Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal

Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 7; no. 1; p. 10735
Main Authors: Zhang, Cheng-Long, Xu, Su-Yang, Belopolski, Ilya, Yuan, Zhujun, Lin, Ziquan, Tong, Bingbing, Bian, Guang, Alidoust, Nasser, Lee, Chi-Cheng, Huang, Shin-Ming, Chang, Tay-Rong, Chang, Guoqing, Hsu, Chuang-Han, Jeng, Horng-Tay, Neupane, Madhab, Sanchez, Daniel S., Zheng, Hao, Wang, Junfeng, Lin, Hsin, Zhang, Chi, Lu, Hai-Zhou, Shen, Shun-Qing, Neupert, Titus, Zahid Hasan, M., Jia, Shuang
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 25-02-2016
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs. Anomalous conducting behavior of solids may reflect the presence of novel quantum states. Here, Zhang et al . report an increased conductivity in TaAs with a magnetic field applied along the direction of the current, which reveals an inherent property of the Weyl Fermion.
AbstractList Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.
Anomalous conducting behavior of solids may reflect the presence of novel quantum states. Here, Zhang et al. report an increased conductivity in TaAs with a magnetic field applied along the direction of the current, which reveals an inherent property of the Weyl Fermion.
Abstract Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.
Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs. Anomalous conducting behavior of solids may reflect the presence of novel quantum states. Here, Zhang et al . report an increased conductivity in TaAs with a magnetic field applied along the direction of the current, which reveals an inherent property of the Weyl Fermion.
ArticleNumber 10735
Author Shen, Shun-Qing
Lee, Chi-Cheng
Chang, Guoqing
Chang, Tay-Rong
Tong, Bingbing
Sanchez, Daniel S.
Zheng, Hao
Bian, Guang
Jeng, Horng-Tay
Zhang, Chi
Yuan, Zhujun
Zhang, Cheng-Long
Xu, Su-Yang
Lu, Hai-Zhou
Huang, Shin-Ming
Lin, Hsin
Neupane, Madhab
Belopolski, Ilya
Jia, Shuang
Wang, Junfeng
Hsu, Chuang-Han
Neupert, Titus
Alidoust, Nasser
Zahid Hasan, M.
Lin, Ziquan
Author_xml – sequence: 1
  givenname: Cheng-Long
  surname: Zhang
  fullname: Zhang, Cheng-Long
  organization: International Center for Quantum Materials, School of Physics, Peking University
– sequence: 2
  givenname: Su-Yang
  surname: Xu
  fullname: Xu, Su-Yang
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 3
  givenname: Ilya
  surname: Belopolski
  fullname: Belopolski, Ilya
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 4
  givenname: Zhujun
  orcidid: 0000-0003-1793-1461
  surname: Yuan
  fullname: Yuan, Zhujun
  organization: International Center for Quantum Materials, School of Physics, Peking University
– sequence: 5
  givenname: Ziquan
  surname: Lin
  fullname: Lin, Ziquan
  organization: Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology
– sequence: 6
  givenname: Bingbing
  surname: Tong
  fullname: Tong, Bingbing
  organization: International Center for Quantum Materials, School of Physics, Peking University
– sequence: 7
  givenname: Guang
  surname: Bian
  fullname: Bian, Guang
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 8
  givenname: Nasser
  surname: Alidoust
  fullname: Alidoust, Nasser
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 9
  givenname: Chi-Cheng
  surname: Lee
  fullname: Lee, Chi-Cheng
  organization: Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Physics, National University of Singapore
– sequence: 10
  givenname: Shin-Ming
  orcidid: 0000-0003-4273-9682
  surname: Huang
  fullname: Huang, Shin-Ming
  organization: Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Physics, National University of Singapore
– sequence: 11
  givenname: Tay-Rong
  surname: Chang
  fullname: Chang, Tay-Rong
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University, Department of Physics, National Tsing Hua University
– sequence: 12
  givenname: Guoqing
  orcidid: 0000-0003-1180-3127
  surname: Chang
  fullname: Chang, Guoqing
  organization: Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Physics, National University of Singapore
– sequence: 13
  givenname: Chuang-Han
  orcidid: 0000-0002-2394-8537
  surname: Hsu
  fullname: Hsu, Chuang-Han
  organization: Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Physics, National University of Singapore
– sequence: 14
  givenname: Horng-Tay
  surname: Jeng
  fullname: Jeng, Horng-Tay
  organization: Department of Physics, National Tsing Hua University, Institute of Physics, Academia Sinica
– sequence: 15
  givenname: Madhab
  surname: Neupane
  fullname: Neupane, Madhab
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University, Condensed Matter and Magnet Science Group, Los Alamos National Laboratory, Department of Physics, University of Central Florida
– sequence: 16
  givenname: Daniel S.
  surname: Sanchez
  fullname: Sanchez, Daniel S.
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 17
  givenname: Hao
  orcidid: 0000-0002-6495-874X
  surname: Zheng
  fullname: Zheng, Hao
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 18
  givenname: Junfeng
  surname: Wang
  fullname: Wang, Junfeng
  organization: Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology
– sequence: 19
  givenname: Hsin
  surname: Lin
  fullname: Lin, Hsin
  organization: Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Physics, National University of Singapore
– sequence: 20
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  organization: International Center for Quantum Materials, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter
– sequence: 21
  givenname: Hai-Zhou
  orcidid: 0000-0002-6708-0223
  surname: Lu
  fullname: Lu, Hai-Zhou
  organization: Department of Physics, South University of Science and Technology of China
– sequence: 22
  givenname: Shun-Qing
  surname: Shen
  fullname: Shen, Shun-Qing
  organization: Department of Physics, The University of Hong Kong
– sequence: 23
  givenname: Titus
  orcidid: 0000-0003-0604-041X
  surname: Neupert
  fullname: Neupert, Titus
  organization: Princeton Center for Theoretical Science, Princeton University
– sequence: 24
  givenname: M.
  orcidid: 0000-0001-9730-3128
  surname: Zahid Hasan
  fullname: Zahid Hasan, M.
  email: mzhasan@princeton.edu
  organization: Department of Physics, Laboratory for Topological Quantum Matter and Spectroscopy (B7), Princeton University
– sequence: 25
  givenname: Shuang
  surname: Jia
  fullname: Jia, Shuang
  email: gwljiashuang@pku.edu.cn
  organization: International Center for Quantum Materials, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26911701$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1259286$$D View this record in Osti.gov
BookMark eNptkstuFDEQRVsoEQkhK_aoBRskGPCz3d4ghYhHUCQkHmJpVdvVMx667cTuAc2Of-AP-RI8mRBNEN6U5Tq6VXVd96q9EANW1QNKnlPC2xfBxnHMlCgu71SHjAg6o4rxvZ37QXWc85KUwzVthbhbHbBGU6oIPaw-fvLzANMqYa5jX08LrE_cgOn3z1-vcBhKeA_2m_9R24VPMNQQ4gjDuvahhvorroe6xzT6GOqMox9xguF-td_DkPH4Oh5VX968_nz6bnb-4e3Z6cn5zDZETjOUlnaqFQ604kIr2TAHTvW2F6xxkqDQjlPU0Eipqeo1l7ojXc9UJxvHLD-qzra6LsLSXCQ_QlqbCN5cPcQ0N5Ambwc0oJzWyETb8U50IICg5K6T1iFYIE3RernVulh1IzqLYSrT3hK9nQl-YebxuxGqNM82Ao-2AjFP3mTrJ7QLG0NAOxnKpGbtBnpyXSXFyxXmyYw-22IzBIyrbKhq2mID4aygj_9Bl3GVQvFzQ6nykboRhXq6pWyKOSfsbzqmxGz2w-zsR6Ef7g55w_7dhgI82wK5pMIc007R_-j9Abt_yTY
CitedBy_id crossref_primary_10_1103_PhysRevLett_123_226602
