
crossref_primary_10_1016_j_ijbiomac_2019_12_188
crossref_primary_10_1016_j_progpolymsci_2017_04_001
crossref_primary_10_1016_j_engreg_2021_03_002
crossref_primary_10_1080_09205063_2018_1493022
crossref_primary_10_1002_pi_5587
crossref_primary_10_1016_j_ijbiomac_2021_04_016
crossref_primary_10_1039_C6TB01488G
crossref_primary_10_2174_0113816128246888230920060802
crossref_primary_10_1002_pen_25597
crossref_primary_10_1021_acsomega_1c01806
crossref_primary_10_3390_polym10010011
crossref_primary_10_1007_s00396_015_3505_z
crossref_primary_10_1016_j_carbpol_2018_01_028
crossref_primary_10_1007_s10856_015_5517_0
crossref_primary_10_1016_j_biomaterials_2017_05_012
crossref_primary_10_1088_2057_1976_aac1ca
crossref_primary_10_1039_C5TB00393H
crossref_primary_10_1134_S0965545X20030128
crossref_primary_10_1016_j_actbio_2021_03_003
crossref_primary_10_1039_C4TB02089H
crossref_primary_10_1371_journal_pone_0209386
crossref_primary_10_2174_1389450124666230605150303
crossref_primary_10_1063_5_0182585
crossref_primary_10_1039_C7BM00991G
crossref_primary_10_1021_acsabm_4c00565
crossref_primary_10_1021_acsabm_8b00663
crossref_primary_10_1021_acsomega_8b00683
crossref_primary_10_1039_C3BM60210A
crossref_primary_10_1007_s42242_018_0029_7
crossref_primary_10_1016_j_actbio_2022_10_038
crossref_primary_10_1007_s41745_019_00129_5
crossref_primary_10_3390_polym14122365
crossref_primary_10_1002_adfm_201909359
crossref_primary_10_1039_C5RA10638A
crossref_primary_10_1116_1_4966164
crossref_primary_10_1016_j_jiec_2020_04_021
crossref_primary_10_1021_acsbiomaterials_6b00109
crossref_primary_10_1007_s00289_019_02753_8
crossref_primary_10_1002_adhm_201400180
crossref_primary_10_1002_jbm_a_35510
crossref_primary_10_1016_j_jconrel_2015_07_005
crossref_primary_10_1088_1758_5090_aa68ed
crossref_primary_10_1016_j_carbpol_2020_116345
crossref_primary_10_1016_j_ijbiomac_2022_07_168
crossref_primary_10_4028_www_scientific_net_AMM_890_268
crossref_primary_10_1371_journal_pone_0223689
crossref_primary_10_1088_1748_605X_aa62b0
crossref_primary_10_1016_j_cclet_2021_01_048
crossref_primary_10_1039_c3tb20600a
crossref_primary_10_1016_j_biomaterials_2018_01_057
crossref_primary_10_3390_polym14163268
crossref_primary_10_3390_gels5030034
crossref_primary_10_1016_j_dib_2017_07_011
crossref_primary_10_1177_0885328215587450
crossref_primary_10_1002_jbio_202300429
crossref_primary_10_3390_polym10111290
crossref_primary_10_1080_00914037_2020_1760274
crossref_primary_10_1016_j_cej_2018_10_230
crossref_primary_10_1016_j_tibtech_2020_08_007
crossref_primary_10_3390_gels8040199
crossref_primary_10_1016_j_matpr_2019_06_075
crossref_primary_10_1016_j_biomaterials_2016_12_026
crossref_primary_10_1016_j_biomaterials_2018_04_023
crossref_primary_10_1002_adhm_202203148
crossref_primary_10_1016_j_biomaterials_2015_08_045
crossref_primary_10_1021_acsabm_8b00562
crossref_primary_10_1021_acsami_9b15451
crossref_primary_10_1016_j_actbio_2017_01_036
crossref_primary_10_1039_c3sm27389j
crossref_primary_10_1177_08853282221144235
crossref_primary_10_1021_am504520j
crossref_primary_10_3390_ma11112199
crossref_primary_10_1089_ten_tea_2018_0083
crossref_primary_10_1002_adhm_201900670
crossref_primary_10_1002_app_52527
crossref_primary_10_1002_adhm_202302078
crossref_primary_10_1016_j_colsurfb_2014_11_020
crossref_primary_10_1002_adhm_201601122
crossref_primary_10_1039_C5TB00867K
crossref_primary_10_1016_j_carbpol_2015_09_095
crossref_primary_10_1016_j_ijbiomac_2018_05_211
crossref_primary_10_1021_acsbiomaterials_6b00088
crossref_primary_10_1016_j_mtbio_2024_101146
crossref_primary_10_1021_acsami_8b22343
crossref_primary_10_1080_25740881_2020_1773499
crossref_primary_10_1039_C4NJ01982B
crossref_primary_10_1002_wnan_1520
crossref_primary_10_1016_j_bprint_2019_e00060
crossref_primary_10_1016_j_msec_2019_110510
crossref_primary_10_1016_j_colcom_2021_100413
crossref_primary_10_1039_C3SM52272E
crossref_primary_10_1002_mabi_201500305
crossref_primary_10_1016_j_jcis_2020_10_128
crossref_primary_10_1039_C5RA06835E
crossref_primary_10_1016_j_copbio_2012_05_007
crossref_primary_10_1016_j_jddst_2020_101586
crossref_primary_10_1021_acs_jafc_9b00984
crossref_primary_10_1039_C4NJ00161C
crossref_primary_10_1039_C7BM00765E
crossref_primary_10_1073_pnas_2213030120
crossref_primary_10_1002_mabi_201800018
crossref_primary_10_1021_acsbiomaterials_4c00305
crossref_primary_10_3390_gels5020024
crossref_primary_10_1039_C4TB01257G
crossref_primary_10_1016_j_actbio_2017_11_002
crossref_primary_10_1080_00914037_2024_2330420
crossref_primary_10_1002_adma_201602268
crossref_primary_10_1002_marc_202200075
crossref_primary_10_1016_j_msec_2021_112185
crossref_primary_10_1039_C5RA22028A
crossref_primary_10_1002_asia_202200659
crossref_primary_10_1002_adhm_201700939
crossref_primary_10_1021_acs_biomac_3c01271
crossref_primary_10_1039_c3ra44716b
crossref_primary_10_1016_j_carbpol_2018_02_002
crossref_primary_10_1016_j_ijpharm_2023_123187
crossref_primary_10_1039_C8TB01664J
crossref_primary_10_1177_09544119221125084
crossref_primary_10_1088_1758_5082_6_3_035020
crossref_primary_10_1002_jbm_a_37698
crossref_primary_10_1021_acs_biomac_0c01745
crossref_primary_10_3390_gels4020046
