Cdk-counteracting phosphatases unlock mitotic exit

Entry into mitosis of the eukaryotic cell cycle is driven by rising cyclin-dependent kinase (Cdk) activity. During exit from mitosis, Cdk activity must again decline. Cdk downregulation by itself, however, is not able to guide mitotic exit, if not a phosphatase reverses mitotic Cdk phosphorylation e...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in cell biology Vol. 20; no. 6; pp. 661 - 668
Main Authors: Queralt, Ethel, Uhlmann, Frank
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-12-2008
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Entry into mitosis of the eukaryotic cell cycle is driven by rising cyclin-dependent kinase (Cdk) activity. During exit from mitosis, Cdk activity must again decline. Cdk downregulation by itself, however, is not able to guide mitotic exit, if not a phosphatase reverses mitotic Cdk phosphorylation events. In budding yeast, this role is played by the Cdc14 phosphatase. We are gaining an increasingly detailed picture of its regulation during anaphase, and of the way it orchestrates ordered progression through mitosis. Much less is known about protein dephosphorylation during mitotic exit in organisms other than budding yeast, but evidence is now mounting for crucial contributions of regulated phosphatases also in metazoan cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0955-0674
1879-0410
DOI:10.1016/j.ceb.2008.09.003