Recent advances in treatment for narcolepsy

Narcolepsy type 1 (NT1) is a chronic orphan disorder, caused by the selective and irreversible loss of hypocretin/orexin (ORX) neurons, by a probable autoimmune process. Little is known about NT2 etiology and prevalence, sharing with NT1 excessive daytime sleepiness (EDS) and dysregulation of rapid...

Full description

Saved in:
Bibliographic Details
Published in:Therapeutic Advances in Neurological Disorders Vol. 12; p. 1756286419875622
Main Authors: Barateau, Lucie, Dauvilliers, Yves
Format: Book Review Journal Article
Language:English
Published: London, England SAGE Publications 2019
SAGE PUBLICATIONS, INC
SAGE Publishing
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Narcolepsy type 1 (NT1) is a chronic orphan disorder, caused by the selective and irreversible loss of hypocretin/orexin (ORX) neurons, by a probable autoimmune process. Little is known about NT2 etiology and prevalence, sharing with NT1 excessive daytime sleepiness (EDS) and dysregulation of rapid eye movement (REM) sleep, but without cataplexy and loss of ORX neurons. Despite major advances in our understanding of the neurobiological basis of NT1, management remains nowadays only symptomatic. The main and most disabling symptom, EDS, is managed with psychostimulants, as modafinil/armodafinil, methylphenidate, or amphetamines as a third-line therapy. Narcolepsy is an active area for drug development, and new wake-promoting agents have been developed over the past years. Pitolisant, a selective histamine H3 receptor inverse agonist, has been recently approved to treat patients with NT1 and NT2. Solriamfetol, a phenylalanine derivative with dopaminergic and noradrenergic activity will be soon a new therapeutic option to treat EDS in NT1 and NT2. Sodium oxybate, used for decades in adult patients with narcolepsy, was recently shown to be effective and safe in childhood narcolepsy. The discovery of ORX deficiency in NT1 opened new therapeutic options oriented towards ORX-based therapies, especially nonpeptide ORX receptor agonists that are currently under development. In addition, immune-based therapies administered as early as possible after disease onset could theoretically slow down or stop the destruction of ORX neurons in some selected patients. Further well-designed controlled trials are required to determine if they could really impact on the natural history of the disease. Given the different clinical, biological and genetic profiles, narcolepsy may provide a nice example for developing personalized medicine in orphan diseases, that could ultimately aid in similar research and clinical efforts for other conditions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1756-2864
1756-2856
1756-2864
DOI:10.1177/1756286419875622