crossref_primary_10_1007_s10965_014_0409_4
crossref_primary_10_1016_j_actbio_2022_11_034
crossref_primary_10_1016_j_ijbiomac_2018_09_212
crossref_primary_10_1039_C3PY00869J
crossref_primary_10_1002_adem_202100663
crossref_primary_10_1016_j_colsurfb_2017_11_025
crossref_primary_10_1016_j_ijbiomac_2019_07_126
crossref_primary_10_1002_adma_202105361
crossref_primary_10_1002_adhm_202400897
crossref_primary_10_3390_nano11092256
crossref_primary_10_3390_bioengineering10091044
crossref_primary_10_1016_j_biomaterials_2017_03_021
crossref_primary_10_1021_acsbiomaterials_8b00230
crossref_primary_10_1016_j_ijbiomac_2017_11_099
crossref_primary_10_1371_journal_pone_0216776
crossref_primary_10_1007_s10856_015_5489_0
crossref_primary_10_1016_j_tibtech_2012_12_004
crossref_primary_10_1002_macp_202100326
crossref_primary_10_1016_j_ijbiomac_2018_09_202
crossref_primary_10_1007_s00170_018_2876_y
crossref_primary_10_3390_molecules28135222
crossref_primary_10_1080_00914037_2016_1201828
crossref_primary_10_3390_polym13152508
crossref_primary_10_1039_D2RA07079K
crossref_primary_10_1016_j_actbio_2017_11_021
crossref_primary_10_1007_s10570_014_0511_0
crossref_primary_10_1002_adfm_202300426
crossref_primary_10_1002_mabi_201200471
crossref_primary_10_3389_fmolb_2021_783268
crossref_primary_10_1021_acsabm_8b00361
crossref_primary_10_1016_j_biomaterials_2016_01_025
crossref_primary_10_1002_smll_201901920
crossref_primary_10_1021_acsami_8b15385
crossref_primary_10_1021_acs_langmuir_7b01000
crossref_primary_10_1080_09205063_2017_1279044
crossref_primary_10_1002_adfm_201504943
crossref_primary_10_1002_adma_202202261
crossref_primary_10_1021_acsapm_2c02171
crossref_primary_10_1039_C6TB00065G
crossref_primary_10_1016_j_carbpol_2021_117870
crossref_primary_10_1016_j_biotechadv_2015_07_006
crossref_primary_10_1016_j_tice_2023_102279
crossref_primary_10_1016_j_mtbio_2022_100530
crossref_primary_10_3390_polym12010176
crossref_primary_10_1002_jbm_a_36222
crossref_primary_10_1080_09205063_2019_1666236
crossref_primary_10_1039_C5TB00645G
crossref_primary_10_1016_j_bioactmat_2022_07_006
crossref_primary_10_1155_2019_3160732
crossref_primary_10_1002_adhm_202202163
crossref_primary_10_1016_j_polymer_2018_08_019
crossref_primary_10_1039_D2NA00394E
crossref_primary_10_1016_j_addr_2018_03_003
crossref_primary_10_1039_C3TB20984A
crossref_primary_10_1039_C9RA00655A
crossref_primary_10_1016_j_addr_2022_114647
crossref_primary_10_1021_acs_biomac_3c01183
crossref_primary_10_1021_acsbiomaterials_8b00691
crossref_primary_10_1108_RPJ_01_2021_0011
crossref_primary_10_1039_C6BM00322B
crossref_primary_10_1089_ten_tec_2021_0170
crossref_primary_10_1021_acs_biomac_3c00765
crossref_primary_10_3390_nano13040772
crossref_primary_10_1016_j_eurpolymj_2015_02_002
crossref_primary_10_1016_j_foodhyd_2022_107737
crossref_primary_10_1088_1758_5090_8_3_035012
crossref_primary_10_1186_2050_5736_1_21
crossref_primary_10_3390_molecules24244514
crossref_primary_10_3390_pharmaceutics14030540
crossref_primary_10_1039_C4BM00070F
crossref_primary_10_1007_s10856_014_5261_x
crossref_primary_10_1016_j_msec_2017_04_062
crossref_primary_10_1039_C5CC05564D
crossref_primary_10_1016_j_biomaterials_2013_11_009
crossref_primary_10_1016_j_jiec_2020_06_017
crossref_primary_10_1016_j_eurpolymj_2019_05_040
crossref_primary_10_1016_j_actbio_2014_02_041
crossref_primary_10_1021_acs_biomac_3c00894
crossref_primary_10_3390_polym13071081
crossref_primary_10_1021_acsomega_0c04087
crossref_primary_10_1016_j_msec_2022_112717
crossref_primary_10_1021_acsapm_0c00717
crossref_primary_10_1002_jctb_3970
crossref_primary_10_1016_j_carbpol_2021_118828
crossref_primary_10_1007_s10570_023_05479_z
crossref_primary_10_1098_rsif_2014_0501
crossref_primary_10_1002_adhm_201200317
crossref_primary_10_1007_s00264_013_1894_5
crossref_primary_10_1039_c3sm00102d
crossref_primary_10_1002_adhm_201400123
crossref_primary_10_1016_j_eurpolymj_2015_07_053
crossref_primary_10_1021_acs_biomac_1c00687
crossref_primary_10_1016_j_msec_2021_112370
crossref_primary_10_1007_s13367_020_0005_6
crossref_primary_10_1016_j_drudis_2018_09_012
crossref_primary_10_1088_1758_5090_ac23e4
crossref_primary_10_1016_j_ijbiomac_2015_09_071
crossref_primary_10_1088_1748_605X_abbcc9
crossref_primary_10_1021_acs_macromol_6b01861
crossref_primary_10_1002_polb_24725
crossref_primary_10_1088_1748_6041_11_1_015019
crossref_primary_10_3390_ijms232315176
crossref_primary_10_1002_adhm_201500005
crossref_primary_10_3390_polym11060952
crossref_primary_10_1002_adfm_201202034
crossref_primary_10_1002_adfm_202003601
crossref_primary_10_1016_j_biomaterials_2018_12_028
crossref_primary_10_1038_s41598_020_71462_4
crossref_primary_10_3390_biom13081167
crossref_primary_10_1021_acsami_1c17629
crossref_primary_10_1016_j_msec_2016_06_093
crossref_primary_10_1016_j_mser_2020_100543
crossref_primary_10_1002_jbm_a_34924
crossref_primary_10_1021_acsami_7b18821
crossref_primary_10_1016_j_msec_2019_01_022
crossref_primary_10_1021_acsami_6b16779
crossref_primary_10_1016_j_matdes_2018_09_040
crossref_primary_10_1016_j_compositesb_2022_110162
crossref_primary_10_1021_bm501361c
crossref_primary_10_1016_j_actbio_2021_09_022
crossref_primary_10_4028_www_scientific_net_AMM_890_229
