Proportional mouse model for aerosol infection by influenza
Aims The aim of this study was to demonstrate a prototype tool for measuring infectivity of an aerosolized human pathogen – influenza A/PR/8/34 (H1N1) virus – using a small‐animal model in the Controlled Aerosol Test System (CATS). Methods and Results Intranasal inoculation of nonadapted H1N1 virus...
Saved in:
Published in: | Journal of applied microbiology Vol. 113; no. 4; pp. 767 - 778 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Blackwell Publishing Ltd
01-10-2012
Blackwell Oxford University Press John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims
The aim of this study was to demonstrate a prototype tool for measuring infectivity of an aerosolized human pathogen – influenza A/PR/8/34 (H1N1) virus – using a small‐animal model in the Controlled Aerosol Test System (CATS).
Methods and Results
Intranasal inoculation of nonadapted H1N1 virus into C57BL, BALB/c and CD‐1 mice caused infection in all three species. Respiratory exposure of CD‐1 mice to the aerosolized virus at graduated doses was accomplished in a modified rodent exposure apparatus. Weight change was recorded for 7 days postexposure, and viral populations in lung tissue homogenates were measured post mortem by DNA amplification (qRT‐PCR), direct fluorescence and microscopic evaluation of cytopathic effect. Plots of weight change and of PCR cycle threshold vs delivered dose were linear to threshold doses of ~40 TCID50 and ~12 TCID50, respectively.
Conclusions
MID50 for inspired H1N1 aerosols in CD‐1 mice is between 12 and 40 TCID50; proportionality to dose of weight loss and viral populations makes the CD‐1 mouse a useful model for measuring infectivity by inhalation.
Significance and Impact of the Study
In the CATS, this mouse–virus model provides the first quantitative method to evaluate the ability of respiratory protective technologies to attenuate the infectivity of an inspired pathogenic aerosol. |
---|---|
Bibliography: | The Air Force Research Laboratory (AFRL) istex:2133E64584CDC2AB0BC29F834171F1B56923C187 ArticleID:JAM5402 Defence Threat Reduction Agency ark:/67375/WNG-DC82Q8J6-0 Biological Advanced Research and Development Authority (BARDA) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1111/j.1365-2672.2012.05402.x |