crossref_primary_10_7498_aps_72_20230672
crossref_primary_10_1103_PhysRevB_103_165128
crossref_primary_10_1103_PhysRevB_109_125111
crossref_primary_10_1103_PhysRevB_103_155202
crossref_primary_10_1103_RevModPhys_90_015001
crossref_primary_10_1103_PhysRevB_94_241405
crossref_primary_10_1103_PhysRevB_98_045203
crossref_primary_10_1088_1361_6668_ac3b38
crossref_primary_10_1088_1361_648X_abc944
crossref_primary_10_1103_PhysRevB_94_081408
crossref_primary_10_1103_PhysRevB_109_035434
crossref_primary_10_1088_1361_648X_aca30a
crossref_primary_10_1038_s41598_017_01523_8
crossref_primary_10_1103_PhysRevB_103_085138
crossref_primary_10_1103_PhysRevB_107_085136
crossref_primary_10_1021_acs_nanolett_8b03924
crossref_primary_10_1103_PhysRevB_103_085136
crossref_primary_10_1103_PhysRevB_97_195152
crossref_primary_10_1103_PhysRevB_101_125119
crossref_primary_10_1103_PhysRevB_96_121401
crossref_primary_10_1002_adma_202109671
crossref_primary_10_3390_cryst10040288
crossref_primary_10_1103_PhysRevApplied_20_064034
crossref_primary_10_1103_PhysRevB_97_195139
crossref_primary_10_1103_PhysRevB_96_224405
crossref_primary_10_1103_PhysRevB_95_075141
crossref_primary_10_1103_PhysRevResearch_3_L012006
crossref_primary_10_1103_PhysRevX_10_011026
crossref_primary_10_1016_j_scib_2019_11_010
crossref_primary_10_1103_PhysRevB_104_115151
crossref_primary_10_1103_PhysRevB_104_085423
crossref_primary_10_1103_PhysRevB_93_161110
crossref_primary_10_1103_PhysRevB_99_155120
crossref_primary_10_1088_0256_307X_39_2_021101
crossref_primary_10_1088_1367_2630_ac3443
crossref_primary_10_1103_PhysRevB_109_125128
crossref_primary_10_1103_PhysRevB_96_085112
crossref_primary_10_1021_acsnano_0c10304
crossref_primary_10_1038_s41467_019_09012_4
crossref_primary_10_1038_s41467_019_11491_4
crossref_primary_10_1088_1361_648X_ab7f05
crossref_primary_10_1103_PhysRevB_109_024434
crossref_primary_10_1103_PhysRevB_99_075114
crossref_primary_10_1063_1_5018357
crossref_primary_10_1038_s41467_020_18646_8
crossref_primary_10_1103_PhysRevB_100_115127
crossref_primary_10_1002_aelm_202200647
crossref_primary_10_1103_PhysRevMaterials_2_114201
crossref_primary_10_1007_s11467_019_0890_7
crossref_primary_10_1103_PhysRevB_96_085201
crossref_primary_10_1103_PhysRevB_98_125304
crossref_primary_10_1002_advs_202301474
crossref_primary_10_1063_5_0035445
crossref_primary_10_1103_PhysRevB_98_081202
crossref_primary_10_1103_PhysRevB_101_241110
crossref_primary_10_1103_PhysRevB_96_121407
crossref_primary_10_1103_PhysRevB_99_165146
crossref_primary_10_1038_s41563_019_0296_5
crossref_primary_10_1103_PhysRevMaterials_6_114202
crossref_primary_10_1103_PhysRevB_93_195119
crossref_primary_10_3389_fgene_2022_999207
crossref_primary_10_1038_s41524_019_0190_3
crossref_primary_10_1103_PhysRevB_107_134415
crossref_primary_10_1103_PhysRevB_100_115138
crossref_primary_10_1103_PhysRevB_101_125102
crossref_primary_10_1103_PhysRevB_109_115306
crossref_primary_10_1088_2053_1583_abc13f
crossref_primary_10_1088_1367_2630_18_8_085006
crossref_primary_10_1103_PhysRevResearch_2_033346
crossref_primary_10_1103_PhysRevB_102_235134
crossref_primary_10_1103_PhysRevD_98_056018
crossref_primary_10_1103_PhysRevMaterials_3_044201
crossref_primary_10_1016_j_jcrysgro_2019_125304
crossref_primary_10_1021_acs_cgd_2c00669
crossref_primary_10_1103_PhysRevB_100_035106
crossref_primary_10_1038_s41467_019_10233_w
crossref_primary_10_1038_s41598_021_91930_9
crossref_primary_10_1063_5_0001566
crossref_primary_10_1016_j_mtphys_2021_100360
crossref_primary_10_3390_sym13071181
crossref_primary_10_1103_PhysRevB_100_195140
crossref_primary_10_1103_PhysRevB_108_L020305
crossref_primary_10_1103_PhysRevX_14_011058
crossref_primary_10_1038_s42254_021_00344_z
crossref_primary_10_1103_PhysRevX_9_031036
crossref_primary_10_1103_PhysRevLett_123_066403
crossref_primary_10_1103_PhysRevX_9_031034
crossref_primary_10_1038_s42005_020_0357_8
crossref_primary_10_1103_PhysRevB_100_195147
crossref_primary_10_1088_1361_6528_aaa0bd
crossref_primary_10_1038_srep38839
crossref_primary_10_1007_JHEP08_2017_103
crossref_primary_10_1103_PhysRevLett_128_146801
crossref_primary_10_1103_PhysRevA_97_043618
crossref_primary_10_1103_PhysRevB_96_085301
crossref_primary_10_1088_1674_1056_25_11_117204
crossref_primary_10_1103_PhysRevB_96_165142
crossref_primary_10_3390_sym12050814
crossref_primary_10_1002_andp_201900287
crossref_primary_10_1088_1361_648X_aa9a75
crossref_primary_10_1103_PhysRevB_95_085127
crossref_primary_10_1088_1674_1056_25_11_117202
crossref_primary_10_1038_s41563_019_0297_4
crossref_primary_10_1007_s11467_016_0609_y
crossref_primary_10_1007_s00220_021_04004_2
crossref_primary_10_1016_j_physe_2020_114600
crossref_primary_10_1103_PhysRevB_107_075131
crossref_primary_10_1103_PhysRevB_97_060406
crossref_primary_10_1209_0295_5075_130_47004
crossref_primary_10_1038_s41598_017_12865_8
crossref_primary_10_1088_1361_6463_aac567
crossref_primary_10_1063_5_0067684
crossref_primary_10_1063_5_0071939
crossref_primary_10_1063_5_0102039
crossref_primary_10_1103_PhysRevA_96_013857
crossref_primary_10_1038_ncomms13489
crossref_primary_10_1073_pnas_1608881113
crossref_primary_10_1073_pnas_2013386118
crossref_primary_10_1103_PhysRevB_98_045131
crossref_primary_10_1016_j_jallcom_2020_158260
crossref_primary_10_1103_PhysRevB_98_161110
crossref_primary_10_1103_PhysRevB_108_195121
crossref_primary_10_1103_PhysRevB_99_075150
crossref_primary_10_1103_PhysRevB_96_165113
crossref_primary_10_1103_PhysRevB_98_195446
crossref_primary_10_1103_PhysRevResearch_2_042011
crossref_primary_10_1103_PhysRevB_105_205132
crossref_primary_10_1103_PhysRevB_97_205131
crossref_primary_10_1080_23746149_2018_1466661
crossref_primary_10_1038_s41467_020_14749_4
crossref_primary_10_1088_1361_648X_ab2b30
crossref_primary_10_1103_PhysRevLett_119_136806
crossref_primary_10_1038_s41598_019_51846_x
crossref_primary_10_7498_aps_68_20191501
crossref_primary_10_1103_PhysRevResearch_1_032040
crossref_primary_10_1063_5_0026956
crossref_primary_10_1038_ncomms13013
crossref_primary_10_1038_s41467_023_39408_2
crossref_primary_10_1103_PhysRevB_104_125135
crossref_primary_10_1007_s11467_022_1250_6
crossref_primary_10_1088_1361_648X_ad38fa
crossref_primary_10_1088_1674_1056_28_4_046202
crossref_primary_10_1088_1367_2630_aa95e7
crossref_primary_10_1103_PhysRevLett_122_036601
crossref_primary_10_1103_PhysRevB_95_041201
crossref_primary_10_1103_PhysRevMaterials_2_124201
crossref_primary_10_1002_apxr_202300111
crossref_primary_10_3390_nano11102755
crossref_primary_10_1103_PhysRevB_94_241102
crossref_primary_10_1103_PhysRevB_105_205126
crossref_primary_10_1063_5_0068313
crossref_primary_10_1038_s41598_017_01413_z
crossref_primary_10_1103_PhysRevB_100_085121
crossref_primary_10_1103_PhysRevB_103_085106
crossref_primary_10_1038_ncomms13142
crossref_primary_10_1073_pnas_1801650115
crossref_primary_10_1103_PhysRevB_99_235123
crossref_primary_10_1103_PhysRevB_102_245123
crossref_primary_10_1103_PhysRevB_104_075202
crossref_primary_10_1103_PhysRevB_95_064511
crossref_primary_10_1103_PhysRevB_108_195103
crossref_primary_10_1073_pnas_1713261114
crossref_primary_10_1103_PhysRevB_104_115420
crossref_primary_10_1103_PhysRevB_96_174205
crossref_primary_10_1103_PhysRevApplied_17_054044
crossref_primary_10_1103_PhysRevB_108_L161106
crossref_primary_10_1103_PhysRevB_104_205119
crossref_primary_10_1021_acs_nanolett_3c02132