crossref_primary_10_1016_j_ijpharm_2014_03_038
crossref_primary_10_1002_adtp_202300170
crossref_primary_10_1016_j_mseb_2023_116597
crossref_primary_10_3389_fcell_2021_701525
crossref_primary_10_1002_mabi_201500386
crossref_primary_10_1016_j_biomaterials_2013_07_052
crossref_primary_10_1016_j_carbpol_2016_12_032
crossref_primary_10_1017_erm_2014_13
crossref_primary_10_1016_j_colsurfb_2017_08_055
crossref_primary_10_1016_j_colsurfb_2019_06_041
crossref_primary_10_1021_acs_bioconjchem_5b00360
crossref_primary_10_1021_acs_molpharmaceut_5b00515
crossref_primary_10_1007_s10965_022_03178_0
crossref_primary_10_1016_j_bej_2017_12_012
crossref_primary_10_1016_j_ijbiomac_2020_08_078
crossref_primary_10_1016_j_matchemphys_2013_11_052
crossref_primary_10_1039_C4RA16103C
crossref_primary_10_1088_1758_5090_acb107
crossref_primary_10_1007_s10965_020_02355_3
crossref_primary_10_1016_j_apmt_2018_06_008
crossref_primary_10_2139_ssrn_4066804
crossref_primary_10_1016_j_eng_2020_03_019
crossref_primary_10_3389_fphar_2023_1276849
crossref_primary_10_1016_j_porgcoat_2024_108441
crossref_primary_10_1021_acsami_4c00620
crossref_primary_10_1080_23311916_2020_1736407
crossref_primary_10_1038_srep31036
crossref_primary_10_1016_j_ijbiomac_2024_130075
crossref_primary_10_3390_polym12081655
crossref_primary_10_1016_j_ejpb_2018_05_011
crossref_primary_10_1021_acsami_4c02354
crossref_primary_10_1088_1758_5090_aba2b6
crossref_primary_10_1021_acsami_1c07285
crossref_primary_10_1016_j_biomaterials_2022_121969
Cites_doi 10.1016/j.carbpol.2007.05.021
10.1002/adma.200304907
10.1021/bm049508a
10.1243/0954411981534051
10.1002/adfm.200305197
10.1016/j.biomaterials.2008.01.012
10.1021/la950797l
10.1021/cr000108x
10.1016/S0006-3495(99)76911-0
10.1073/pnas.0507681102
10.1021/ma049506i
10.1016/S0142-9612(03)00340-5
10.1089/ten.2007.0093
10.1089/ten.tea.2008.0441
10.1016/j.biomaterials.2007.07.021
10.1016/j.biomaterials.2010.03.064
10.1021/ma802148p
10.1016/0022-3115(74)90040-3
10.1016/j.progpolymsci.2007.09.006
10.1021/bm0257412
10.1002/jbm.a.32574
10.1002/adma.200501612
10.1039/b924290b
10.1002/bit.20160
10.1039/b818090c
10.1002/adma.200800534
10.1016/j.biomaterials.2008.09.037
10.1016/j.biomaterials.2010.06.035
10.1021/ma980765f
10.1163/156856200743805
10.1039/c0sm00697a
10.1039/b707472g
10.1089/ten.tea.2009.0117
10.1021/ma00131a020
ContentType Journal Article
Copyright Elsevier Ltd
2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
2011 Elsevier Ltd. All rights reserved. 2011
Copyright_xml – notice: Elsevier Ltd
– notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
– notice: 2011 Elsevier Ltd. All rights reserved. 2011
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1016/j.biomaterials.2011.12.050
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 3152
ExternalDocumentID 10_1016_j_biomaterials_2011_12_050
22265786
S014296121101533X
1_s2_0_S014296121101533X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR057837
– fundername: NIBIB NIH HHS
  grantid: R01 EB012597-02
– fundername: NHLBI NIH HHS
  grantid: R01 HL092836-04
– fundername: NHLBI NIH HHS
  grantid: R01 HL092836
– fundername: NHLBI NIH HHS
  grantid: HL092836
– fundername: NIBIB NIH HHS
  grantid: EB02597
– fundername: NIBIB NIH HHS
  grantid: R01 EB012597
– fundername: NIAMS NIH HHS
  grantid: AR057837
– fundername: NIAMS NIH HHS
  grantid: R01 AR057837-02
– fundername: NHLBI NIH HHS
  grantid: R01 HL092836-05
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL092836-05 || HL
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB012597-02 || EB
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: R01 AR057837-02 || AR
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL092836-04 || HL
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c607t-15b408dbff2093cac7971d6e807aad57932779e350806060df18ee189b133bb63
ISSN 0142-9612
IngestDate Tue Sep 17 21:06:13 EDT 2024
Thu Sep 26 18:41:07 EDT 2024
Sat Sep 28 08:00:39 EDT 2024
Fri Feb 23 02:23:06 EST 2024
Tue Oct 15 22:54:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mechanical properties
Hydrogel
Photopolymerization
Cell encapsulation
IPN
Language English
License Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c607t-15b408dbff2093cac7971d6e807aad57932779e350806060df18ee189b133bb63
OpenAccessLink https://dspace.mit.edu/bitstream/1721.1/99393/1/Olsen_Mechanical%20properties.pdf
PMID 22265786
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282165
crossref_primary_10_1016_j_biomaterials_2011_12_050
pubmed_primary_22265786
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_12_050
elsevier_clinicalkeyesjournals_1_s2_0_S014296121101533X
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Amsden (bib5) 2007; 3
Nuttelman, Rice, Rydholm, Salinas, Shah, Anseth (bib10) 2008; 33
Brigham, Bick, Lo, Bendali, Burdick, Khademhosseini (bib17) 2009; 15
Griffith, Stilbs, Howe, Cosgrove (bib37) 1996; 12
Jost (bib35) 1960
Nichol, Koshy, Bae, Hwang, Yamanlar, Khademhosseini (bib29) 2010; 31
Gong, Wang, Lai, Su, Zhang, Wang (bib28) 2009; 19
Brinkman, Nagapudi, Thomas, Chaikof (bib32) 2003; 4
Gong (bib2) 2010; 6
Bryant, Nuttelman, Anseth (bib18) 2000; 11
