The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsula...
Saved in:
Published in: | Biomaterials Vol. 33; no. 11; pp. 3143 - 3152 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Ltd
01-04-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. |
---|---|
AbstractList | Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. |
Author | Shin, Hyeongho Olsen, Bradley D Khademhosseini, Ali |
AuthorAffiliation | e Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA d Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
AuthorAffiliation_xml | – name: d Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: b Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA – name: c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: e Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA |
Author_xml | – sequence: 1 fullname: Shin, Hyeongho – sequence: 2 fullname: Olsen, Bradley D – sequence: 3 fullname: Khademhosseini, Ali |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22265786$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URKeFV0AW-wRfJjcWlVDLTarEgiKxsxz7ZOIZx47spJAX4XlxZqAqrJAXtuX__4-Ov3OBzpx3gNArSnJKaPl6n7fGD3KCYKSNOSOU5pTlpCBP0IbWVZ0VDSnO0IbQLcuakrJzdBHjnqQ72bJn6JwxVhZVXW7Qz7se8ACql84oafEY_AhhMhCxdBqrZfKT_2GUmRbsO6zA2sxKDQ5rP7cWMgfTdx8OuF908DuwEbcygsbe4bFPXhV8jNa4g0xqnARyMu6Ync5WOrybB3zsJykHb0HNFuJz9LRLvcGL3_sl-vr-3d31x-z284dP129vM1WSaspo0W5JrduuY6ThSqqqqaguoSaVlLqoGs6qqgFekJqUaemO1gC0blrKeduW_BJdnXLHuR1AK3BTkFaMwQwyLMJLI_5-caYXO38vOKsZLYsU8OYUcOwzQPfgpUSstMRePKYlVlqCMpFoJfPLx9UfrH_wJMHNSZD-Fe4NBBGVAadAmwBqEtqb_6tz9U-MSkRW3gdYIO79HNzqoSImg_iyzs06NjQFF5x_478Am_HJ4w |
CitedBy_id | crossref_primary_10_3390_polym8050170 crossref_primary_10_2217_rme_14_52 crossref_primary_10_1002_eem2_12066 crossref_primary_10_1016_j_ijbiomac_2023_127735 crossref_primary_10_1021_acs_biomac_5b00041 crossref_primary_10_1007_s10924_019_01636_3 crossref_primary_10_1007_s10570_020_03080_2 crossref_primary_10_1021_acssuschemeng_8b03460 crossref_primary_10_1088_1748_605X_abc1b1 crossref_primary_10_1016_j_ijbiomac_2020_08_093 crossref_primary_10_1515_epoly_2021_0002 crossref_primary_10_1002_adem_202100477 crossref_primary_10_1007_s40846_021_00629_9 crossref_primary_10_1021_acsami_5b10378 crossref_primary_10_1016_j_tibtech_2014_09_001 crossref_primary_10_3390_jfb12010017 crossref_primary_10_1016_j_biotechadv_2017_05_006 crossref_primary_10_1021_acsami_6b02740 crossref_primary_10_1002_adma_201302042 crossref_primary_10_1016_j_carbpol_2013_04_043 crossref_primary_10_1002_adhm_202102366 crossref_primary_10_3390_gels7020070 crossref_primary_10_1021_acsami_0c01497 crossref_primary_10_1557_jmr_2017_255 crossref_primary_10_1021_acs_biomac_0c01408 crossref_primary_10_1016_j_crphar_2022_100100 crossref_primary_10_1016_j_actbio_2014_03_014 crossref_primary_10_1016_j_ijbiomac_2019_12_188 crossref_primary_10_1016_j_progpolymsci_2017_04_001 crossref_primary_10_1016_j_engreg_2021_03_002 crossref_primary_10_1080_09205063_2018_1493022 crossref_primary_10_1002_pi_5587 crossref_primary_10_1016_j_ijbiomac_2021_04_016 crossref_primary_10_1039_C6TB01488G crossref_primary_10_2174_0113816128246888230920060802 crossref_primary_10_1002_pen_25597 crossref_primary_10_1021_acsomega_1c01806 crossref_primary_10_3390_polym10010011 crossref_primary_10_1007_s00396_015_3505_z crossref_primary_10_1016_j_carbpol_2018_01_028 crossref_primary_10_1007_s10856_015_5517_0 crossref_primary_10_1016_j_biomaterials_2017_05_012 crossref_primary_10_1088_2057_1976_aac1ca crossref_primary_10_1039_C5TB00393H crossref_primary_10_1134_S0965545X20030128 crossref_primary_10_1016_j_actbio_2021_03_003 crossref_primary_10_1039_C4TB02089H crossref_primary_10_1371_journal_pone_0209386 crossref_primary_10_2174_1389450124666230605150303 crossref_primary_10_1063_5_0182585 crossref_primary_10_1039_C7BM00991G crossref_primary_10_1021_acsabm_4c00565 crossref_primary_10_1021_acsabm_8b00663 crossref_primary_10_1021_acsomega_8b00683 crossref_primary_10_1039_C3BM60210A crossref_primary_10_1007_s42242_018_0029_7 crossref_primary_10_1016_j_actbio_2022_10_038 crossref_primary_10_1007_s41745_019_00129_5 crossref_primary_10_3390_polym14122365 crossref_primary_10_1002_adfm_201909359 crossref_primary_10_1039_C5RA10638A crossref_primary_10_1116_1_4966164 crossref_primary_10_1016_j_jiec_2020_04_021 crossref_primary_10_1021_acsbiomaterials_6b00109 crossref_primary_10_1007_s00289_019_02753_8 crossref_primary_10_1002_adhm_201400180 crossref_primary_10_1002_jbm_a_35510 crossref_primary_10_1016_j_jconrel_2015_07_005 crossref_primary_10_1088_1758_5090_aa68ed crossref_primary_10_1016_j_carbpol_2020_116345 crossref_primary_10_1016_j_ijbiomac_2022_07_168 crossref_primary_10_4028_www_scientific_net_AMM_890_268 crossref_primary_10_1371_journal_pone_0223689 crossref_primary_10_1088_1748_605X_aa62b0 crossref_primary_10_1016_j_cclet_2021_01_048 crossref_primary_10_1039_c3tb20600a crossref_primary_10_1016_j_biomaterials_2018_01_057 crossref_primary_10_3390_polym14163268 crossref_primary_10_3390_gels5030034 crossref_primary_10_1016_j_dib_2017_07_011 crossref_primary_10_1177_0885328215587450 crossref_primary_10_1002_jbio_202300429 crossref_primary_10_3390_polym10111290 crossref_primary_10_1080_00914037_2020_1760274 crossref_primary_10_1016_j_cej_2018_10_230 crossref_primary_10_1016_j_tibtech_2020_08_007 crossref_primary_10_3390_gels8040199 crossref_primary_10_1016_j_matpr_2019_06_075 crossref_primary_10_1016_j_biomaterials_2016_12_026 