crossref_primary_10_1103_PhysRevResearch_2_033511
crossref_primary_10_1103_PhysRevB_93_184405
crossref_primary_10_1146_annurev_conmatphys_060220_100347
crossref_primary_10_1103_PhysRevB_96_195157
crossref_primary_10_1103_PhysRevB_97_235416
crossref_primary_10_1038_s41598_018_33258_5
crossref_primary_10_1103_PhysRevB_96_201101
crossref_primary_10_1103_PhysRevB_95_085202
crossref_primary_10_1103_PhysRevB_97_035403
crossref_primary_10_1103_PhysRevB_97_201404
crossref_primary_10_1038_s42005_019_0186_9
crossref_primary_10_1103_PhysRevB_97_245109
crossref_primary_10_1103_PhysRevB_104_205124
crossref_primary_10_1103_PhysRevB_95_205201
crossref_primary_10_1103_PhysRevB_102_125104
crossref_primary_10_1038_nphys4146
crossref_primary_10_1016_j_jmmm_2020_166547
crossref_primary_10_1038_s41578_021_00301_3
crossref_primary_10_1103_PhysRevB_106_195114
crossref_primary_10_1073_pnas_2002913117
crossref_primary_10_1007_JHEP05_2019_001
crossref_primary_10_1021_acs_nanolett_3c01174
crossref_primary_10_1103_PhysRevB_96_081110
crossref_primary_10_1103_PhysRevLett_128_155301
crossref_primary_10_1103_PhysRevB_100_245146
crossref_primary_10_1103_PhysRevB_106_045132
crossref_primary_10_1021_acsnano_1c01441
crossref_primary_10_1103_PhysRevB_96_161112
crossref_primary_10_1103_PhysRevB_98_205139
crossref_primary_10_1103_PhysRevB_95_245113
crossref_primary_10_1103_PhysRevB_104_075420
crossref_primary_10_1142_S2010324716400038
crossref_primary_10_1103_PhysRevB_98_075110
crossref_primary_10_1038_s41535_021_00378_7
crossref_primary_10_1126_sciadv_1600295
crossref_primary_10_3390_coatings13050936
crossref_primary_10_1088_1361_648X_aab5e3
crossref_primary_10_1103_PhysRevB_103_L241104
crossref_primary_10_1103_PhysRevResearch_1_032002
crossref_primary_10_1103_PhysRevLett_130_096903
crossref_primary_10_1021_acs_nanolett_3c03243
crossref_primary_10_1103_PhysRevLett_117_217204
crossref_primary_10_1103_PhysRevResearch_1_032006
crossref_primary_10_1103_PhysRevB_100_235105
crossref_primary_10_1103_PhysRevB_95_235436
crossref_primary_10_1103_PhysRevB_96_235116
crossref_primary_10_1088_2053_1583_aa77b9
crossref_primary_10_1103_PhysRevB_95_085308
crossref_primary_10_1103_PhysRevB_94_205120
crossref_primary_10_1103_PhysRevX_6_041021
crossref_primary_10_1093_nsr_nwz204
crossref_primary_10_1038_s42254_021_00310_9
crossref_primary_10_1103_PhysRevB_93_205102
crossref_primary_10_1103_PhysRevB_95_041408
crossref_primary_10_1103_PhysRevB_95_245128
crossref_primary_10_1103_PhysRevB_102_045148
crossref_primary_10_1007_s11433_017_9126_6
crossref_primary_10_1103_PhysRevB_98_041114
crossref_primary_10_1038_s42005_021_00564_w
crossref_primary_10_1103_PhysRevB_96_115152
crossref_primary_10_1140_epjb_s10051_020_00042_2
crossref_primary_10_1088_1361_648X_ab4aaf
crossref_primary_10_1103_PhysRevB_95_165135
crossref_primary_10_1088_1674_1056_ac0a5e
crossref_primary_10_1103_PhysRevLett_122_056601
crossref_primary_10_1103_PhysRevB_104_075129
crossref_primary_10_1063_1_5121751
crossref_primary_10_1103_PhysRevLett_117_266804
crossref_primary_10_1103_PhysRevLett_118_096603
crossref_primary_10_1088_0256_307X_40_4_047501
crossref_primary_10_1016_j_nanoen_2016_10_016
crossref_primary_10_1038_s41467_023_42222_5
crossref_primary_10_1080_23746149_2017_1327329
crossref_primary_10_1088_1674_1056_28_6_067403
crossref_primary_10_1002_adma_201903498
crossref_primary_10_1088_1367_2630_acb2e4
crossref_primary_10_7566_JPSJ_90_084702
crossref_primary_10_1088_1674_1056_27_10_107402
crossref_primary_10_1103_PhysRevMaterials_4_034201
crossref_primary_10_1103_PhysRevLett_118_206601
crossref_primary_10_1103_PhysRevB_103_205145
crossref_primary_10_1007_s11467_017_0692_8
crossref_primary_10_1103_PhysRevX_9_011039
crossref_primary_10_1103_PhysRevB_105_205303
crossref_primary_10_1088_1361_648X_ac916f
crossref_primary_10_1103_PhysRevB_105_165105
crossref_primary_10_1038_s41586_022_05127_9
crossref_primary_10_1103_PhysRevB_103_L241112
crossref_primary_10_1103_PhysRevLett_117_086401
crossref_primary_10_1103_RevModPhys_93_025002
crossref_primary_10_1103_PhysRevB_101_014308
crossref_primary_10_1103_PhysRevB_101_165309
crossref_primary_10_1103_PhysRevB_102_115129
crossref_primary_10_1103_PhysRevB_103_115208
crossref_primary_10_1103_PhysRevResearch_4_023137
crossref_primary_10_1103_PhysRevB_97_115133
crossref_primary_10_1021_acsami_3c05634
crossref_primary_10_1103_PhysRevMaterials_3_014201
crossref_primary_10_1103_PhysRevLett_117_056805
crossref_primary_10_1038_s41563_019_0320_9
crossref_primary_10_1103_PhysRevB_97_161113
crossref_primary_10_1038_s41598_018_21465_z
crossref_primary_10_1088_1674_1056_28_7_077302
crossref_primary_10_1103_PhysRevB_102_035443
crossref_primary_10_7498_aps_71_20211962
crossref_primary_10_1103_PhysRevB_104_155149
crossref_primary_10_1103_PhysRevB_97_115137
crossref_primary_10_1103_PhysRevB_93_115414
crossref_primary_10_1103_PhysRevLett_117_146401
crossref_primary_10_1080_14786435_2017_1352106
crossref_primary_10_1103_PhysRevLett_117_146403
crossref_primary_10_1073_pnas_2200367119
crossref_primary_10_1103_PhysRevB_107_115161
crossref_primary_10_1103_PhysRevB_97_140401
crossref_primary_10_1103_PhysRevB_103_104434
crossref_primary_10_1002_adts_201900247
crossref_primary_10_1038_s41535_023_00601_7
crossref_primary_10_1088_1674_1056_acb913
crossref_primary_10_1103_PhysRevX_9_021053
crossref_primary_10_1007_s00220_017_2965_z
crossref_primary_10_1016_j_scib_2018_07_019
crossref_primary_10_1103_PhysRevLett_119_026404
crossref_primary_10_1103_PhysRevLett_124_206802
crossref_primary_10_1038_s41427_022_00380_w
crossref_primary_10_1103_PhysRevLett_119_166601
crossref_primary_10_1103_PhysRevB_101_035133
crossref_primary_10_1103_PhysRevB_106_245133
crossref_primary_10_7498_aps_70_20210498
crossref_primary_10_1103_PhysRevB_107_115154
crossref_primary_10_1021_acs_jpclett_0c01726
crossref_primary_10_1103_PhysRevB_106_014101
crossref_primary_10_1103_PhysRevLett_126_046401
crossref_primary_10_1103_PhysRevB_103_125109
crossref_primary_10_1103_PhysRevB_109_085145
crossref_primary_10_1103_PhysRevB_93_121110
crossref_primary_10_1103_PhysRevLett_117_077201
crossref_primary_10_1088_1674_1056_27_5_050302
crossref_primary_10_1103_PhysRevB_97_041116
crossref_primary_10_1103_PhysRevLett_121_226604
crossref_primary_10_1103_PhysRevB_102_115147
crossref_primary_10_1103_PhysRevB_97_201110
crossref_primary_10_1126_sciadv_1603266
crossref_primary_10_1088_1367_2630_acc122
crossref_primary_10_1088_1361_648X_abee3e
crossref_primary_10_1103_PhysRevX_7_041026
crossref_primary_10_1038_s41524_019_0260_6
crossref_primary_10_7566_JPSJ_89_073705
crossref_primary_10_1002_adfm_202104192
crossref_primary_10_1038_s42254_021_00292_8
crossref_primary_10_1038_s41535_023_00540_3
crossref_primary_10_1088_1361_648X_aa964b
crossref_primary_10_1103_PhysRevB_108_045405
crossref_primary_10_1103_PhysRevB_98_064502
crossref_primary_10_1016_j_jallcom_2023_172759
crossref_primary_10_1016_j_mattod_2024_04_014
crossref_primary_10_1016_j_scib_2018_04_007
crossref_primary_10_1063_5_0135811
crossref_primary_10_1103_PhysRevB_95_115104
crossref_primary_10_1103_PhysRevB_97_041104
crossref_primary_10_1103_PhysRevLett_122_246601
crossref_primary_10_1103_PhysRevB_109_245135
crossref_primary_10_1103_PhysRevB_103_035422
crossref_primary_10_1103_PhysRevB_103_045105
crossref_primary_10_1038_s41535_017_0075_y
crossref_primary_10_1140_epjb_s10051_021_00274_w