Hamcerencu, Desbrieres, Khoukh, Popa, Riess (bib30) 2008; 71
McCutchen (bib4) 1978; vol. 10
Calvert (bib6) 2009; 21
Podczeck (bib33) 2004
Chang, Yu (bib38) 1984; 17
Drury, Mooney (bib7) 2003; 24
Nakayama, Kakugo, Gong, Osada, Takai, Erata (bib13) 2004; 14
Myung, Koh, Ko, Noolandi, Carrasco, Smithc (bib16) 2005; 46
Oliveira, Martins, Picciochi, Malafaya, Sousa, Neves (bib26) 2010; 93
Ifkovits, Burdick (bib11) 2007; 13
Khademhosseini, Langer (bib21) 2007; 28
Oliveira, Santos, Martins, Picciochi, Marques, Castro (bib27) 2009; 16
Fedorovich, Oudshoorn, van Geemen, Hennink, Alblas, Dhert (bib19) 2009; 30
Na, Kurokawa, Katsuyama, Tsukeshiba, Gong, Osada (bib14) 2004; 37
Amsden (bib39) 1998; 31
Khademhosseini, Langer, Borenstein, Vacanti (bib20) 2006; 103
Nakajima, Furukawa, Tanaka, Kurokawa, Osada, Gong (bib41) 2009; 42
Lee, Mooney (bib8) 2001; 101
Flory (bib34) 1953
Peppas, Hilt, Khademhosseini, Langer (bib9) 2006; 18
Pawel (bib36) 1974; 49
Lee, Groninger, Spinelli (bib31) 1981; 43
Weng, Gouldstone, Wu, Chen (bib15) 2008; 29
Bae, Ahari, Shin, Nichol, Hutson, Masaeli (bib24) 2011; 7
Coutinho, Sant, Shin, Oliveira, Gomes, Neves (bib23) 2010; 31
Burdick, Chung, Jia, Randolph, Langer (bib22) 2005; 6
Bryant, Bender, Durand, Anseth (bib25) 2004; 86
Fung (bib1) 1993
Pluen, Netti, Jain, Berk (bib40) 1999; 77
Kerin, Wisnom, Adams (bib3) 1998; 212
Gong, Katsuyama, Kurokawa, Osada (bib12) 2003; 15
20663552 - Biomaterials. 2010 Oct;31(29):7494-502
17658993 - Tissue Eng. 2007 Oct;13(10):2369-85
11710233 - Chem Rev. 2001 Jul;101(7):1869-79
10388779 - Biophys J. 1999 Jul;77(1):542-52
19461945 - Prog Polym Sci. 2008 Feb;33(2):167-179
19658177 - J Biomed Mater Res A. 2010 Jun 1;93(3):852-63
19702512 - Tissue Eng Part A. 2010 Jan;16(1):343-53
18930540 - Biomaterials. 2009 Jan;30(3):344-53
10896041 - J Biomater Sci Polym Ed. 2000;11(5):439-57
20417964 - Biomaterials. 2010 Jul;31(21):5536-44
21415929 - Soft Matter. 2011 Jan 1;7(5):1903-1911
18272215 - Biomaterials. 2008 May;29(14):2153-63
16477028 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7
12857069 - Biomacromolecules. 2003 Jul-Aug;4(4):890-5
17707502 - Biomaterials. 2007 Dec;28(34):5087-92
15162450 - Biotechnol Bioeng. 2004 Jun 30;86(7):747-55
9769695 - Proc Inst Mech Eng H. 1998;212(4):273-80
12922147 - Biomaterials. 2003 Nov;24(24):4337-51
19105604 - Tissue Eng Part A. 2009 Jul;15(7):1645-53
15638543 - Biomacromolecules. 2005 Jan-Feb;6(1):386-91
Brigham (10.1016/j.biomaterials.2011.12.050_bib17) 2009; 15
Lee (10.1016/j.biomaterials.2011.12.050_bib31) 1981; 43
Oliveira (10.1016/j.biomaterials.2011.12.050_bib27) 2009; 16
Peppas (10.1016/j.biomaterials.2011.12.050_bib9) 2006; 18
Podczeck (10.1016/j.biomaterials.2011.12.050_bib33) 2004
Drury (10.1016/j.biomaterials.2011.12.050_bib7) 2003; 24
Nuttelman (10.1016/j.biomaterials.2011.12.050_bib10) 2008; 33
Nakayama (10.1016/j.biomaterials.2011.12.050_bib13) 2004; 14
Kerin (10.1016/j.biomaterials.2011.12.050_bib3) 1998; 212
Fedorovich (10.1016/j.biomaterials.2011.12.050_bib19) 2009; 30
Gong (10.1016/j.biomaterials.2011.12.050_bib2) 2010; 6
Chang (10.1016/j.biomaterials.2011.12.050_bib38) 1984; 17
Griffith (10.1016/j.biomaterials.2011.12.050_bib37) 1996; 12
Lee (10.1016/j.biomaterials.2011.12.050_bib8) 2001; 101
Burdick (10.1016/j.biomaterials.2011.12.050_bib22) 2005; 6
Hamcerencu (10.1016/j.biomaterials.2011.12.050_bib30) 2008; 71
Weng (10.1016/j.biomaterials.2011.12.050_bib15) 2008; 29
Nichol (10.1016/j.biomaterials.2011.12.050_bib29) 2010; 31
McCutchen (10.1016/j.biomaterials.2011.12.050_bib4) 1978; vol. 10
Bryant (10.1016/j.biomaterials.2011.12.050_bib18) 2000; 11
Gong (10.1016/j.biomaterials.2011.12.050_bib12) 2003; 15
Bryant (10.1016/j.biomaterials.2011.12.050_bib25) 2004; 86
Jost (10.1016/j.biomaterials.2011.12.050_bib35) 1960
Nakajima (10.1016/j.biomaterials.2011.12.050_bib41) 2009; 42
Myung (10.1016/j.biomaterials.2011.12.050_bib16) 2005; 46
Flory (10.1016/j.biomaterials.2011.12.050_bib34) 1953
Gong (10.1016/j.biomaterials.2011.12.050_bib28) 2009; 19
Amsden (10.1016/j.biomaterials.2011.12.050_bib39) 1998; 31
Calvert (10.1016/j.biomaterials.2011.12.050_bib6) 2009; 21
Pawel (10.1016/j.biomaterials.2011.12.050_bib36) 1974; 49
Ifkovits (10.1016/j.biomaterials.2011.12.050_bib11) 2007; 13
Fung (10.1016/j.biomaterials.2011.12.050_bib1) 1993
Pluen (10.1016/j.biomaterials.2011.12.050_bib40) 1999; 77
Na (10.1016/j.biomaterials.2011.12.050_bib14) 2004; 37
Coutinho (10.1016/j.biomaterials.2011.12.050_bib23) 2010; 31
Khademhosseini (10.1016/j.biomaterials.2011.12.050_bib21) 2007; 28
Khademhosseini (10.1016/j.biomaterials.2011.12.050_bib20) 2006; 103
Bae (10.1016/j.biomaterials.2011.12.050_bib24) 2011; 7
Amsden (10.1016/j.biomaterials.2011.12.050_bib5) 2007; 3
Oliveira (10.1016/j.biomaterials.2011.12.050_bib26) 2010; 93
Brinkman (10.1016/j.biomaterials.2011.12.050_bib32) 2003; 4
References_xml – volume: 101
  start-page: 1869
  year: 2001
  end-page: 1880
  ident: bib8
  article-title: Hydrogels for tissue engineering
  publication-title: Chem Rev
  contributor:
    fullname: Mooney
– volume: 42
  start-page: 2184
  year: 2009
  end-page: 2189
  ident: bib41
  article-title: True chemical structure of double network hydrogels