crossref_primary_10_1016_j_biomaterials_2018_04_023 crossref_primary_10_1002_adhm_202203148 crossref_primary_10_1016_j_biomaterials_2015_08_045 crossref_primary_10_1021_acsabm_8b00562 crossref_primary_10_1021_acsami_9b15451 crossref_primary_10_1016_j_actbio_2017_01_036 crossref_primary_10_1039_c3sm27389j crossref_primary_10_1177_08853282221144235 crossref_primary_10_1021_am504520j crossref_primary_10_3390_ma11112199 crossref_primary_10_1089_ten_tea_2018_0083 crossref_primary_10_1002_adhm_201900670 crossref_primary_10_1002_app_52527 crossref_primary_10_1002_adhm_202302078 crossref_primary_10_1016_j_colsurfb_2014_11_020 crossref_primary_10_1002_adhm_201601122 crossref_primary_10_1039_C5TB00867K crossref_primary_10_1016_j_carbpol_2015_09_095 crossref_primary_10_1016_j_ijbiomac_2018_05_211 crossref_primary_10_1021_acsbiomaterials_6b00088 crossref_primary_10_1016_j_mtbio_2024_101146 crossref_primary_10_1021_acsami_8b22343 crossref_primary_10_1080_25740881_2020_1773499 crossref_primary_10_1039_C4NJ01982B crossref_primary_10_1002_wnan_1520 crossref_primary_10_1016_j_bprint_2019_e00060 crossref_primary_10_1016_j_msec_2019_110510 crossref_primary_10_1016_j_colcom_2021_100413 crossref_primary_10_1039_C3SM52272E crossref_primary_10_1002_mabi_201500305 crossref_primary_10_1016_j_jcis_2020_10_128 crossref_primary_10_1039_C5RA06835E crossref_primary_10_1016_j_copbio_2012_05_007 crossref_primary_10_1016_j_jddst_2020_101586 crossref_primary_10_1021_acs_jafc_9b00984 crossref_primary_10_1039_C4NJ00161C crossref_primary_10_1039_C7BM00765E crossref_primary_10_1073_pnas_2213030120 crossref_primary_10_1002_mabi_201800018 crossref_primary_10_1021_acsbiomaterials_4c00305 crossref_primary_10_3390_gels5020024 crossref_primary_10_1039_C4TB01257G crossref_primary_10_1016_j_actbio_2017_11_002 crossref_primary_10_1080_00914037_2024_2330420 crossref_primary_10_1002_adma_201602268 crossref_primary_10_1002_marc_202200075 crossref_primary_10_1016_j_msec_2021_112185 crossref_primary_10_1039_C5RA22028A crossref_primary_10_1002_asia_202200659 crossref_primary_10_1002_adhm_201700939 crossref_primary_10_1021_acs_biomac_3c01271 crossref_primary_10_1039_c3ra44716b crossref_primary_10_1016_j_carbpol_2018_02_002 crossref_primary_10_1016_j_ijpharm_2023_123187 crossref_primary_10_1039_C8TB01664J crossref_primary_10_1177_09544119221125084 crossref_primary_10_1088_1758_5082_6_3_035020 crossref_primary_10_1002_jbm_a_37698 crossref_primary_10_1021_acs_biomac_0c01745 crossref_primary_10_3390_gels4020046 crossref_primary_10_1007_s10965_014_0409_4 crossref_primary_10_1016_j_actbio_2022_11_034 crossref_primary_10_1016_j_ijbiomac_2018_09_212 crossref_primary_10_1039_C3PY00869J crossref_primary_10_1002_adem_202100663 crossref_primary_10_1016_j_colsurfb_2017_11_025 crossref_primary_10_1016_j_ijbiomac_2019_07_126 crossref_primary_10_1002_adma_202105361 crossref_primary_10_1002_adhm_202400897 crossref_primary_10_3390_nano11092256 crossref_primary_10_3390_bioengineering10091044 crossref_primary_10_1016_j_biomaterials_2017_03_021 crossref_primary_10_1021_acsbiomaterials_8b00230 crossref_primary_10_1016_j_ijbiomac_2017_11_099 crossref_primary_10_1371_journal_pone_0216776 crossref_primary_10_1007_s10856_015_5489_0 crossref_primary_10_1016_j_tibtech_2012_12_004 crossref_primary_10_1002_macp_202100326 crossref_primary_10_1016_j_ijbiomac_2018_09_202 crossref_primary_10_1007_s00170_018_2876_y crossref_primary_10_3390_molecules28135222 crossref_primary_10_1080_00914037_2016_1201828 crossref_primary_10_3390_polym13152508 crossref_primary_10_1039_D2RA07079K crossref_primary_10_1016_j_actbio_2017_11_021 crossref_primary_10_1007_s10570_014_0511_0 crossref_primary_10_1002_adfm_202300426 crossref_primary_10_1002_mabi_201200471 crossref_primary_10_3389_fmolb_2021_783268 crossref_primary_10_1021_acsabm_8b00361 crossref_primary_10_1016_j_biomaterials_2016_01_025 crossref_primary_10_1002_smll_201901920 crossref_primary_10_1021_acsami_8b15385 crossref_primary_10_1021_acs_langmuir_7b01000 crossref_primary_10_1080_09205063_2017_1279044 crossref_primary_10_1002_adfm_201504943 crossref_primary_10_1002_adma_202202261 crossref_primary_10_1021_acsapm_2c02171 crossref_primary_10_1039_C6TB00065G crossref_primary_10_1016_j_carbpol_2021_117870 crossref_primary_10_1016_j_biotechadv_2015_07_006 crossref_primary_10_1016_j_tice_2023_102279 crossref_primary_10_1016_j_mtbio_2022_100530 crossref_primary_10_3390_polym12010176 crossref_primary_10_1002_jbm_a_36222 crossref_primary_10_1080_09205063_2019_1666236 crossref_primary_10_1039_C5TB00645G crossref_primary_10_1016_j_bioactmat_2022_07_006 crossref_primary_10_1155_2019_3160732 crossref_primary_10_1002_adhm_202202163 crossref_primary_10_1016_j_polymer_2018_08_019 crossref_primary_10_1039_D2NA00394E crossref_primary_10_1016_j_addr_2018_03_003 crossref_primary_10_1039_C3TB20984A crossref_primary_10_1039_C9RA00655A crossref_primary_10_1016_j_addr_2022_114647 crossref_primary_10_1021_acs_biomac_3c01183 crossref_primary_10_1021_acsbiomaterials_8b00691 crossref_primary_10_1108_RPJ_01_2021_0011 crossref_primary_10_1039_C6BM00322B crossref_primary_10_1089_ten_tec_2021_0170 crossref_primary_10_1021_acs_biomac_3c00765 crossref_primary_10_3390_nano13040772 crossref_primary_10_1016_j_eurpolymj_2015_02_002 crossref_primary_10_1016_j_foodhyd_2022_107737 crossref_primary_10_1088_1758_5090_8_3_035012 crossref_primary_10_1186_2050_5736_1_21 