crossref_primary_10_1103_PhysRevB_99_115138
crossref_primary_10_1016_j_scib_2018_04_011
crossref_primary_10_1103_PhysRevB_101_201402
crossref_primary_10_1126_sciadv_aar8027
crossref_primary_10_1063_1_5037551
crossref_primary_10_1103_PhysRevB_107_L081107
crossref_primary_10_1002_pssb_202100165
crossref_primary_10_1007_s11467_016_0636_8
crossref_primary_10_1016_j_scib_2017_02_009
crossref_primary_10_1103_PhysRevB_104_205412
crossref_primary_10_1103_PhysRevLett_117_066402
crossref_primary_10_1103_PhysRevB_97_235113
crossref_primary_10_1103_PhysRevB_99_125142
crossref_primary_10_1103_PhysRevB_103_125134
crossref_primary_10_1103_PhysRevB_97_041101
crossref_primary_10_1021_acs_jpcc_3c04651
crossref_primary_10_1103_PhysRevB_103_125132
crossref_primary_10_1021_acs_jpcc_2c08206
crossref_primary_10_1007_JHEP12_2018_069
crossref_primary_10_1007_JHEP01_2019_049
crossref_primary_10_1103_PhysRevB_107_L081113
crossref_primary_10_1103_PhysRevLett_120_206601
crossref_primary_10_1039_D4NA00056K
crossref_primary_10_1103_PhysRevB_95_205141
crossref_primary_10_1103_PhysRevB_98_245109
crossref_primary_10_1038_s41586_019_1037_2
crossref_primary_10_1103_PhysRevB_104_205422
crossref_primary_10_1007_JHEP06_2018_110
crossref_primary_10_1016_j_cpc_2020_107551
crossref_primary_10_1103_PhysRevB_103_205127
crossref_primary_10_1103_PhysRevB_96_045112
crossref_primary_10_1063_1_5086500
crossref_primary_10_1103_PhysRevD_108_066010
crossref_primary_10_1039_C9CP04330F
crossref_primary_10_3390_nano11112914
crossref_primary_10_1088_1367_2630_ac1af6
crossref_primary_10_1088_1361_648X_ad1303
crossref_primary_10_1103_PhysRevB_95_165410
crossref_primary_10_1103_PhysRevB_100_054422
crossref_primary_10_1016_j_ppnp_2022_103989
crossref_primary_10_1103_PhysRevB_100_201107
crossref_primary_10_1103_PhysRevLett_119_266401
crossref_primary_10_1063_1_5021181
crossref_primary_10_1039_D3TC03423B
crossref_primary_10_21468_SciPostPhysProc_11_019
crossref_primary_10_3390_ma10070814
crossref_primary_10_1002_aelm_201900857
crossref_primary_10_1016_j_commatsci_2020_109731
crossref_primary_10_1038_ncomms11615
crossref_primary_10_1103_PhysRevB_93_165127
crossref_primary_10_1103_PhysRevB_96_125123
crossref_primary_10_1103_PhysRevB_96_161202
crossref_primary_10_1103_PhysRevB_97_064203
crossref_primary_10_1103_PhysRevLett_119_106601
crossref_primary_10_1088_1361_648X_aa6f91
crossref_primary_10_1103_PhysRevB_109_075419
crossref_primary_10_1038_s41467_022_35396_x
crossref_primary_10_1088_1361_6463_aaf9f1
crossref_primary_10_1088_1361_648X_aaebed
crossref_primary_10_1038_s41535_020_0214_8
crossref_primary_10_1103_PhysRevB_98_075203
crossref_primary_10_1103_PhysRevB_96_115202
crossref_primary_10_1134_S0021364023602658
crossref_primary_10_1016_j_physrep_2020_05_003
crossref_primary_10_1088_1361_648X_abd426
crossref_primary_10_1103_PhysRevB_101_155117
crossref_primary_10_1103_PhysRevB_100_075107
crossref_primary_10_3390_sym15091651
crossref_primary_10_1103_PhysRevB_103_035102
crossref_primary_10_1063_1_5115008
crossref_primary_10_1007_s11467_019_0887_2
crossref_primary_10_1103_PhysRevB_101_085201
crossref_primary_10_1103_PhysRevB_97_235109
crossref_primary_10_1103_PhysRevB_101_085202
crossref_primary_10_1103_PhysRevB_108_155132
crossref_primary_10_1103_PhysRevB_100_155131
crossref_primary_10_1103_PhysRevLett_125_093904
crossref_primary_10_1021_acs_nanolett_6b04194
crossref_primary_10_1088_1367_2630_18_5_053039
crossref_primary_10_1038_s41563_021_00983_8
crossref_primary_10_1103_PhysRevB_95_045139
crossref_primary_10_1063_1_5087772
crossref_primary_10_1103_PhysRevB_106_075301
crossref_primary_10_1088_1361_648X_ac1880
crossref_primary_10_1103_PhysRevB_102_035164
crossref_primary_10_1380_jsssj_37_625
crossref_primary_10_1038_s42005_024_01534_8
crossref_primary_10_1103_PhysRevB_101_041408
crossref_primary_10_1103_PhysRevLett_130_266304
crossref_primary_10_1103_PhysRevB_109_165114
crossref_primary_10_1103_PhysRevB_101_155103
crossref_primary_10_1103_PhysRevB_95_035208
crossref_primary_10_1103_PhysRevB_97_064102
crossref_primary_10_1103_PhysRevMaterials_8_024201
crossref_primary_10_1103_PhysRevB_104_184417
crossref_primary_10_1103_PhysRevB_99_115202
crossref_primary_10_1186_s43593_022_00036_w
crossref_primary_10_1063_5_0144569
crossref_primary_10_1103_PhysRevB_94_245141
crossref_primary_10_1103_PhysRevB_95_045128
crossref_primary_10_7566_JPSJ_92_094706
crossref_primary_10_1103_PhysRevB_96_045307
crossref_primary_10_1007_s11433_018_9225_2
crossref_primary_10_1016_j_revip_2022_100072
crossref_primary_10_1103_PhysRevB_99_115205
crossref_primary_10_1103_PhysRevB_104_L241111
crossref_primary_10_1103_PhysRevLett_119_176804
crossref_primary_10_1126_science_aav2334
crossref_primary_10_1103_PhysRevB_108_205107
crossref_primary_10_1103_PhysRevB_94_214306
crossref_primary_10_1103_PhysRevB_105_085141
crossref_primary_10_1557_mrs_2018_34
crossref_primary_10_1038_s41598_018_32387_1
crossref_primary_10_7498_aps_72_20230397
crossref_primary_10_1088_0256_307X_36_5_057102
crossref_primary_10_1103_PhysRevB_95_195306
crossref_primary_10_1103_PhysRevB_106_184202
crossref_primary_10_1103_PhysRevB_106_184201
crossref_primary_10_1088_1361_648X_ac0850
crossref_primary_10_1146_annurev_conmatphys_031016_025458
crossref_primary_10_1063_5_0087141
crossref_primary_10_1103_PhysRevB_96_155138
crossref_primary_10_1103_PhysRevB_98_235130
crossref_primary_10_1103_PhysRevResearch_5_013068
crossref_primary_10_1103_PhysRevMaterials_6_083802
crossref_primary_10_1103_PhysRevX_7_021019
crossref_primary_10_1063_5_0168237
crossref_primary_10_1126_sciadv_1600709
crossref_primary_10_1088_0256_307X_40_9_097301
crossref_primary_10_1103_PhysRevB_96_121108
crossref_primary_10_1103_PhysRevB_93_235417
crossref_primary_10_1038_nmat4987
crossref_primary_10_1038_s41598_018_27148_z
crossref_primary_10_1103_PhysRevB_98_201107
crossref_primary_10_1103_PhysRevB_109_035145
crossref_primary_10_1088_1367_2630_aba98d
crossref_primary_10_1103_PhysRevB_99_024513
crossref_primary_10_1103_PhysRevB_94_220202
crossref_primary_10_1021_acsnano_2c05570
crossref_primary_10_1088_0256_307X_36_6_067201
crossref_primary_10_7498_aps_72_20221574
crossref_primary_10_1038_ncomms14933
crossref_primary_10_1063_5_0043694
crossref_primary_10_1103_PhysRevB_98_121110
crossref_primary_10_1103_PhysRevB_109_035147
crossref_primary_10_1103_PhysRevX_8_031002
crossref_primary_10_1103_PhysRevB_100_085144
crossref_primary_10_1103_PhysRevResearch_5_013079
crossref_primary_10_1103_PhysRevB_96_155141
crossref_primary_10_1103_PhysRevB_100_195113
crossref_primary_10_1103_RevModPhys_88_021004
crossref_primary_10_1063_5_0147663
crossref_primary_10_1103_PhysRevB_96_121116
crossref_primary_10_1002_adma_201707152
crossref_primary_10_1038_s41467_018_08199_2
crossref_primary_10_1103_PhysRevB_95_125417
crossref_primary_10_1103_PhysRevB_95_174505
crossref_primary_10_1103_PhysRevLett_118_107401
crossref_primary_10_1103_PhysRevB_94_125132
crossref_primary_10_1103_PhysRevB_95_115410
crossref_primary_10_1103_PhysRevB_99_245119
crossref_primary_10_1038_s41467_018_04542_9
crossref_primary_10_1103_PhysRevB_96_241106
crossref_primary_10_1103_PhysRevResearch_2_013367
crossref_primary_10_1146_annurev_matsci_070218_010023
crossref_primary_10_1103_PhysRevB_97_155431
crossref_primary_10_1088_1751_8121_aa59b2
crossref_primary_10_1103_PhysRevB_101_155143
crossref_primary_10_1103_PhysRevB_103_235143