  publication-title: Macromolecules
  contributor:
    fullname: Gong
– volume: 6
  start-page: 386
  year: 2005
  end-page: 391
  ident: bib22
  article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks
  publication-title: Biomacromolecules
  contributor:
    fullname: Langer
– volume: 46
  start-page: 5003
  year: 2005
  ident: bib16
  article-title: Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Smithc
– year: 1993
  ident: bib1
  article-title: Biomechanics: mechanical properties of living tissues
  contributor:
    fullname: Fung
– volume: 4
  start-page: 890
  year: 2003
  end-page: 895
  ident: bib32
  article-title: Photo-cross-linking of type I collagen gels in he presence of smooth muscle cells: mechanical properties, cell viability, and function
  publication-title: Biomacromolecules
  contributor:
    fullname: Chaikof
– volume: 13
  start-page: 2369
  year: 2007
  end-page: 2385
  ident: bib11
  article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications
  publication-title: Tissue Eng
  contributor:
    fullname: Burdick
– volume: 77
  start-page: 542
  year: 1999
  end-page: 552
  ident: bib40
  article-title: Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations
  publication-title: Biophys J
  contributor:
    fullname: Berk
– volume: 33
  start-page: 167
  year: 2008
  end-page: 179
  ident: bib10
  article-title: Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering
  publication-title: Prog Polym Sci
  contributor:
    fullname: Anseth
– volume: 21
  start-page: 743
  year: 2009
  end-page: 756
  ident: bib6
  article-title: Hydrogels for soft machines
  publication-title: Adv Mater
  contributor:
    fullname: Calvert
– volume: 24
  start-page: 4337
  year: 2003
  end-page: 4351
  ident: bib7
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  contributor:
    fullname: Mooney
– volume: 28
  start-page: 5087
  year: 2007
  end-page: 5092
  ident: bib21
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
  contributor:
    fullname: Langer
– volume: 93
  start-page: 852
  year: 2010
  end-page: 863
  ident: bib26
  article-title: Gellan gum: a new biomaterial for cartilage tissue engineering applications
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Neves
– volume: 30
  start-page: 344
  year: 2009
  end-page: 353
  ident: bib19
  article-title: The effect of photopolymerization on stem cells embedded in hydrogels
  publication-title: Biomaterials
  contributor:
    fullname: Dhert
– volume: 18
  start-page: 1345
  year: 2006
  end-page: 1360
  ident: bib9
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv Mater
  contributor:
    fullname: Langer
– volume: 14
  start-page: 1124
  year: 2004
  end-page: 1128
  ident: bib13
  article-title: High mechanical strength double network hydrogel with bacterial cellulose
  publication-title: Adv Funct Mater
  contributor:
    fullname: Erata
– volume: 19
  start-page: 1968
  year: 2009
  end-page: 1977
  ident: bib28
  article-title: An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro
  publication-title: J Mater Chem
  contributor:
    fullname: Wang
– volume: vol. 10
  year: 1978
  ident: bib4
  publication-title: Lubrication of joints: the joints and synovial fluid
  contributor:
    fullname: McCutchen
– volume: 71
  start-page: 92
  year: 2008
  end-page: 100
  ident: bib30
  article-title: Synthesis and characterization of new unsaturated esters of gellan gum
  publication-title: Carbohydr Polym
  contributor:
    fullname: Riess
– volume: 86
  start-page: 747
  year: 2004
  end-page: 755
  ident: bib25
  article-title: Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production
  publication-title: Biotechnol Bioeng
  contributor:
    fullname: Anseth
– volume: 15
  start-page: 1645
  year: 2009
  end-page: 1653
  ident: bib17
  article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks
  publication-title: Tissue Eng Part A
  contributor:
    fullname: Khademhosseini
– year: 1960
  ident: bib35
  article-title: Diffusion in solids, liquids, gases
  contributor:
    fullname: Jost
– volume: 3
  start-page: 1335
  year: 2007
  end-page: 1348
  ident: bib5
  article-title: Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering
  publication-title: Soft Matter
  contributor:
    fullname: Amsden
– year: 1953
  ident: bib34
  article-title: Principles of polymer chemistry
  contributor:
    fullname: Flory
– volume: 7
  start-page: 1903
  year: 2011
  end-page: 1911
  ident: bib24
  article-title: Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation
  publication-title: Soft Matter
  contributor:
    fullname: Masaeli
– year: 2004
  ident: bib33
  article-title: Pharmaceutical capsules
  contributor:
    fullname: Podczeck
– volume: 37
  start-page: 5370
  year: 2004
  end-page: 5374
  ident: bib14
  article-title: Structural characteristics of double network gels with extremely high mechanical strength
  publication-title: Macromolecules
  contributor:
    fullname: Osada
– volume: 17
  start-page: 115
  year: 1984
  end-page: 117
  ident: bib38
  article-title: Self-diffusion of gelatin by forced Rayleigh scattering
