Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway

Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial corte...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 11; no. 1; pp. 1947 - 17
Main Authors: Nitzan, Noam, McKenzie, Sam, Beed, Prateep, English, Daniel Fine, Oldani, Silvia, Tukker, John J., Buzsáki, György, Schmitz, Dietmar
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 23-04-2020
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs. Communication between the hippocampus and neocortex is organized through high frequency sharp wave ripple activity. Here, the authors report ripple activity coupling between the hippocampus and granular retrosplenial cortex suggesting an involvement in communicating with the neocortex.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15787-8