Plasmonic tunnel junctions for single-molecule redox chemistry

Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathwa...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 8; no. 1; pp. 994 - 8
Main Authors: de Nijs, Bart, Benz, Felix, Barrow, Steven J., Sigle, Daniel O., Chikkaraddy, Rohit, Palma, Aniello, Carnegie, Cloudy, Kamp, Marlous, Sundararaman, Ravishankar, Narang, Prineha, Scherman, Oren A., Baumberg, Jeremy J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 20-10-2017
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level. Plasmons in sub-nm cavities can enable chemical processes within plasmonic hotspots. Here the authors use surface-enhanced Raman spectroscopy to track hot-electron-induced chemical reduction processes in aromatic molecules, thus enabling observation of redox processes at the single-molecule level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-00819-7