  publication-title: Macromolecules
  contributor:
    fullname: Yu
– volume: 6
  start-page: 2583
  year: 2010
  end-page: 2590
  ident: bib2
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter
  contributor:
    fullname: Gong
– volume: 103
  start-page: 2480
  year: 2006
  end-page: 2487
  ident: bib20
  article-title: Microscale technologies for tissue engineering and biology
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Vacanti
– volume: 43
  start-page: 14
  year: 1981
  end-page: 19
  ident: bib31
  article-title: Acylation of fish protein: effect of Reaction conditions on products
  publication-title: Mar. Fish. Rev.
  contributor:
    fullname: Spinelli
– volume: 212
  start-page: 273
  year: 1998
  end-page: 280
  ident: bib3
  article-title: The compressive strength of articular cartilage
  publication-title: Proc Inst Mech Eng Part H-J Eng Med
  contributor:
    fullname: Adams
– volume: 16
  start-page: 343
  year: 2009
  end-page: 353
  ident: bib27
  article-title: Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation
  publication-title: Tissue Eng Part A
  contributor:
    fullname: Castro
– volume: 29
  start-page: 2153
  year: 2008
  end-page: 2163
  ident: bib15
  article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan
  publication-title: Biomaterials
  contributor:
    fullname: Chen
– volume: 31
  start-page: 8382
  year: 1998
  end-page: 8395
  ident: bib39
  article-title: Solute diffusion within hydrogels. mechanisms and models
  publication-title: Macromolecules
  contributor:
    fullname: Amsden
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  ident: bib12
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv Mater
  contributor:
    fullname: Osada
– volume: 31
  start-page: 7494
  year: 2010
  end-page: 7502
  ident: bib23
  article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties
  publication-title: Biomaterials
  contributor:
    fullname: Neves
– volume: 49
  start-page: 281
  year: 1974
  end-page: 290
  ident: bib36
  article-title: Diffusion in a finite system with a moving boundary
  publication-title: J Nucl Mater
  contributor:
    fullname: Pawel
– volume: 11
  start-page: 439
  year: 2000
  end-page: 457
  ident: bib18
  article-title: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro
  publication-title: J Biomater Sci Polym Ed
  contributor:
    fullname: Anseth
– volume: 31
  start-page: 5536
  year: 2010
  end-page: 5544
  ident: bib29
  article-title: Cell-laden microengineered gelatin methacrylate hydrogels
  publication-title: Biomaterials
  contributor:
    fullname: Khademhosseini
– volume: 12
  start-page: 2884
  year: 1996
  end-page: 2893
  ident: bib37
  article-title: A self-diffusion study of the complex formed by sodium dodecyl sulfate and gelatin in aqueous solutions
  publication-title: Langmuir
  contributor:
    fullname: Cosgrove
– volume: 71
  start-page: 92
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2011.12.050_bib30
  article-title: Synthesis and characterization of new unsaturated esters of gellan gum
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2007.05.021
  contributor:
    fullname: Hamcerencu
– volume: 15
  start-page: 1155
  issue: 14
  year: 2003
  ident: 10.1016/j.biomaterials.2011.12.050_bib12
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv Mater
  doi: 10.1002/adma.200304907
  contributor:
    fullname: Gong
– volume: 6
  start-page: 386
  issue: 1
  year: 2005
  ident: 10.1016/j.biomaterials.2011.12.050_bib22
  article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks
  publication-title: Biomacromolecules
  doi: 10.1021/bm049508a
  contributor:
    fullname: Burdick
– volume: 212
  start-page: 273
  issue: H4
  year: 1998
  ident: 10.1016/j.biomaterials.2011.12.050_bib3
  article-title: The compressive strength of articular cartilage
  publication-title: Proc Inst Mech Eng Part H-J Eng Med
  doi: 10.1243/0954411981534051
  contributor:
    fullname: Kerin
– volume: 14
  start-page: 1124
  issue: 11
  year: 2004
  ident: 10.1016/j.biomaterials.2011.12.050_bib13
  article-title: High mechanical strength double network hydrogel with bacterial cellulose
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200305197
  contributor:
    fullname: Nakayama
– volume: 29
  start-page: 2153
  issue: 14
  year: 2008
  ident: 10.1016/j.biomaterials.2011.12.050_bib15
  article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.01.012
  contributor:
    fullname: Weng
– volume: 12
  start-page: 2884
  issue: 12
  year: 1996
  ident: 10.1016/j.biomaterials.2011.12.050_bib37
  article-title: A self-diffusion study of the complex formed by sodium dodecyl sulfate and gelatin in aqueous solutions
  publication-title: Langmuir
  doi: 10.1021/la950797l
  contributor:
    fullname: Griffith
– volume: 101
  start-page: 1869
  issue: 7
  year: 2001
  ident: 10.1016/j.biomaterials.2011.12.050_bib8
  article-title: Hydrogels for tissue engineering
  publication-title: Chem Rev
  doi: 10.1021/cr000108x
  contributor:
    fullname: Lee
– volume: 77
  start-page: 542
  issue: 1
  year: 1999
  ident: 10.1016/j.biomaterials.2011.12.050_bib40