crossref_primary_10_1088_1361_648X_abb9b8
crossref_primary_10_1103_PhysRevResearch_2_013007
crossref_primary_10_1038_ncomms13974
crossref_primary_10_1103_PhysRevB_98_235159
crossref_primary_10_1103_PhysRevResearch_3_033139
crossref_primary_10_1016_j_mtphys_2022_100732
crossref_primary_10_1103_PhysRevB_94_195134
crossref_primary_10_21468_SciPostPhysCore_5_2_024
crossref_primary_10_1007_s11467_023_1259_5
crossref_primary_10_1103_PhysRevMaterials_2_021201
crossref_primary_10_1088_1674_1056_abad25
crossref_primary_10_1103_PhysRevB_97_085109
crossref_primary_10_1146_annurev_conmatphys_031016_025225
crossref_primary_10_1002_aelm_202101081
crossref_primary_10_1038_s41467_020_15854_0
crossref_primary_10_1038_nphys3871
crossref_primary_10_1007_s11433_022_2051_4
crossref_primary_10_1088_1361_648X_abc310
crossref_primary_10_1103_PhysRevLett_122_197401
crossref_primary_10_1103_PhysRevB_110_035401
crossref_primary_10_1103_PhysRevB_108_235211
crossref_primary_10_1103_PhysRevB_94_195144
crossref_primary_10_1038_ncomms13741
crossref_primary_10_1016_j_ssc_2019_113734
crossref_primary_10_1103_PhysRevB_94_195108
crossref_primary_10_1038_s41467_018_04080_4
crossref_primary_10_1103_PhysRevB_97_085417
crossref_primary_10_1002_andp_201700043
crossref_primary_10_1038_s41598_021_87780_0
crossref_primary_10_1103_PhysRevB_100_220301
crossref_primary_10_7566_JPSJ_92_123701
crossref_primary_10_7566_JPSJ_92_123702
crossref_primary_10_1016_j_ssc_2018_12_002
crossref_primary_10_1103_PhysRevD_101_045007
crossref_primary_10_1146_annurev_matsci_070218_010049
crossref_primary_10_1103_PhysRevB_97_041202
crossref_primary_10_1103_PhysRevB_104_L121117
crossref_primary_10_1103_PhysRevLett_125_146402
crossref_primary_10_1063_5_0031781
crossref_primary_10_7498_aps_72_20211961
crossref_primary_10_1140_epjb_e2020_10110_x
crossref_primary_10_1021_acs_nanolett_0c02219
crossref_primary_10_1103_PhysRevResearch_6_L012028
crossref_primary_10_1103_PhysRevResearch_2_023124
crossref_primary_10_1038_nmat4787
crossref_primary_10_1103_PhysRevResearch_6_013140
crossref_primary_10_1103_PhysRevB_100_241110
crossref_primary_10_1103_PhysRevB_102_205413
crossref_primary_10_1088_1674_1056_ad4bc2
crossref_primary_10_1103_PhysRevB_101_125203
crossref_primary_10_7498_aps_70_20200914
crossref_primary_10_1038_ncomms13643
crossref_primary_10_1126_sciadv_abq2479
crossref_primary_10_1103_PhysRevB_108_235114
crossref_primary_10_1103_PhysRevB_98_081114
crossref_primary_10_1103_PhysRevMaterials_2_104203
crossref_primary_10_1063_1_5044686
crossref_primary_10_1103_PhysRevB_106_075140
crossref_primary_10_1103_PhysRevB_102_205201
crossref_primary_10_1103_PhysRevB_108_155308
crossref_primary_10_1103_PhysRevB_95_241113
crossref_primary_10_1080_09205071_2024_2372324
crossref_primary_10_1016_j_physe_2022_115457
crossref_primary_10_1103_PhysRevB_95_161306
crossref_primary_10_1103_PhysRevLett_129_196601
crossref_primary_10_1103_PhysRevB_104_115164
crossref_primary_10_1364_OE_27_000512
crossref_primary_10_1002_cjoc_202100777
crossref_primary_10_1103_PhysRevB_98_165205
crossref_primary_10_1103_PhysRevB_97_085303
crossref_primary_10_1103_PhysRevB_98_165441
crossref_primary_10_1103_PhysRevB_93_165420
crossref_primary_10_1103_PhysRevB_101_205137
crossref_primary_10_1016_j_physe_2024_115914
crossref_primary_10_1126_sciadv_abn3837
crossref_primary_10_1140_epjb_e2019_100373_9
crossref_primary_10_1088_0256_307X_37_10_107504
crossref_primary_10_1103_PhysRevB_96_085130
crossref_primary_10_1103_PhysRevB_103_214310
crossref_primary_10_1088_1367_2630_ab753b
Cites_doi 10.1126/science.aaa9273
10.1103/Physics.4.36
10.1142/S0217984906010573
10.1103/PhysRev.177.2426
10.1103/PhysRevB.92.045203
10.1016/j.crhy.2013.10.010
10.1103/PhysRevB.88.104412
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.81.214438
10.1143/JPSJ.41.109
10.1016/0022-5088(76)90220-4
10.1103/PhysRev.104.900
10.1016/0370-2693(83)91529-0
10.1007/BF01339504
10.1103/PhysRevD.86.045001
10.1103/PhysRevD.78.074033
10.1103/PhysRevLett.113.247203
10.1103/PhysRevLett.95.186603
10.1103/PhysRevB.83.205101
10.1126/science.aaa9297
10.1103/PhysRevB.68.104430
10.1103/PhysRevB.85.241101
10.1103/PhysRevB.92.035203
10.1007/BF02823296
10.1103/PhysRevB.85.165110
10.1088/1367-2630/9/9/356
10.1103/PhysRevB.91.245157
10.1107/S1600577513019085
10.1103/PhysRevB.79.235118
10.1038/ncomms8373
10.1103/PhysRevLett.111.246603
10.1103/RevModPhys.82.3045
10.1103/PhysRevB.87.205133
10.1103/PhysRevB.86.115133
10.1103/PhysRevB.92.075205
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Feb 2016
Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Feb 2016
– notice: Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
CorporateAuthor Princeton Univ., NJ (United States)
Peking Univ., Beijing (China)
National Univ. of Singapore (Singapore)
CorporateAuthor_xml – name: Princeton Univ., NJ (United States)
– name: Peking Univ., Beijing (China)
– name: National Univ. of Singapore (Singapore)
DBID C6C
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/ncomms10735
DatabaseName Springer Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Databases
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10735
ExternalDocumentID oai_doaj_org_article_a7d99e248b3b4ba4a0e53db5cdeaca06
1259286
3962881901
10_1038_ncomms10735
26911701
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c605t-e5c1b784da973497562dad7fcf426d50e49d31e9a655917f9359b0bf27b56d2c3
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 14:55:52 EDT 2024
Tue Sep 17 21:26:26 EDT 2024
Mon Jul 03 03:57:40 EDT 2023
Tue Aug 27 04:47:17 EDT 2024
Thu Oct 10 18:26:27 EDT 2024
Fri Aug 23 04:05:06 EDT 2024
Sat Nov 02 12:25:41 EDT 2024
Fri Oct 11 20:46:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-e5c1b784da973497562dad7fcf426d50e49d31e9a655917f9359b0bf27b56d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Basic Research Program of China
FG02-05ER46200; GBMF4547; 2013CB921901; 2014CB239302; PHMFF2015001; 1374020; RF-NRFF2013- 03
USDOE Office of Science (SC), Basic Energy Sciences (BES)
LA-UR-17-22175
National Science Foundation of China
Singapore National Research Foundation
These authors contributed equally to this work.
ORCID 0000-0002-6708-0223
0000-0003-1180-3127
0000-0003-1793-1461
0000-0001-9730-3128
0000-0002-2394-8537
0000-0002-6495-874X
0000-0003-4273-9682
0000-0003-0604-041X
0000000267080223
0000000197303128
0000000317931461
000000030604041X
000000026495874X
0000000223948537
0000000342739682
0000000311803127
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773426/
PMID 26911701
PQID 1767918964
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a7d99e248b3b4ba4a0e53db5cdeaca06
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4773426
osti_scitechconnect_1259286
proquest_miscellaneous_1768562032
proquest_journals_1767918964
crossref_primary_10_1038_ncomms10735
pubmed_primary_26911701
springer_journals_10_1038_ncomms10735
PublicationCentury 2000
PublicationDate 2-25-2016
PublicationDateYYYYMMDD 2016-02-25
PublicationDate_xml – month: 02
  year: 2016
  text: 2-25-2016
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LuH-ZZhangS-BShenS-QHigh-field magnetoconductivity of topological semimetals with short-range potentialPhys. Rev. B2015920452032015PhRvB..92d5203L10.1103/PhysRevB.92.045203
Bertlmann, R. A. Anomalies in Quantum Field Theory International Series of Monographs on Physics (2011).