crossref_primary_10_3390_molecules24244514 crossref_primary_10_3390_pharmaceutics14030540 crossref_primary_10_1039_C4BM00070F crossref_primary_10_1007_s10856_014_5261_x crossref_primary_10_1016_j_msec_2017_04_062 crossref_primary_10_1039_C5CC05564D crossref_primary_10_1016_j_biomaterials_2013_11_009 crossref_primary_10_1016_j_jiec_2020_06_017 crossref_primary_10_1016_j_eurpolymj_2019_05_040 crossref_primary_10_1016_j_actbio_2014_02_041 crossref_primary_10_1021_acs_biomac_3c00894 crossref_primary_10_3390_polym13071081 crossref_primary_10_1021_acsomega_0c04087 crossref_primary_10_1016_j_msec_2022_112717 crossref_primary_10_1021_acsapm_0c00717 crossref_primary_10_1002_jctb_3970 crossref_primary_10_1016_j_carbpol_2021_118828 crossref_primary_10_1007_s10570_023_05479_z crossref_primary_10_1098_rsif_2014_0501 crossref_primary_10_1002_adhm_201200317 crossref_primary_10_1007_s00264_013_1894_5 crossref_primary_10_1039_c3sm00102d crossref_primary_10_1002_adhm_201400123 crossref_primary_10_1016_j_eurpolymj_2015_07_053 crossref_primary_10_1021_acs_biomac_1c00687 crossref_primary_10_1016_j_msec_2021_112370 crossref_primary_10_1007_s13367_020_0005_6 crossref_primary_10_1016_j_drudis_2018_09_012 crossref_primary_10_1088_1758_5090_ac23e4 crossref_primary_10_1016_j_ijbiomac_2015_09_071 crossref_primary_10_1088_1748_605X_abbcc9 crossref_primary_10_1021_acs_macromol_6b01861 crossref_primary_10_1002_polb_24725 crossref_primary_10_1088_1748_6041_11_1_015019 crossref_primary_10_3390_ijms232315176 crossref_primary_10_1002_adhm_201500005 crossref_primary_10_3390_polym11060952 crossref_primary_10_1002_adfm_201202034 crossref_primary_10_1002_adfm_202003601 crossref_primary_10_1016_j_biomaterials_2018_12_028 crossref_primary_10_1038_s41598_020_71462_4 crossref_primary_10_3390_biom13081167 crossref_primary_10_1021_acsami_1c17629 crossref_primary_10_1016_j_msec_2016_06_093 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1002_jbm_a_34924 crossref_primary_10_1021_acsami_7b18821 crossref_primary_10_1016_j_msec_2019_01_022 crossref_primary_10_1021_acsami_6b16779 crossref_primary_10_1016_j_matdes_2018_09_040 crossref_primary_10_1016_j_compositesb_2022_110162 crossref_primary_10_1021_bm501361c crossref_primary_10_1016_j_actbio_2021_09_022 crossref_primary_10_4028_www_scientific_net_AMM_890_229 crossref_primary_10_1016_j_ijpharm_2014_03_038 crossref_primary_10_1002_adtp_202300170 crossref_primary_10_1016_j_mseb_2023_116597 crossref_primary_10_3389_fcell_2021_701525 crossref_primary_10_1002_mabi_201500386 crossref_primary_10_1016_j_biomaterials_2013_07_052 crossref_primary_10_1016_j_carbpol_2016_12_032 crossref_primary_10_1017_erm_2014_13 crossref_primary_10_1016_j_colsurfb_2017_08_055 crossref_primary_10_1016_j_colsurfb_2019_06_041 crossref_primary_10_1021_acs_bioconjchem_5b00360 crossref_primary_10_1021_acs_molpharmaceut_5b00515 crossref_primary_10_1007_s10965_022_03178_0 crossref_primary_10_1016_j_bej_2017_12_012 crossref_primary_10_1016_j_ijbiomac_2020_08_078 crossref_primary_10_1016_j_matchemphys_2013_11_052 crossref_primary_10_1039_C4RA16103C crossref_primary_10_1088_1758_5090_acb107 crossref_primary_10_1007_s10965_020_02355_3 crossref_primary_10_1016_j_apmt_2018_06_008 crossref_primary_10_2139_ssrn_4066804 crossref_primary_10_1016_j_eng_2020_03_019 crossref_primary_10_3389_fphar_2023_1276849 crossref_primary_10_1016_j_porgcoat_2024_108441 crossref_primary_10_1021_acsami_4c00620 crossref_primary_10_1080_23311916_2020_1736407 crossref_primary_10_1038_srep31036 crossref_primary_10_1016_j_ijbiomac_2024_130075 crossref_primary_10_3390_polym12081655 crossref_primary_10_1016_j_ejpb_2018_05_011 crossref_primary_10_1021_acsami_4c02354 crossref_primary_10_1088_1758_5090_aba2b6 crossref_primary_10_1021_acsami_1c07285 crossref_primary_10_1016_j_biomaterials_2022_121969 |
Cites_doi | 10.1016/j.carbpol.2007.05.021 10.1002/adma.200304907 10.1021/bm049508a 10.1243/0954411981534051 10.1002/adfm.200305197 10.1016/j.biomaterials.2008.01.012 10.1021/la950797l 10.1021/cr000108x 10.1016/S0006-3495(99)76911-0 10.1073/pnas.0507681102 10.1021/ma049506i 10.1016/S0142-9612(03)00340-5 10.1089/ten.2007.0093 10.1089/ten.tea.2008.0441 10.1016/j.biomaterials.2007.07.021 10.1016/j.biomaterials.2010.03.064 10.1021/ma802148p 10.1016/0022-3115(74)90040-3 10.1016/j.progpolymsci.2007.09.006 10.1021/bm0257412 10.1002/jbm.a.32574 10.1002/adma.200501612 10.1039/b924290b 10.1002/bit.20160 10.1039/b818090c 10.1002/adma.200800534 10.1016/j.biomaterials.2008.09.037 10.1016/j.biomaterials.2010.06.035 10.1021/ma980765f 10.1163/156856200743805 10.1039/c0sm00697a 10.1039/b707472g 10.1089/ten.tea.2009.0117 10.1021/ma00131a020 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2012 Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. 2011 Elsevier Ltd. All rights reserved. 2011 |
Copyright_xml | – notice: Elsevier Ltd – notice: 2012 Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. – notice: 2011 Elsevier Ltd. All rights reserved. 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1016/j.biomaterials.2011.12.050 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 3152 |