  article-title: Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(99)76911-0
  contributor:
    fullname: Pluen
– volume: 103
  start-page: 2480
  issue: 8
  year: 2006
  ident: 10.1016/j.biomaterials.2011.12.050_bib20
  article-title: Microscale technologies for tissue engineering and biology
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0507681102
  contributor:
    fullname: Khademhosseini
– volume: 37
  start-page: 5370
  issue: 14
  year: 2004
  ident: 10.1016/j.biomaterials.2011.12.050_bib14
  article-title: Structural characteristics of double network gels with extremely high mechanical strength
  publication-title: Macromolecules
  doi: 10.1021/ma049506i
  contributor:
    fullname: Na
– volume: 24
  start-page: 4337
  issue: 24
  year: 2003
  ident: 10.1016/j.biomaterials.2011.12.050_bib7
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
  contributor:
    fullname: Drury
– volume: 13
  start-page: 2369
  issue: 10
  year: 2007
  ident: 10.1016/j.biomaterials.2011.12.050_bib11
  article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications
  publication-title: Tissue Eng
  doi: 10.1089/ten.2007.0093
  contributor:
    fullname: Ifkovits
– year: 2004
  ident: 10.1016/j.biomaterials.2011.12.050_bib33
  contributor:
    fullname: Podczeck
– volume: vol. 10
  year: 1978
  ident: 10.1016/j.biomaterials.2011.12.050_bib4
  contributor:
    fullname: McCutchen
– volume: 15
  start-page: 1645
  issue: 7
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.050_bib17
  article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2008.0441
  contributor:
    fullname: Brigham
– volume: 28
  start-page: 5087
  issue: 34
  year: 2007
  ident: 10.1016/j.biomaterials.2011.12.050_bib21
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.021
  contributor:
    fullname: Khademhosseini
– volume: 31
  start-page: 5536
  issue: 21
  year: 2010
  ident: 10.1016/j.biomaterials.2011.12.050_bib29
  article-title: Cell-laden microengineered gelatin methacrylate hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.064
  contributor:
    fullname: Nichol
– volume: 42
  start-page: 2184
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.050_bib41
  article-title: True chemical structure of double network hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma802148p
  contributor:
    fullname: Nakajima
– volume: 49
  start-page: 281
  issue: 3
  year: 1974
  ident: 10.1016/j.biomaterials.2011.12.050_bib36
  article-title: Diffusion in a finite system with a moving boundary
  publication-title: J Nucl Mater
  doi: 10.1016/0022-3115(74)90040-3
  contributor:
    fullname: Pawel
– volume: 33
  start-page: 167
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2011.12.050_bib10
  article-title: Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2007.09.006
  contributor:
    fullname: Nuttelman
– volume: 43
  start-page: 14
  issue: 3
  year: 1981
  ident: 10.1016/j.biomaterials.2011.12.050_bib31
  article-title: Acylation of fish protein: effect of Reaction conditions on products
  publication-title: Mar. Fish. Rev.
  contributor:
    fullname: Lee
– volume: 4
  start-page: 890
  issue: 4
  year: 2003
  ident: 10.1016/j.biomaterials.2011.12.050_bib32
  article-title: Photo-cross-linking of type I collagen gels in he presence of smooth muscle cells: mechanical properties, cell viability, and function
  publication-title: Biomacromolecules
  doi: 10.1021/bm0257412
  contributor:
    fullname: Brinkman
– year: 1993
  ident: 10.1016/j.biomaterials.2011.12.050_bib1
  contributor:
    fullname: Fung
– volume: 93
  start-page: 852
  issue: 3
  year: 2010
  ident: 10.1016/j.biomaterials.2011.12.050_bib26
  article-title: Gellan gum: a new biomaterial for cartilage tissue engineering applications
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.32574
  contributor:
    fullname: Oliveira
– volume: 18
  start-page: 1345
  issue: 11
  year: 2006
  ident: 10.1016/j.biomaterials.2011.12.050_bib9
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv Mater
  doi: 10.1002/adma.200501612
  contributor:
    fullname: Peppas
– volume: 6
  start-page: 2583
  issue: 12
  year: 2010
  ident: 10.1016/j.biomaterials.2011.12.050_bib2
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter
  doi: 10.1039/b924290b
  contributor:
    fullname: Gong
– year: 1960
  ident: 10.1016/j.biomaterials.2011.12.050_bib35
  contributor:
    fullname: Jost
– volume: 86
  start-page: 747
  issue: 7
  year: 2004
  ident: 10.1016/j.biomaterials.2011.12.050_bib25
  article-title: Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.20160
  contributor:
    fullname: Bryant
– volume: 19
  start-page: 1968
  issue: 14
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.050_bib28
  article-title: An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro
  publication-title: J Mater Chem
  doi: 10.1039/b818090c
  contributor:
    fullname: Gong
– year: 1953
  ident: 10.1016/j.biomaterials.2011.12.050_bib34
  contributor:
    fullname: Flory
– volume: 46
  start-page: 5003
  year: 2005
  ident: 10.1016/j.biomaterials.2011.12.050_bib16
  article-title: Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Myung
– volume: 21
  start-page: 743