LvBQExperimental discovery of Weyl semimetal TaAsPhys. Rev. X20155031013
ArgyresPNAdamsENLongitudinal magnetoresistance in the quantum limitPhys. Rev.19561049009081956PhRv..104..900A10.1103/PhysRev.104.900
HasanMZKaneCLTopological insulatorsRev. Mod. Phys.201082304530672010RvMP...82.3045H1:CAS:528:DC%2BC3MXht1Kgsg%3D%3D10.1103/RevModPhys.82.3045
HuangXObservation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAsPhys. Rev. X20155031023
HuangSMA Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs classNat. Commun.2015673731:CAS:528:DC%2BC2MXhtF2ktrnK10.1038/ncomms837326067579
Shekhar, C. et al. Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP. Preprint at http://arxiv.org/abs/1506.06577 (2015).
HuJRosenbaumTFBettsJBCurrent jets, disorder, and linear magnetoresistance in the silver chalcogenidesPhys. Rev. Lett.2005951866032005PhRvL..95r6603H10.1103/PhysRevLett.95.18660316383932
BellJSJackiwRA PCAC puzzle: π0→γγ in the σ-modelIl. Nuovo. Cimento. A19696047611969NCimA..60...47B1:CAS:528:DyaF1MXpt1Cntg%3D%3D10.1007/BF02823296
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
Volovik, G. E. The Universe in a Helium Droplet Clarendon Press (2003).
Zhang, C. et al. Detection of chiral anomaly and valley transport in Dirac semimetals. Preprint at http://arxiv.org/abs/1504.07698 (2015).
ParameswaranSAGroverTAbaninDAPesinDAVishwanathAProbing the chiral anomaly with nonlocal transport in three-dimensional topological semimetalsPhys. Rev. X20144031035
SugiharaKTokumotoMYamanouchiCYoshihiroKLongitudinal magnetoresistance of n-InSb in the quantum limitJ. Phys. Soc. Jpn1976411091151976JPSJ...41..109S1:CAS:528:DyaE28XltFGrsr8%3D10.1143/JPSJ.41.109
WanXGTurnerAMVishwanathASavrasovSYTopological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridatesPhys. Rev. B2011832051012011PhRvB..83t5101W10.1103/PhysRevB.83.205101
StrocovVNoft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applicationsJ. Synchrotron Rad.20142132441:CAS:528:DC%2BC2cXmt1GltQ%3D%3D10.1107/S1600577513019085
Kikugawa, et al. Realization of the axial anomaly in a quasi-two-dimensional metal. Preprint at http://arxiv.org/abs/1412.5168 (2014).
KimH-JDirac versus Weyl Fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomenaPhys. Rev. Lett.20131112466032013PhRvL.111x6603K10.1103/PhysRevLett.111.246603
WengHWeyl semimetal phase in non-centrosymmetric transition metal monophosphidesPhys. Rev. X20155011029
Spivak, B. Z. & Andreev, A. V. Magneto-transport phenomena related to the chiral anomaly in Weyl semimetals. Preprint at http://arxiv/abs/1510.01817 (2015).
Hasan, M. Z., Xu, S.-Y. & Neupane, M. in Topological Insulators: Fundamentals and Perspectives eds Ortmann F., Roche S., Valenzuela S. O. John Wiley & Sons (2015).
GoswamiPPixleyJHDas SarmaSAxial anomaly and longitudinal magnetoresistance of a generic three dimensional metalPhys. Rev. B2015920752052015PhRvB..92g5205G10.1103/PhysRevB.92.075205
FukushimaKKharzeevDEWarringaHJChiral magnetic effectPhys. Rev. D2008780740332008PhRvD..78g4033F10.1103/PhysRevD.78.074033
BurkovAAChiral anomaly and diffusive magnetotransport in Weyl metalsPhys. Rev. Lett.20141132472032014PhRvL.113x7203B1:CAS:528:DC%2BC2MXhslKksbc%3D10.1103/PhysRevLett.113.24720325541802
WeylHElektron und gravitationI. Z. Phys.1929563303521929ZPhy...56..330W10.1007/BF01339504
WengHOzakiTTerakuraKRevisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functionsPhys. Rev. B2009792351182009PhRvB..79w5118W10.1103/PhysRevB.79.235118
AjiVAdler-Bell-Jackiw anomaly in Weyl semimetals: application to pyrochlore iridatesPhys. Rev. B2012852411012012PhRvB..85x1101A10.1103/PhysRevB.85.241101
RitchieLMagnetic, structural, and transport properties of the Heusler alloys Co2MnSi and NiMnSbPhys. Rev. B2003681044302003PhRvB..68j4430R10.1103/PhysRevB.68.104430
BurkovAANegative longitudinal magnetoresistance in Dirac and Weyl metalsPhys. Rev. B2015912451572015PhRvB..91x5157B10.1103/PhysRevB.91.245157
Turner, A. M. & Vishwanath, A. in Topological Insulators eds Franz M., Molenkamp L. Elsevier (2013).
PalHKMaslovDLNecessary and sufficient condition for longitudinal magnetoresistancePhys. Rev. B2010812144382010PhRvB..81u4438P10.1103/PhysRevB.81.214438
Zhang, S.-B., Lu, H.-Z. & Shen, S.-Q. Chiral anomaly and linear magnetoconductivity in a topological Weyl semimetal. Preprint at http://arxiv.org/abs/1509.02001 (2015).
HosurPQiX-LRecent developments in Weyl semimetalsComptes. Rendus. Physique.2013148578702013CRPhy..14..857H1:CAS:528:DC%2BC3sXhslOrsb3J10.1016/j.crhy.2013.10.010
LuLExperimental observation of Weyl pointsScience20153496226242015Sci...349..622L34080861:CAS:528:DC%2BC2MXht1Ohtb7F10.1126/science.aaa927326184914
MurakamiSPhase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phaseNew. J. Phys.200793562007NJPh....9..356M10.1088/1367-2630/9/9/356
JhoY-SKimK-SInterplay between interaction and chiral anomaly: anisotropy in the electrical resistivity of interacting Weyl metalsPhys. Rev. B2013872051332013PhRvB..87t5133J10.1103/PhysRevB.87.205133
ZyuzinAAWuSBurkovAAWeyl semimetal with broken time reversal and inversion symmetriesPhys. Rev. B2012851651102012PhRvB..85p5110Z10.1103/PhysRevB.85.165110
Pippard, A. B. Magnetoresistance in Metals Cambridge University Press (1989).
DuvalCHorvathZHorvathyPAMartinaLStichelPCBerry phase correction to electron density in solids and “exotic” dynamicsMod. Phys. Lett. B2006203732006MPLB...20..373D1:CAS:528:DC%2BD28Xis1aitro%3D10.1142/S0217984906010573
GrushinAGConsequence of a condensed matter realization of Lorentz-violating QED in Weyl semi-metalsPhys. Rev. D2012860450012012PhRvD..86d5001G10.1103/PhysRevD.86.045001
XuS-YDiscovery of a Weyl Fermion semimetal and topological Fermi arcsScience20153496136172015Sci...349..613X1:CAS:528:DC%2BC2MXht1OhtbzM10.1126/science.aaa929726184916
BalentsLWeyl electrons kissPhysics201143610.1103/Physics.4.36
SonDTSpivakBZChiral anomaly and classical negative magnetoresistance of Weyl metalsPhys.Rev. B2013881044122013PhRvB..88j4412S10.1103/PhysRevB.88.104412
MurrayJJPhase relationships and thermodynamics of refractory metal pnictides: the metal-rich tantalum arsenidesJ. Less Common Met.1976463113201:CAS:528:DyaE28Xktl2murY%3D10.1016/0022-5088(76)90220-4
AdlerSAxial-vector vertex in spinor electrodynamicsPhys. Rev.1969177242624381969PhRv..177.2426A10.1103/PhysRev.177.2426
LuH-ZShenS-QWeak antilocalization and localization in disordered and interacting Weyl semimetalsPhys. Rev. B2015920352032015PhRvB..92c5203L10.1103/PhysRevB.92.035203
Xiong, J. et al. Sinature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field. Preprint at http://arxiv.org/abs/1503.08179 (2015).