ExternalDocumentID | 10_1016_j_biomaterials_2011_12_050 22265786 S014296121101533X 1_s2_0_S014296121101533X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR057837 – fundername: NIBIB NIH HHS grantid: R01 EB012597-02 – fundername: NHLBI NIH HHS grantid: R01 HL092836-04 – fundername: NHLBI NIH HHS grantid: R01 HL092836 – fundername: NHLBI NIH HHS grantid: HL092836 – fundername: NIBIB NIH HHS grantid: EB02597 – fundername: NIBIB NIH HHS grantid: R01 EB012597 – fundername: NIAMS NIH HHS grantid: AR057837 – fundername: NIAMS NIH HHS grantid: R01 AR057837-02 – fundername: NHLBI NIH HHS grantid: R01 HL092836-05 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL092836-05 || HL – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB012597-02 || EB – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS grantid: R01 AR057837-02 || AR – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL092836-04 || HL |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-c607t-15b408dbff2093cac7971d6e807aad57932779e350806060df18ee189b133bb63 |
ISSN | 0142-9612 |
IngestDate | Tue Sep 17 21:06:13 EDT 2024 Thu Sep 26 18:41:07 EDT 2024 Sat Sep 28 08:00:39 EDT 2024 Fri Feb 23 02:23:06 EST 2024 Tue Oct 15 22:54:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Mechanical properties Hydrogel Photopolymerization Cell encapsulation IPN |
Language | English |
License | Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c607t-15b408dbff2093cac7971d6e807aad57932779e350806060df18ee189b133bb63 |
OpenAccessLink | https://dspace.mit.edu/bitstream/1721.1/99393/1/Olsen_Mechanical%20properties.pdf |
PMID | 22265786 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3282165 crossref_primary_10_1016_j_biomaterials_2011_12_050 pubmed_primary_22265786 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_12_050 elsevier_clinicalkeyesjournals_1_s2_0_S014296121101533X |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Amsden (bib5) 2007; 3 Nuttelman, Rice, Rydholm, Salinas, Shah, Anseth (bib10) 2008; 33 Brigham, Bick, Lo, Bendali, Burdick, Khademhosseini (bib17) 2009; 15 Griffith, Stilbs, Howe, Cosgrove (bib37) 1996; 12 Jost (bib35) 1960 Nichol, Koshy, Bae, Hwang, Yamanlar, Khademhosseini (bib29) 2010; 31 Gong, Wang, Lai, Su, Zhang, Wang (bib28) 2009; 19 Brinkman, Nagapudi, Thomas, Chaikof (bib32) 2003; 4 Gong (bib2) 2010; 6 Bryant, Nuttelman, Anseth (bib18) 2000; 11 Hamcerencu, Desbrieres, Khoukh, Popa, Riess (bib30) 2008; 71 McCutchen (bib4) 1978; vol. 10 Calvert (bib6) 2009; 21 Podczeck (bib33) 2004 Chang, Yu (bib38) 1984; 17 Drury, Mooney (bib7) 2003; 24 Nakayama, Kakugo, Gong, Osada, Takai, Erata (bib13) 2004; 14 Myung, Koh, Ko, Noolandi, Carrasco, Smithc (bib16) 2005; 46 Oliveira, Martins, Picciochi, Malafaya, Sousa, Neves (bib26) 2010; 93 Ifkovits, Burdick (bib11) 2007; 13 Khademhosseini, Langer (bib21) 2007; 28 Oliveira, Santos, Martins, Picciochi, Marques, Castro (bib27) 2009; 16 Fedorovich, Oudshoorn, van Geemen, Hennink, Alblas, Dhert (bib19) 2009; 30 Na, Kurokawa, Katsuyama, Tsukeshiba, Gong, Osada (bib14) 2004; 37 Amsden (bib39) 1998; 31 Khademhosseini, Langer, Borenstein, Vacanti (bib20) 2006; 103 Nakajima, Furukawa, Tanaka, Kurokawa, Osada, Gong (bib41) 2009; 42 Lee, Mooney (bib8) 2001; 101 Flory (bib34) 1953 Peppas, Hilt, Khademhosseini, Langer (bib9) 2006; 18 Pawel (bib36) 1974; 49 Lee, Groninger, Spinelli (bib31) 1981; 43 Weng, Gouldstone, Wu, Chen (bib15) 2008; 29 Bae, Ahari, Shin, Nichol, Hutson, Masaeli (bib24) 2011; 7 Coutinho, Sant, Shin, Oliveira, Gomes, Neves (bib23) 2010; 31 Burdick, Chung, Jia, Randolph, Langer (bib22) 2005; 6 Bryant, Bender, Durand, Anseth (bib25) 2004; 86 Fung (bib1) 1993 Pluen, Netti, Jain, Berk (bib40) 1999; 77 Kerin, Wisnom, Adams (bib3) 1998; 212 Gong, Katsuyama, Kurokawa, Osada (bib12) 2003; 15 20663552 - Biomaterials. 2010 Oct;31(29):7494-502 17658993 - Tissue Eng. 2007 Oct;13(10):2369-85 11710233 - Chem Rev. 2001 Jul;101(7):1869-79 10388779 - Biophys J. 1999 Jul;77(1):542-52 19461945 - Prog Polym Sci. 2008 Feb;33(2):167-179 19658177 - J Biomed Mater Res A. 2010 Jun 1;93(3):852-63 19702512 - Tissue Eng Part A. 2010 Jan;16(1):343-53 18930540 - Biomaterials. 2009 Jan;30(3):344-53 10896041 - J Biomater Sci Polym Ed. 2000;11(5):439-57 20417964 - Biomaterials. 2010 Jul;31(21):5536-44 21415929 - Soft Matter. 2011 Jan 1;7(5):1903-1911 18272215 - Biomaterials. 2008 May;29(14):2153-63 16477028 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2480-7 12857069 - Biomacromolecules. 2003 Jul-Aug;4(4):890-5 17707502 - Biomaterials. 2007 Dec;28(34):5087-92 15162450 - Biotechnol Bioeng. 2004 Jun 30;86(7):747-55 9769695 - Proc Inst Mech Eng H. 1998;212(4):273-80 12922147 - Biomaterials. 2003 Nov;24(24):4337-51 19105604 - Tissue Eng Part A. 2009 Jul;15(7):1645-53 15638543 - Biomacromolecules. 2005 Jan-Feb;6(1):386-91 Brigham (10.1016/j.biomaterials.2011.12.050_bib17) 2009; 15 Lee (10.1016/j.biomaterials.2011.12.050_bib31) 1981; 43 Oliveira (10.1016/j.biomaterials.2011.12.050_bib27) 2009; 16 Peppas (10.1016/j.biomaterials.2011.12.050_bib9) 2006; 18 Podczeck (10.1016/j.biomaterials.2011.12.050_bib33) 2004 Drury (10.1016/j.biomaterials.2011.12.050_bib7) 2003; 24 Nuttelman (10.1016/j.biomaterials.2011.12.050_bib10) 2008; 33 Nakayama (10.1016/j.biomaterials.2011.12.050_bib13) 2004; 14 Kerin (10.1016/j.biomaterials.2011.12.050_bib3) 1998; 212 Fedorovich (10.1016/j.biomaterials.2011.12.050_bib19) 2009; 30 Gong (10.1016/j.biomaterials.2011.12.050_bib2) 2010; 6 Chang (10.1016/j.biomaterials.2011.12.050_bib38) 1984; 17 Griffith (10.1016/j.biomaterials.2011.12.050_bib37) 1996; 12 Lee (10.1016/j.biomaterials.2011.12.050_bib8) 2001; 101 Burdick (10.1016/j.biomaterials.2011.12.050_bib22) 2005; 6 Hamcerencu (10.1016/j.biomaterials.2011.12.050_bib30) 2008; 71 Weng (10.1016/j.biomaterials.2011.12.050_bib15) 2008; 29 Nichol (10.1016/j.biomaterials.2011.12.050_bib29) 2010; 31 McCutchen (10.1016/j.biomaterials.2011.12.050_bib4) 1978; vol. 10 Bryant (10.1016/j.biomaterials.2011.12.050_bib18) 2000; 11 Gong (10.1016/j.biomaterials.2011.12.050_bib12) 2003; 15 Bryant (10.1016/j.biomaterials.2011.12.050_bib25) 2004; 86 Jost (10.1016/j.biomaterials.2011.12.050_bib35) 1960 Nakajima (10.1016/j.biomaterials.2011.12.050_bib41) 2009; 42 Myung (10.1016/j.biomaterials.2011.12.050_bib16) 2005; 46 Flory (10.1016/j.biomaterials.2011.12.050_bib34) 1953 Gong (10.1016/j.biomaterials.2011.12.050_bib28) 2009; 19 Amsden (10.1016/j.biomaterials.2011.12.050_bib39) 1998; 31 Calvert (10.1016/j.biomaterials.2011.12.050_bib6) 2009; 21 Pawel (10.1016/j.biomaterials.2011.12.050_bib36) 1974; 49 Ifkovits (10.1016/j.biomaterials.2011.12.050_bib11) 2007; 13 Fung (10.1016/j.biomaterials.2011.12.050_bib1) 1993 Pluen (10.1016/j.biomaterials.2011.12.050_bib40) 1999; 77 Na (10.1016/j.biomaterials.2011.12.050_bib14) 2004; 37 Coutinho (10.1016/j.biomaterials.2011.12.050_bib23) 2010; 31 Khademhosseini (10.1016/j.biomaterials.2011.12.050_bib21) 2007; 28 Khademhosseini (10.1016/j.biomaterials.2011.12.050_bib20) 2006; 103 Bae (10.1016/j.biomaterials.2011.12.050_bib24) 2011; 7 Amsden (10.1016/j.biomaterials.2011.12.050_bib5) 2007; 3 Oliveira (10.1016/j.biomaterials.2011.12.050_bib26) 2010; 93 Brinkman (10.1016/j.biomaterials.2011.12.050_bib32) 2003; 4 |
References_xml | – volume: 101 start-page: 1869 year: 2001 end-page: 1880 ident: bib8 article-title: Hydrogels for tissue engineering publication-title: Chem Rev contributor: fullname: Mooney – volume: 42 start-page: 2184 year: 2009 end-page: 2189 ident: bib41 article-title: True chemical structure of double network hydrogels publication-title: Macromolecules contributor: fullname: Gong – volume: 6 start-page: 386 year: 2005 end-page: 391 ident: bib22 article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks publication-title: Biomacromolecules contributor: fullname: Langer – volume: 46 start-page: 5003 year: 2005 ident: bib16 article-title: Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications publication-title: Invest Ophthalmol Vis Sci contributor: fullname: Smithc – year: 1993 ident: bib1 article-title: Biomechanics: mechanical properties of living tissues contributor: fullname: Fung – volume: 4 start-page: 890 year: 2003 end-page: 895 ident: bib32 article-title: Photo-cross-linking of type I collagen gels in he presence of smooth muscle cells: mechanical properties, cell viability, and function publication-title: Biomacromolecules contributor: fullname: Chaikof – volume: 13 start-page: 2369 year: 2007 end-page: 2385 ident: bib11 article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications publication-title: Tissue Eng contributor: fullname: Burdick – volume: 77 start-page: 542 year: 1999 end-page: 552 ident: bib40 article-title: Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations publication-title: Biophys J contributor: fullname: Berk – volume: 33 start-page: 167 year: 2008 end-page: 179 ident: bib10 article-title: Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering publication-title: Prog Polym Sci contributor: fullname: Anseth – volume: 21 start-page: 743 year: 2009 end-page: 756 ident: bib6 article-title: Hydrogels for soft machines publication-title: Adv Mater contributor: fullname: Calvert – volume: 24 start-page: 4337 year: 2003 end-page: 4351 ident: bib7 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials contributor: fullname: Mooney – volume: 28 start-page: 5087 year: 2007 end-page: 5092 ident: bib21 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials contributor: fullname: Langer – volume: 93 start-page: 852 year: 2010 end-page: 863 ident: bib26 article-title: Gellan gum: a new biomaterial for cartilage tissue engineering applications publication-title: J Biomed Mater Res A contributor: fullname: Neves – volume: 30 start-page: 344 year: 2009 end-page: 353 ident: bib19 article-title: The effect of photopolymerization on stem cells embedded in hydrogels publication-title: Biomaterials contributor: fullname: Dhert – volume: 18 start-page: 1345 year: 2006 end-page: 1360 ident: bib9 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv Mater contributor: fullname: Langer – volume: 14 start-page: 1124 year: 2004 end-page: 1128 ident: bib13 article-title: High mechanical strength double network hydrogel with bacterial cellulose publication-title: Adv Funct Mater contributor: fullname: Erata – volume: 19 start-page: 1968 year: 2009 end-page: 1977 ident: bib28 article-title: An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro publication-title: J Mater Chem contributor: fullname: Wang – volume: vol. 10 year: 1978 ident: bib4 publication-title: Lubrication of joints: the joints and synovial fluid contributor: fullname: McCutchen – volume: 71 start-page: 92 year: 2008 end-page: 100 ident: bib30 article-title: Synthesis and characterization of new unsaturated esters of gellan gum publication-title: Carbohydr Polym contributor: fullname: Riess – volume: 86 start-page: 747 year: 2004 end-page: 755 ident: bib25 article-title: Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production publication-title: Biotechnol Bioeng contributor: fullname: Anseth – volume: 15 start-page: 1645 year: 2009 end-page: 1653 ident: bib17 article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks publication-title: Tissue Eng Part A contributor: fullname: Khademhosseini – year: 1960 ident: bib35 article-title: Diffusion in solids, liquids, gases contributor: fullname: Jost – volume: 3 start-page: 1335 year: 2007 end-page: 1348 ident: bib5 article-title: Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering publication-title: Soft Matter contributor: fullname: Amsden – year: 1953 ident: bib34 article-title: Principles of polymer chemistry contributor: fullname: Flory – volume: 7 start-page: 1903 year: 2011 end-page: 1911 ident: bib24 article-title: Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation publication-title: Soft Matter contributor: fullname: Masaeli – year: 2004 ident: bib33 article-title: Pharmaceutical capsules contributor: fullname: Podczeck – volume: 37 start-page: 5370 year: 2004 end-page: 5374 ident: bib14 article-title: Structural characteristics of double network gels with extremely high mechanical strength publication-title: Macromolecules contributor: fullname: Osada – volume: 17 start-page: 115 year: 1984 end-page: 117 ident: bib38 article-title: Self-diffusion of gelatin by forced Rayleigh scattering publication-title: Macromolecules contributor: fullname: Yu – volume: 6 start-page: 2583 year: 2010 end-page: 2590 ident: bib2 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter contributor: fullname: Gong – volume: 103 start-page: 2480 year: 2006 end-page: 2487 ident: bib20 article-title: Microscale technologies for tissue engineering and biology publication-title: Proc Natl Acad Sci U S A contributor: fullname: Vacanti – volume: 43 start-page: 14 year: 1981 end-page: 19 ident: bib31 article-title: Acylation of fish protein: effect of Reaction conditions on products publication-title: Mar. Fish. Rev. contributor: fullname: Spinelli – volume: 212 start-page: 273 year: 1998 end-page: 280 ident: bib3 article-title: The compressive strength of articular cartilage publication-title: Proc Inst Mech Eng Part H-J Eng Med contributor: fullname: Adams – volume: 16 start-page: 343 year: 2009 end-page: 353 ident: bib27 article-title: Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation publication-title: Tissue Eng Part A contributor: fullname: Castro – volume: 29 start-page: 2153 year: 2008 end-page: 2163 ident: bib15 article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan publication-title: Biomaterials contributor: fullname: Chen – volume: 31 start-page: 8382 year: 1998 end-page: 8395 ident: bib39 article-title: Solute diffusion within hydrogels. mechanisms and models publication-title: Macromolecules contributor: fullname: Amsden – volume: 15 start-page: 1155 year: 2003 end-page: 1158 ident: bib12 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv Mater contributor: fullname: Osada – volume: 31 start-page: 7494 year: 2010 end-page: 7502 ident: bib23 article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties publication-title: Biomaterials contributor: fullname: Neves – volume: 49 start-page: 281 year: 1974 end-page: 290 ident: bib36 article-title: Diffusion in a finite system with a moving boundary publication-title: J Nucl Mater contributor: fullname: Pawel – volume: 11 start-page: 439 year: 2000 end-page: 457 ident: bib18 article-title: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro publication-title: J Biomater Sci Polym Ed contributor: fullname: Anseth – volume: 31 start-page: 5536 year: 2010 end-page: 5544 ident: bib29 article-title: Cell-laden microengineered gelatin methacrylate hydrogels publication-title: Biomaterials contributor: fullname: Khademhosseini – volume: 12 start-page: 2884 year: 1996 end-page: 2893 ident: bib37 article-title: A self-diffusion study of the complex formed by sodium dodecyl sulfate and gelatin in aqueous solutions publication-title: Langmuir contributor: fullname: Cosgrove – volume: 71 start-page: 92 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2011.12.050_bib30 article-title: Synthesis and characterization of new unsaturated esters of gellan gum publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2007.05.021 contributor: fullname: Hamcerencu – volume: 15 start-page: 1155 issue: 14 year: 2003 ident: 10.1016/j.biomaterials.2011.12.050_bib12 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv Mater doi: 10.1002/adma.200304907 contributor: fullname: Gong – volume: 6 start-page: 386 issue: 1 year: 2005 ident: 10.1016/j.biomaterials.2011.12.050_bib22 article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks publication-title: Biomacromolecules doi: 10.1021/bm049508a contributor: fullname: Burdick – volume: 212 start-page: 273 issue: H4 year: 1998 ident: 10.1016/j.biomaterials.2011.12.050_bib3 article-title: The compressive strength of articular cartilage publication-title: Proc Inst Mech Eng Part H-J Eng Med doi: 10.1243/0954411981534051 contributor: fullname: Kerin – volume: 14 start-page: 1124 issue: 11 year: 2004 ident: 10.1016/j.biomaterials.2011.12.050_bib13 article-title: High mechanical strength double network hydrogel with bacterial cellulose publication-title: Adv Funct Mater doi: 10.1002/adfm.200305197 contributor: fullname: Nakayama – volume: 29 start-page: 2153 issue: 14 year: 2008 ident: 10.1016/j.biomaterials.2011.12.050_bib15 