  issue: 7
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.050_bib6
  article-title: Hydrogels for soft machines
  publication-title: Adv Mater
  doi: 10.1002/adma.200800534
  contributor:
    fullname: Calvert
– volume: 30
  start-page: 344
  issue: 3
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.050_bib19
  article-title: The effect of photopolymerization on stem cells embedded in hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.09.037
  contributor:
    fullname: Fedorovich
– volume: 31
  start-page: 7494
  issue: 29
  year: 2010
  ident: 10.1016/j.biomaterials.2011.12.050_bib23
  article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.035
  contributor:
    fullname: Coutinho
– volume: 31
  start-page: 8382
  issue: 23
  year: 1998
  ident: 10.1016/j.biomaterials.2011.12.050_bib39
  article-title: Solute diffusion within hydrogels. mechanisms and models
  publication-title: Macromolecules
  doi: 10.1021/ma980765f
  contributor:
    fullname: Amsden
– volume: 11
  start-page: 439
  issue: 5
  year: 2000
  ident: 10.1016/j.biomaterials.2011.12.050_bib18
  article-title: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856200743805
  contributor:
    fullname: Bryant
– volume: 7
  start-page: 1903
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2011.12.050_bib24
  article-title: Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation
  publication-title: Soft Matter
  doi: 10.1039/c0sm00697a
  contributor:
    fullname: Bae
– volume: 3
  start-page: 1335
  year: 2007
  ident: 10.1016/j.biomaterials.2011.12.050_bib5
  article-title: Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering
  publication-title: Soft Matter
  doi: 10.1039/b707472g
  contributor:
    fullname: Amsden
– volume: 16
  start-page: 343
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.050_bib27
  article-title: Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2009.0117
  contributor:
    fullname: Oliveira
– volume: 17
  start-page: 115
  issue: 1
  year: 1984
  ident: 10.1016/j.biomaterials.2011.12.050_bib38
  article-title: Self-diffusion of gelatin by forced Rayleigh scattering
  publication-title: Macromolecules
  doi: 10.1021/ma00131a020
  contributor:
    fullname: Chang
SSID ssj0014042
Score 2.5852432
Snippet Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop...
A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels...
SourceID pubmedcentral
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3143
SubjectTerms Advanced Basic Science
Animals
Biocompatible Materials - chemistry
Biocompatible Materials - toxicity
Cell encapsulation
Cell Survival - drug effects
Compressive Strength
Cross-Linking Reagents - chemistry
Cross-Linking Reagents - radiation effects
Cross-Linking Reagents - toxicity
Dentistry
Elastic Modulus
Gelatin - chemistry
Gelatin - radiation effects
Gelatin - toxicity
Hardness
Hydrogel
Hydrogels - chemical synthesis
Hydrogels - radiation effects
Hydrogels - toxicity
IPN
Light
Macromolecular Substances - chemistry
Macromolecular Substances - radiation effects
Macromolecular Substances - toxicity
Materials Testing
Mechanical properties
Mice
NIH 3T3 Cells
Photopolymerization
Polysaccharides, Bacterial - chemistry
Polysaccharides, Bacterial - radiation effects
Polysaccharides, Bacterial - toxicity
Tissue Scaffolds
Title The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
URI https://www.clinicalkey.es/playcontent/1-s2.0-S014296121101533X
https://dx.doi.org/10.1016/j.biomaterials.2011.12.050
https://www.ncbi.nlm.nih.gov/pubmed/22265786
https://pubmed.ncbi.nlm.nih.gov/PMC3282165
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6i4TggGB5lZd84BZlFcfO68BhxRb1AgdYpBUXK06cpqtuUvUh0T-yv3dn7LxKhViEuERVHo7r-TIzHn8zJuQ9T9PC4yIECeTaFRFXbpIKJPtnsSiYz7TAbOTpt-jLZXw-EZPRqN3HtT_3XyUN50DWmDn7F9LuGoUT8BtkDkeQOhzvLPdrjfm8ZviXGGxfYdVUm8G229Sb-uc8a5gYGLd3FykoHyevt2qh3crywp1yl6_qGVhOBw1djosKyxKeNWYVl31NztXMcOksoXmGRKrKmW2vHUzqTw3Tz2y-2_AU27VjvLixY9EFeEpby2C603U1K-s-9ttEiHDNH_XX-WlnIkpk9pfQGz03-1I5Z4v5MIiBbBAxDGJ02TU9lckGO303CRuatbYKOoZZb5B4wVCD21IaLVLZQB9zZotANbadM1su98Bu2BDG1akajICt74qxYlsa95e63EiL87F34ECh03x5RO75oO2QV_oj-NotZQnP7ODU_Zm28q0hGf7ufX_0kvYZvAOX6OIxedTMZeiZBeETMtLVCXk4qHB5Qu5_brgbT8kNIJP2yKQ9Mimghw6RSeuC9sik-8ikHTKpQSatK3qITNog07RtkUkBmfQAmc_I90-Ti49Tt9kVxM1CL9q4LFDCi3NVFL6X8CzNoiRieahjL0rTPAAJ-FGUaA4zDw9m515esFhrFieKca5UyJ-T46qu9EtCRREnvvGICyUUzxIdhUmmFVfQSMqCMeGtFOTSFn-RLSvySg5lJ1F2kvkSZDcmUSsw2aY3g0HW60ZLrCWTa7hTHiBoTD50TzYOsHVsJeD0Tm9-YWHR9Ra8_xBscgh92gNMdwNWl9-_Us1LU2We-7HPwuDVP_bpNXnQf_BvyPFmtdVvydE6374z38ktROD_fw
link.rule.ids 230,315,782,786,887,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanical+properties+and+cytotoxicity+of+cell-laden+double-network+hydrogels+based+on+photocrosslinkable+gelatin+and+gellan+gum+biomacromolecules&rft.jtitle=Biomaterials&rft.au=Shin%2C+Hyeongho&rft.au=Olsen%2C+Bradley+D.&rft.au=Khademhosseini%2C+Ali&rft.date=2012-04-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=33&rft.issue=11&rft.spage=3143&rft.epage=3152&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.12.050&rft.externalDocID=S014296121101533X
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X0005X%2Fcov150h.gif