NielsenHBNinomiyaMThe Adler-Bell-Jackiw anomaly and Weyl fermions in a crystalPhys. Lett. B19831303893961983PhLB..130..389N72082210.1016/0370-2693(83)91529-0
ZyuzinAABurkovAATopological response in Weyl semimetals and the chiral anomalyPhys. Rev. B2012861151332012PhRvB..86k5133Z10.1103/PhysRevB.86.115133
Zhang, C. et al. Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal. Preprint at http://arxiv.org/abs/1503.02630 (2015).
AA Zyuzin (BFncomms10735_CR19) 2012; 86
Y-S Jho (BFncomms10735_CR25) 2013; 87
P Hosur (BFncomms10735_CR23) 2013; 14
BFncomms10735_CR10
H Weyl (BFncomms10735_CR2) 1929; 56
HB Nielsen (BFncomms10735_CR5) 1983; 130
BFncomms10735_CR1
X Huang (BFncomms10735_CR40) 2015; 5
BFncomms10735_CR6
SM Huang (BFncomms10735_CR13) 2015; 6
PN Argyres (BFncomms10735_CR31) 1956; 104
BFncomms10735_CR9
H-Z Lu (BFncomms10735_CR46) 2015; 92
S Murakami (BFncomms10735_CR11) 2007; 9
L Lu (BFncomms10735_CR15) 2015; 349
VN Strocov (BFncomms10735_CR48) 2014; 21
L Balents (BFncomms10735_CR7) 2011; 4
H Weng (BFncomms10735_CR51) 2009; 79
BFncomms10735_CR29
J Hu (BFncomms10735_CR30) 2005; 95
H Weng (BFncomms10735_CR14) 2015; 5
JP Perdew (BFncomms10735_CR49) 1996; 77
L Ritchie (BFncomms10735_CR28) 2003; 68
BFncomms10735_CR38
V Aji (BFncomms10735_CR20) 2012; 85
BFncomms10735_CR32
JS Bell (BFncomms10735_CR4) 1969; 60
H-Z Lu (BFncomms10735_CR34) 2015; 92
HK Pal (BFncomms10735_CR37) 2010; 81
S Adler (BFncomms10735_CR3) 1969; 177
DT Son (BFncomms10735_CR24) 2013; 88
AA Zyuzin (BFncomms10735_CR21) 2012; 85
SA Parameswaran (BFncomms10735_CR27) 2014; 4
P Goswami (BFncomms10735_CR33) 2015; 92
BQ Lv (BFncomms10735_CR16) 2015; 5
BFncomms10735_CR45
BFncomms10735_CR44
AG Grushin (BFncomms10735_CR22) 2012; 86
BFncomms10735_CR43
MZ Hasan (BFncomms10735_CR50) 2010; 82
XG Wan (BFncomms10735_CR8) 2011; 83
AA Burkov (BFncomms10735_CR26) 2014; 113
K Fukushima (BFncomms10735_CR18) 2008; 78
H-J Kim (BFncomms10735_CR39) 2013; 111
JJ Murray (BFncomms10735_CR47) 1976; 46
AA Burkov (BFncomms10735_CR36) 2015; 91
BFncomms10735_CR42
S-Y Xu (BFncomms10735_CR12) 2015; 349
BFncomms10735_CR41
K Sugihara (BFncomms10735_CR35) 1976; 41
C Duval (BFncomms10735_CR17) 2006; 20
References_xml – ident: BFncomms10735_CR38
– ident: BFncomms10735_CR6
– volume: 349
  start-page: 622
  year: 2015
  ident: BFncomms10735_CR15
  publication-title: Science
  doi: 10.1126/science.aaa9273
  contributor:
    fullname: L Lu
– volume: 4
  start-page: 36
  year: 2011
  ident: BFncomms10735_CR7
  publication-title: Physics
  doi: 10.1103/Physics.4.36
  contributor:
    fullname: L Balents
– volume: 5
  start-page: 031023
  year: 2015
  ident: BFncomms10735_CR40
  publication-title: Phys. Rev. X
  contributor:
    fullname: X Huang
– volume: 20
  start-page: 373
  year: 2006
  ident: BFncomms10735_CR17
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984906010573
  contributor:
    fullname: C Duval
– volume: 177
  start-page: 2426
  year: 1969
  ident: BFncomms10735_CR3
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.177.2426
  contributor:
    fullname: S Adler
– volume: 92
  start-page: 045203
  year: 2015
  ident: BFncomms10735_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.045203
  contributor:
    fullname: H-Z Lu
– volume: 14
  start-page: 857
  year: 2013
  ident: BFncomms10735_CR23
  publication-title: Comptes. Rendus. Physique.
  doi: 10.1016/j.crhy.2013.10.010
  contributor:
    fullname: P Hosur
– volume: 5
  start-page: 011029
  year: 2015
  ident: BFncomms10735_CR14
  publication-title: Phys. Rev. X
  contributor:
    fullname: H Weng
– volume: 88
  start-page: 104412
  year: 2013
  ident: BFncomms10735_CR24
  publication-title: Phys.Rev. B
  doi: 10.1103/PhysRevB.88.104412
  contributor:
    fullname: DT Son
– volume: 5
  start-page: 031013
  year: 2015
  ident: BFncomms10735_CR16
  publication-title: Phys. Rev. X
  contributor:
    fullname: BQ Lv
– volume: 77
  start-page: 3865
  year: 1996
  ident: BFncomms10735_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: JP Perdew
– volume: 81
  start-page: 214438
  year: 2010
  ident: BFncomms10735_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.214438
  contributor:
    fullname: HK Pal
– volume: 41
  start-page: 109
  year: 1976
  ident: BFncomms10735_CR35
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.41.109
  contributor:
    fullname: K Sugihara
– ident: BFncomms10735_CR43
– volume: 46
  start-page: 311
  year: 1976
  ident: BFncomms10735_CR47
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(76)90220-4
  contributor:
    fullname: JJ Murray
– volume: 4
  start-page: 031035
  year: 2014
  ident: BFncomms10735_CR27
  publication-title: Phys. Rev. X
  contributor:
    fullname: SA Parameswaran
– volume: 104
  start-page: 900
  year: 1956
  ident: BFncomms10735_CR31
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.104.900
  contributor:
    fullname: PN Argyres
– volume: 130
  start-page: 389
  year: 1983
  ident: BFncomms10735_CR5
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)91529-0
  contributor:
    fullname: HB Nielsen
– volume: 56
  start-page: 330
  year: 1929
  ident: BFncomms10735_CR2
  publication-title: I. Z. Phys.
  doi: 10.1007/BF01339504
  contributor:
    fullname: H Weyl
– volume: 86
  start-page: 045001
  year: 2012
  ident: BFncomms10735_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.045001
  contributor:
    fullname: AG Grushin
– volume: 78
  start-page: 074033
  year: 2008
  ident: BFncomms10735_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.074033
  contributor:
    fullname: K Fukushima
– volume: 113
  start-page: 247203
  year: 2014
  ident: BFncomms10735_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.247203
  contributor:
    fullname: AA Burkov
– volume: 95
  start-page: 186603
  year: 2005
  ident: BFncomms10735_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.186603
  contributor:
    fullname: J Hu
– volume: 83
  start-page: 205101
  year: 2011
  ident: BFncomms10735_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.205101
  contributor:
    fullname: XG Wan
– ident: BFncomms10735_CR44
– volume: 349
  start-page: 613
  year: 2015
  ident: BFncomms10735_CR12
  publication-title: Science
  doi: 10.1126/science.aaa9297
  contributor:
    fullname: S-Y Xu
– volume: 68
  start-page: 104430
  year: 2003
  ident: BFncomms10735_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.104430
  contributor:
    fullname: L Ritchie
– volume: 85
  start-page: 241101
  year: 2012
  ident: BFncomms10735_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.241101
  contributor:
    fullname: V Aji
– ident: BFncomms10735_CR32
– volume: 92
  start-page: 035203
  year: 2015
  ident: BFncomms10735_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.035203
  contributor:
    fullname: H-Z Lu
– volume: 60
  start-page: 47
  year: 1969
  ident: BFncomms10735_CR4
  publication-title: Il. Nuovo. Cimento. A
  doi: 10.1007/BF02823296
  contributor:
    fullname: JS Bell
– ident: BFncomms10735_CR45
– volume: 85
  start-page: 165110
  year: 2012
  ident: BFncomms10735_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.165110
  contributor:
    fullname: AA Zyuzin
– volume: 9
  start-page: 356
  year: 2007
  ident: BFncomms10735_CR11
  publication-title: New. J. Phys.
  doi: 10.1088/1367-2630/9/9/356
  contributor:
    fullname: S Murakami
– ident: BFncomms10735_CR41
– volume: 91
  start-page: 245157
  year: 2015
  ident: BFncomms10735_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.245157
  contributor:
    fullname: AA Burkov
– ident: BFncomms10735_CR1
– volume: 21
  start-page: 32
  year: 2014
  ident: BFncomms10735_CR48
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577513019085
  contributor:
    fullname: VN Strocov
– volume: 79
  start-page: 235118
  year: 2009
  ident: BFncomms10735_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.235118
  contributor:
    fullname: H Weng
– ident: BFncomms10735_CR10
– volume: 6
  start-page: 7373
  year: 2015
  ident: BFncomms10735_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8373
  contributor:
    fullname: SM Huang
– volume: 111
  start-page: 246603
  year: 2013
  ident: BFncomms10735_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246603
  contributor:
    fullname: H-J Kim
– volume: 82
  start-page: 3045
  year: 2010
  ident: BFncomms10735_CR50
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
  contributor:
    fullname: MZ Hasan
– ident: BFncomms10735_CR9
– volume: 87
  start-page: 205133
  year: 2013
  ident: BFncomms10735_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.205133
  contributor:
    fullname: Y-S Jho
– ident: BFncomms10735_CR29
– ident: BFncomms10735_CR42
– volume: 86
  start-page: 115133
  year: 2012
  ident: BFncomms10735_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115133
  contributor:
    fullname: AA Zyuzin
– volume: 92
  start-page: 075205
  year: 2015
  ident: BFncomms10735_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075205
  contributor:
    fullname: P Goswami
SSID ssj0000391844
Score 2.7026124
Snippet Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the...