article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.01.012 contributor: fullname: Weng – volume: 12 start-page: 2884 issue: 12 year: 1996 ident: 10.1016/j.biomaterials.2011.12.050_bib37 article-title: A self-diffusion study of the complex formed by sodium dodecyl sulfate and gelatin in aqueous solutions publication-title: Langmuir doi: 10.1021/la950797l contributor: fullname: Griffith – volume: 101 start-page: 1869 issue: 7 year: 2001 ident: 10.1016/j.biomaterials.2011.12.050_bib8 article-title: Hydrogels for tissue engineering publication-title: Chem Rev doi: 10.1021/cr000108x contributor: fullname: Lee – volume: 77 start-page: 542 issue: 1 year: 1999 ident: 10.1016/j.biomaterials.2011.12.050_bib40 article-title: Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations publication-title: Biophys J doi: 10.1016/S0006-3495(99)76911-0 contributor: fullname: Pluen – volume: 103 start-page: 2480 issue: 8 year: 2006 ident: 10.1016/j.biomaterials.2011.12.050_bib20 article-title: Microscale technologies for tissue engineering and biology publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0507681102 contributor: fullname: Khademhosseini – volume: 37 start-page: 5370 issue: 14 year: 2004 ident: 10.1016/j.biomaterials.2011.12.050_bib14 article-title: Structural characteristics of double network gels with extremely high mechanical strength publication-title: Macromolecules doi: 10.1021/ma049506i contributor: fullname: Na – volume: 24 start-page: 4337 issue: 24 year: 2003 ident: 10.1016/j.biomaterials.2011.12.050_bib7 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00340-5 contributor: fullname: Drury – volume: 13 start-page: 2369 issue: 10 year: 2007 ident: 10.1016/j.biomaterials.2011.12.050_bib11 article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications publication-title: Tissue Eng doi: 10.1089/ten.2007.0093 contributor: fullname: Ifkovits – year: 2004 ident: 10.1016/j.biomaterials.2011.12.050_bib33 contributor: fullname: Podczeck – volume: vol. 10 year: 1978 ident: 10.1016/j.biomaterials.2011.12.050_bib4 contributor: fullname: McCutchen – volume: 15 start-page: 1645 issue: 7 year: 2009 ident: 10.1016/j.biomaterials.2011.12.050_bib17 article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2008.0441 contributor: fullname: Brigham – volume: 28 start-page: 5087 issue: 34 year: 2007 ident: 10.1016/j.biomaterials.2011.12.050_bib21 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.021 contributor: fullname: Khademhosseini – volume: 31 start-page: 5536 issue: 21 year: 2010 ident: 10.1016/j.biomaterials.2011.12.050_bib29 article-title: Cell-laden microengineered gelatin methacrylate hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.064 contributor: fullname: Nichol – volume: 42 start-page: 2184 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2011.12.050_bib41 article-title: True chemical structure of double network hydrogels publication-title: Macromolecules doi: 10.1021/ma802148p contributor: fullname: Nakajima – volume: 49 start-page: 281 issue: 3 year: 1974 ident: 10.1016/j.biomaterials.2011.12.050_bib36 article-title: Diffusion in a finite system with a moving boundary publication-title: J Nucl Mater doi: 10.1016/0022-3115(74)90040-3 contributor: fullname: Pawel – volume: 33 start-page: 167 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2011.12.050_bib10 article-title: Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2007.09.006 contributor: fullname: Nuttelman – volume: 43 start-page: 14 issue: 3 year: 1981 ident: 10.1016/j.biomaterials.2011.12.050_bib31 article-title: Acylation of fish protein: effect of Reaction conditions on products publication-title: Mar. Fish. Rev. contributor: fullname: Lee – volume: 4 start-page: 890 issue: 4 year: 2003 ident: 10.1016/j.biomaterials.2011.12.050_bib32 article-title: Photo-cross-linking of type I collagen gels in he presence of smooth muscle cells: mechanical properties, cell viability, and function publication-title: Biomacromolecules doi: 10.1021/bm0257412 contributor: fullname: Brinkman – year: 1993 ident: 10.1016/j.biomaterials.2011.12.050_bib1 contributor: fullname: Fung – volume: 93 start-page: 852 issue: 3 year: 2010 ident: 10.1016/j.biomaterials.2011.12.050_bib26 article-title: Gellan gum: a new biomaterial for cartilage tissue engineering applications publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.32574 contributor: fullname: Oliveira – volume: 18 start-page: 1345 issue: 11 year: 2006 ident: 10.1016/j.biomaterials.2011.12.050_bib9 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv Mater doi: 10.1002/adma.200501612 contributor: fullname: Peppas – volume: 6 start-page: 2583 issue: 12 year: 2010 ident: 10.1016/j.biomaterials.2011.12.050_bib2 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter doi: 10.1039/b924290b contributor: fullname: Gong – year: 1960 ident: 10.1016/j.biomaterials.2011.12.050_bib35 contributor: fullname: Jost – volume: 86 start-page: 747 issue: 7 year: 2004 ident: 10.1016/j.biomaterials.2011.12.050_bib25 article-title: Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production publication-title: Biotechnol Bioeng doi: 10.1002/bit.20160 contributor: fullname: Bryant – volume: 19 start-page: 1968 issue: 14 year: 2009 ident: 10.1016/j.biomaterials.2011.12.050_bib28 article-title: An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro publication-title: J Mater Chem doi: 10.1039/b818090c contributor: fullname: Gong – year: 1953 ident: 10.1016/j.biomaterials.2011.12.050_bib34 contributor: fullname: Flory – volume: 46 start-page: 5003 year: 2005 ident: 10.1016/j.biomaterials.2011.12.050_bib16 article-title: Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications publication-title: Invest Ophthalmol Vis Sci contributor: fullname: Myung – volume: 21 start-page: 743 issue: 7 year: 2009 ident: 10.1016/j.biomaterials.2011.12.050_bib6 article-title: Hydrogels for soft machines publication-title: Adv Mater doi: 10.1002/adma.200800534 contributor: fullname: Calvert – volume: 30 start-page: 344 issue: 3 year: 2009 ident: 10.1016/j.biomaterials.2011.12.050_bib19 article-title: The effect of photopolymerization on stem cells embedded in hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.037 contributor: fullname: Fedorovich – volume: 31 start-page: 7494 issue: 29 year: 2010 ident: 10.1016/j.biomaterials.2011.12.050_bib23 article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.035 contributor: fullname: Coutinho – volume: 31 start-page: 8382 issue: 23 year: 1998 ident: 10.1016/j.biomaterials.2011.12.050_bib39 article-title: Solute diffusion within hydrogels. mechanisms and models publication-title: Macromolecules doi: 10.1021/ma980765f contributor: fullname: Amsden – volume: 11 start-page: 439 issue: 5 year: 2000 ident: 10.1016/j.biomaterials.2011.12.050_bib18 article-title: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856200743805 contributor: fullname: Bryant – volume: 7 start-page: 1903 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2011.12.050_bib24 article-title: Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation publication-title: Soft Matter doi: 10.1039/c0sm00697a contributor: fullname: Bae – volume: 3 start-page: 1335 year: 2007 ident: 10.1016/j.biomaterials.2011.12.050_bib5 article-title: Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering publication-title: Soft Matter doi: 10.1039/b707472g contributor: fullname: Amsden – volume: 16 start-page: 343 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2011.12.050_bib27 article-title: Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2009.0117 contributor: fullname: Oliveira – volume: 17 start-page: 115 issue: 1 year: 1984 ident: 10.1016/j.biomaterials.2011.12.050_bib38 article-title: Self-diffusion of gelatin by forced Rayleigh scattering publication-title: Macromolecules doi: 10.1021/ma00131a020 contributor: fullname: Chang |
SSID | ssj0014042 |
Score | 2.5852432 |
Snippet | Abstract A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop... A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels... |
SourceID | pubmedcentral crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3143 |
SubjectTerms | Advanced Basic Science Animals Biocompatible Materials - chemistry Biocompatible Materials - toxicity Cell encapsulation Cell Survival - drug effects Compressive Strength Cross-Linking Reagents - chemistry Cross-Linking Reagents - radiation effects Cross-Linking Reagents - toxicity Dentistry Elastic Modulus Gelatin - chemistry Gelatin - radiation effects Gelatin - toxicity Hardness Hydrogel Hydrogels - chemical synthesis Hydrogels - radiation effects Hydrogels - toxicity IPN Light Macromolecular Substances - chemistry Macromolecular Substances - radiation effects Macromolecular Substances - toxicity Materials Testing Mechanical properties Mice NIH 3T3 Cells Photopolymerization Polysaccharides, Bacterial - chemistry Polysaccharides, Bacterial - radiation effects Polysaccharides, Bacterial - toxicity Tissue Scaffolds |
Title | The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S014296121101533X https://dx.doi.org/10.1016/j.biomaterials.2011.12.050 https://www.ncbi.nlm.nih.gov/pubmed/22265786 https://pubmed.ncbi.nlm.nih.gov/PMC3282165 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6i4TggGB5lZd84BZlFcfO68BhxRb1AgdYpBUXK06cpqtuUvUh0T-yv3dn7LxKhViEuERVHo7r-TIzHn8zJuQ9T9PC4yIECeTaFRFXbpIKJPtnsSiYz7TAbOTpt-jLZXw-EZPRqN3HtT_3XyUN50DWmDn7F9LuGoUT8BtkDkeQOhzvLPdrjfm8ZviXGGxfYdVUm8G229Sb-uc8a5gYGLd3FykoHyevt2qh3crywp1yl6_qGVhOBw1djosKyxKeNWYVl31NztXMcOksoXmGRKrKmW2vHUzqTw3Tz2y-2_AU27VjvLixY9EFeEpby2C603U1K-s-9ttEiHDNH_XX-WlnIkpk9pfQGz03-1I5Z4v5MIiBbBAxDGJ02TU9lckGO303CRuatbYKOoZZb5B4wVCD21IaLVLZQB9zZotANbadM1su98Bu2BDG1akajICt74qxYlsa95e63EiL87F34ECh03x5RO75oO2QV_oj-NotZQnP7ODU_Zm28q0hGf7ufX_0kvYZvAOX6OIxedTMZeiZBeETMtLVCXk4qHB5Qu5_brgbT8kNIJP2yKQ9Mimghw6RSeuC9sik-8ikHTKpQSatK3qITNog07RtkUkBmfQAmc_I90-Ti49Tt9kVxM1CL9q4LFDCi3NVFL6X8CzNoiRieahjL0rTPAAJ-FGUaA4zDw9m515esFhrFieKca5UyJ-T46qu9EtCRREnvvGICyUUzxIdhUmmFVfQSMqCMeGtFOTSFn-RLSvySg5lJ1F2kvkSZDcmUSsw2aY3g0HW60ZLrCWTa7hTHiBoTD50TzYOsHVsJeD0Tm9-YWHR9Ra8_xBscgh92gNMdwNWl9-_Us1LU2We-7HPwuDVP_bpNXnQf_BvyPFmtdVvydE6374z38ktROD_fw |
link.rule.ids | 230,315,782,786,887,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanical+properties+and+cytotoxicity+of+cell-laden+double-network+hydrogels+based+on+photocrosslinkable+gelatin+and+gellan+gum+biomacromolecules&rft.jtitle=Biomaterials&rft.au=Shin%2C+Hyeongho&rft.au=Olsen%2C+Bradley+D.&rft.au=Khademhosseini%2C+Ali&rft.date=2012-04-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=33&rft.issue=11&rft.spage=3143&rft.epage=3152&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.12.050&rft.externalDocID=S014296121101533X |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X0005X%2Fcov150h.gif |