Abstract Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals,...
Anomalous conducting behavior of solids may reflect the presence of novel quantum states. Here, Zhang et al. report an increased conductivity in TaAs with a...
SourceID doaj
pubmedcentral
osti
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10735
SubjectTerms 140/146
639/301/119
639/766/483/640
Condensed-matter physics
Humanities and Social Sciences
multidisciplinary
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Science
Science (multidisciplinary)
Theoretical physics
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXVMorbamMVI5RHT_i-MijVU8cKAhukZ80UtdBza7Q3vof-g_5JYyd7LJLkbhwihRbymTG45nRzHyD0LGSSniwVKUSmpRcWQM6p-uSGWVprTVVJDUKn1_ID1-b96cJJmc96ivVhI3wwCPjTrR0SnnKG8MMN5pr4gVzRlgHV4aewLaJ2gim8h3MFIQufGrII6w5iSDA2QDBTh7s9tsEZaR-ePSgUX_zMu8WS_6RMc2G6GwXPZo8SPxmpPwxuufjHnowzpRcPkEfL7pvI1rngPuAwb_DKRd__fPmNvXiwCO11Xc_sL3s4ENYx36mr5a4i1jjL355hUOqj-kjHvysm3lwzp-iz2enn96dl9PghNJCdDIvvbCVkQ13WknGlQQfx2kngw1gj50gnivHKq90DfFEJUPqzjXEBCqNqB217BnaiX30LxA2hIHK19aKwLnWsnHCGi14UBYCQRIKdLziZft9xMdoc16bNe0Gywv0NvF5vSWBWucXIOp2EnX7L1EX6CBJqQXfIAHc2lQJZOctuGiKNrB6uBJeO-nh0FaylnASVM0L9Gq9DBqU0iI6-n6R9zTAIcJogZ6Psl7TSWuVRvNUBZJbp2DrR7ZXYneZUbq5BN5TIOv16rxskHWXQ_v_g0MH6CE4dLmqnIpDtDO_XviX6P7gFkdZP34BVpYaeA
  priority: 102
  providerName: Directory of Open Access Journals
Title Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal
URI https://link.springer.com/article/10.1038/ncomms10735
https://www.ncbi.nlm.nih.gov/pubmed/26911701
https://www.proquest.com/docview/1767918964
https://search.proquest.com/docview/1768562032
https://www.osti.gov/servlets/purl/1259286
https://pubmed.ncbi.nlm.nih.gov/PMC4773426
https://doaj.org/article/a7d99e248b3b4ba4a0e53db5cdeaca06
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSkhcEG_SlspI5ZiuN7bj-AilVS8gREFwi_xKG2njVJtdob31P_Qf8ksYO8lql3LiZCm2ZGcemW8yDyN0LIXkDixVKrkiKZNGg86pPKVamixXKpMkFApfXIrPP4uPZ6FNDh9rYWLSvtH1iZ83J76-jrmVN42Zjnli0y-fTpkQFCzLdIImIKBbLnr8_FIJXgsbavEILaYeeNd04OfQcE9Nlstw28psxxDFfv0wtKBX_8Ka91Mm_4qbRnN0_gQ9HnAkft-f9yl64Pwz9LC_WXL9HH29rK_6np0dbisMKA-HiPzi9-1dqMiBIRTX17-wua5hI6x826j5GtceK_zDree4Clkyrceda-rGAUR_gb6fn307vUiH6xNSAz7KMnXczLQomFUSyCUFIB2rrKhMBbSznDgmLZ05qXLwKmaiCjW6mugqE5rnNjP0JdrzrXevEdaEguLnxvCKMaVEYbnRirNKGnAHSZWg45GW5U3fJaOM0W1alFvUT9CHQOfNktDaOj5oF1flwOBSCSuly1ihqWZaMUUcp1ZzY8FGKJIn6CBwqQSEENrcmpAPZJYlADWZFTB7ODKvHLSxK2ciFyAUMmcJeruZBj0KwRHlXbuKawqgEKFZgl71vN6ccxSZBIkdKdh5kd0ZEN3Yq3sQ1QS9G-Vl61j3KbT_3zscoEeA5WJCecYP0d5ysXJv0KSzq6P4n-EoaskfUuwaAQ
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KJFCC68H6EFjFSO6TqxHcdHKK0W0VaIFsEt8ittpE1S7UNob_wDf8iXMHaS1S7l1JOljKWMPTOeGc0LoT0pJHegqWLJFYmZNBpkTmUx1dKkmVKpJL5QeHwmTn_kHw99mxw-1MKEpH2jq_1mUu831WXIrbyqzWjIExt9OTlgQlDQLKMtdBvklbA1Jz08wFSC38L6ajxC81ED1Ktn4OlQP6kmzaSft5JsqKLQsR-WFiTrf9bm9aTJfyKnQSEdPbjhUR6i-70Fit934EfolmseozvdTMrlE_T1rLroun3OcFtisA-xj-VP__z67Wt5YPFl-dVPbC4rQBCrpq3VZImrBiv83S0nuPT5NW2DZ66uagfG_VP07ejw_GAc94MXYgPezTx23CRa5MwqCdhJATaSVVaUpgRULSeOSUsTJ1UG_kgiSl_dq4kuU6F5ZlNDn6Htpm3cC4Q1ofBkZMbwkjGlRG650YqzUhpwJEkZob2BBsVV11-jCHFxmhdrVIvQB0-f1RbfFDt8aKcXRX-fhRJWSpeyXFPNtGKKOE6t5saCdlEki9COp24BtoVvkGt8JpGZF2DiyTQH6O5A9KKX41mRiEwAM8mMRejtCgwS6MMqqnHtIuzJ4YYITSP0vOORFZ4Dq0VIbHDPxkE2IcApoct3zxkRejfw2Rpa12_o5Y3_8AbdHZ-fHBfHn04_76B7YBGGtPSU76Lt-XThXqGtmV28DjL2F2qGLqE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYhLeZaGFjBSOabrje04PkLbVRFQVRQEt8ivtJE2yWqzK7Q3_gP_kF_C2JusdiknOFmKLWXsmfF8I88DoUMpJHdgqWLJFYmZNBp0TqUx1dIkqVKJJD5R-OxSnH_LTk59mZxVq68QtG90eVSPq6O6vA6xlZPKDPo4scHFx2MmBAXLMpjYYrCFboPOknTNUQ-XMJXgu7AuI4_QbFADB6sWvB3qu9UkqfQ9V4Yb5ihU7YehAe36G-K8GTj5x-tpMEqj-_-xnQdop0Oi-M1yyUN0y9WP0J1lb8rFY_TpsrxaVv1scVNgwInYv-lPf_346XN6YPDp-eV3bK5LIBKruqnUeIHLGiv81S3GuPBxNk2NW1eVlQOQ_wR9GZ1-Pj6LuwYMsQEvZxY7boZaZMwqCRRKAVjJKisKUwC5lhPHpKVDJ1UKfslQFD7LVxNdJELz1CaG7qLtuqndHsKaULg6UmN4wZhSIrPcaMVZIQ04lKSI0GHPh3yyrLORh_dxmuVrnIvQW8-j1RJfHDt8aKZXeXemuRJWSpewTFPNtGKKOE6t5saClVEkjdC-53AOGMMXyjU-osjMcoB6Mslg9qBnfN7pc5sPRSpAoGTKIvRqNQ2a6J9XVO2aeViTwQkRmkTo6VJOVnT24hYhsSFBGxvZnAFpCdW-O-mI0Ote1tbIunlCz_75Dy_R3YuTUf7h3fn7fXQPgGGITk_4AdqeTefuOdpq7fxFULPfw2cxIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signatures+of+the+Adler%E2%80%93Bell%E2%80%93Jackiw+chiral+anomaly+in+a+Weyl+fermion+semimetal&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Cheng-Long&rft.au=Xu%2C+Su-Yang&rft.au=Belopolski%2C+Ilya&rft.au=Yuan%2C+Zhujun&rft.date=2016-02-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms10735&rft.externalDocID=10_1038_ncomms10735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon