HS2ST1‐dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior
Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐O‐sulfotransferase (HS2ST1), the enzyme mediating 2‐O‐sulfation of HS, is largely unkno...
Saved in:
Published in: | Cancer science Vol. 111; no. 8; pp. 2907 - 2922 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
John Wiley & Sons, Inc
01-08-2020
Wiley Open Access John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐O‐sulfotransferase (HS2ST1), the enzyme mediating 2‐O‐sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF‐7 and MDA‐MB‐231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF‐2) to HS2ST1‐expressing cells compared with control cells. HS2ST1‐overexpressing cells showed reduced MAPK signaling responses to FGF‐2, and altered expression of epidermal growth factor receptor (EGFR), E‐cadherin, Wnt‐7a, and Tcf4. The increased viability of HS2ST1‐depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1‐dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E‐cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.
Our results suggest that, in breast cancer, high levels of HS2ST1 result in structural changes in heparan sulfate and altered growth factor binding, which leads to attenuated signaling through the MAPK and additional pathways. Reduced signaling and expression of E‐cadherin and epidermal growth factor receptor (EGFR) is associated with reduced viability, adhesion, migration, and invasion of breast cancer cells. |
---|---|
AbstractList | Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐
O‐
sulfotransferase (
HS2ST1
), the enzyme mediating 2‐
O‐
sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of
HS2ST1
overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF‐7 and MDA‐MB‐231.
HS2ST1
overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered
HS2ST1
expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF‐2) to
HS2ST1
‐expressing cells compared with control cells.
HS2ST1
‐overexpressing cells showed reduced MAPK signaling responses to FGF‐2, and altered expression of epidermal growth factor receptor (EGFR), E‐cadherin, Wnt‐7a, and Tcf4. The increased viability of
HS2ST1
‐depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the
HS2ST1
‐dependent delay in scratch wound repair. In conclusion,
HS2ST1
modulation of breast cancer cell invasiveness is a compound effect of altered E‐cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.
Our results suggest that, in breast cancer, high levels of HS2ST1 result in structural changes in heparan sulfate and altered growth factor binding, which leads to attenuated signaling through the MAPK and additional pathways. Reduced signaling and expression of E‐cadherin and epidermal growth factor receptor (EGFR) is associated with reduced viability, adhesion, migration, and invasion of breast cancer cells. Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐O‐sulfotransferase (HS2ST1), the enzyme mediating 2‐O‐sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF‐7 and MDA‐MB‐231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF‐2) to HS2ST1‐expressing cells compared with control cells. HS2ST1‐overexpressing cells showed reduced MAPK signaling responses to FGF‐2, and altered expression of epidermal growth factor receptor (EGFR), E‐cadherin, Wnt‐7a, and Tcf4. The increased viability of HS2ST1‐depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1‐dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E‐cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways. Our results suggest that, in breast cancer, high levels of HS2ST1 result in structural changes in heparan sulfate and altered growth factor binding, which leads to attenuated signaling through the MAPK and additional pathways. Reduced signaling and expression of E‐cadherin and epidermal growth factor receptor (EGFR) is associated with reduced viability, adhesion, migration, and invasion of breast cancer cells. Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐O‐sulfotransferase (HS2ST1), the enzyme mediating 2‐O‐sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF‐7 and MDA‐MB‐231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF‐2) to HS2ST1‐expressing cells compared with control cells. HS2ST1‐overexpressing cells showed reduced MAPK signaling responses to FGF‐2, and altered expression of epidermal growth factor receptor (EGFR), E‐cadherin, Wnt‐7a, and Tcf4. The increased viability of HS2ST1‐depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1‐dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E‐cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways. Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2-O-sulfotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF-7 and MDA-MB-231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF-2) to HS2ST1-expressing cells compared with control cells. HS2ST1-overexpressing cells showed reduced MAPK signal-ing responses to FGF-2, and altered expression of epidermal growth factor receptor (EGFR), E-cadherin, Wnt-7a, and Tcf4. The increased viability of HS2ST1-depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. This is an open access article under the terms of the Creat ive Commo ns Attri butio n-NonCo mmerc ial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2‐ O‐ sulfotransferase ( HS2ST1 ), the enzyme mediating 2‐ O‐ sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF‐7 and MDA‐MB‐231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF‐2) to HS2ST1 ‐expressing cells compared with control cells. HS2ST1 ‐overexpressing cells showed reduced MAPK signaling responses to FGF‐2, and altered expression of epidermal growth factor receptor (EGFR), E‐cadherin, Wnt‐7a, and Tcf4. The increased viability of HS2ST1 ‐depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1 ‐dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E‐cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways. |
Author | Mohamed, Hossam Taha Untereiner, Valérie Sockalingum, Ganesh Dhruvananda Mohr, Benedikt Götte, Martin Ibrahim, Sherif Abdelaziz Brézillon, Stéphane Greve, Burkhard Goycoolea, Francisco M. Kemper, Björn Kiesel, Ludwig Kumar Katakam, Sampath Pavão, Mauro S.G. Vijaya Kumar, Archana Motta, Juliana M. |
AuthorAffiliation | 2 CNRS, MEDyC UMR 7369, UFR de Médecine Université de Reims Champagne‐Ardenne Reims France 7 Biomedical Technology Center of the Medical Faculty University of Münster Münster Germany 10 Instituto de Bioquímica Médica Leopoldo de Meis Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil 1 Department of Gynecology and Obstetrics Münster University Hospital Münster Germany 6 Faculty of Biotechnology October University for Modern Sciences and Arts Giza Egypt 4 Université de Reims Champagne‐Ardenne, BioSpecT EA7506 Reims France 8 Department of Radiotherapy – Radiooncology University Hospital Münster Münster Germany 3 Université de Reims Champagne‐Ardenne, PICT Reims France 9 School of Food Science and Nutrition University of Leeds Leeds UK 5 Department of Zoology Faculty of Science Cairo University Giza Egypt |
AuthorAffiliation_xml | – name: 2 CNRS, MEDyC UMR 7369, UFR de Médecine Université de Reims Champagne‐Ardenne Reims France – name: 10 Instituto de Bioquímica Médica Leopoldo de Meis Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil – name: 1 Department of Gynecology and Obstetrics Münster University Hospital Münster Germany – name: 4 Université de Reims Champagne‐Ardenne, BioSpecT EA7506 Reims France – name: 5 Department of Zoology Faculty of Science Cairo University Giza Egypt – name: 7 Biomedical Technology Center of the Medical Faculty University of Münster Münster Germany – name: 6 Faculty of Biotechnology October University for Modern Sciences and Arts Giza Egypt – name: 9 School of Food Science and Nutrition University of Leeds Leeds UK – name: 8 Department of Radiotherapy – Radiooncology University Hospital Münster Münster Germany – name: 3 Université de Reims Champagne‐Ardenne, PICT Reims France |
Author_xml | – sequence: 1 givenname: Archana surname: Vijaya Kumar fullname: Vijaya Kumar, Archana organization: Münster University Hospital – sequence: 2 givenname: Stéphane orcidid: 0000-0001-7954-8340 surname: Brézillon fullname: Brézillon, Stéphane organization: Université de Reims Champagne‐Ardenne – sequence: 3 givenname: Valérie orcidid: 0000-0002-3360-0171 surname: Untereiner fullname: Untereiner, Valérie organization: Université de Reims Champagne‐Ardenne, PICT – sequence: 4 givenname: Ganesh Dhruvananda orcidid: 0000-0003-3160-4678 surname: Sockalingum fullname: Sockalingum, Ganesh Dhruvananda organization: Université de Reims Champagne‐Ardenne, BioSpecT EA7506 – sequence: 5 givenname: Sampath surname: Kumar Katakam fullname: Kumar Katakam, Sampath organization: Münster University Hospital – sequence: 6 givenname: Hossam Taha orcidid: 0000-0003-1989-5783 surname: Mohamed fullname: Mohamed, Hossam Taha organization: October University for Modern Sciences and Arts – sequence: 7 givenname: Björn orcidid: 0000-0003-3693-9397 surname: Kemper fullname: Kemper, Björn organization: University of Münster – sequence: 8 givenname: Burkhard surname: Greve fullname: Greve, Burkhard organization: University Hospital Münster – sequence: 9 givenname: Benedikt orcidid: 0000-0001-9769-9986 surname: Mohr fullname: Mohr, Benedikt organization: Münster University Hospital – sequence: 10 givenname: Sherif Abdelaziz orcidid: 0000-0001-6403-7345 surname: Ibrahim fullname: Ibrahim, Sherif Abdelaziz organization: Cairo University – sequence: 11 givenname: Francisco M. orcidid: 0000-0001-7949-5429 surname: Goycoolea fullname: Goycoolea, Francisco M. organization: University of Leeds – sequence: 12 givenname: Ludwig surname: Kiesel fullname: Kiesel, Ludwig organization: Münster University Hospital – sequence: 13 givenname: Mauro S.G. orcidid: 0000-0002-1336-4271 surname: Pavão fullname: Pavão, Mauro S.G. organization: Universidade Federal do Rio de Janeiro – sequence: 14 givenname: Juliana M. orcidid: 0000-0001-6687-6222 surname: Motta fullname: Motta, Juliana M. organization: Universidade Federal do Rio de Janeiro – sequence: 15 givenname: Martin orcidid: 0000-0003-2360-2496 surname: Götte fullname: Götte, Martin email: mgotte@uni-muenster.de organization: Münster University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32573871$$D View this record in MEDLINE/PubMed https://hal.univ-reims.fr/hal-02986569$$DView record in HAL |
BookMark | eNp9kctuEzEUhkeoiF5gwQsgS6yQOq3vM94gRREQpEgsUtbWiedM4mriCfZk2ux4BJ6RJ8FtSrlI4I2t4-_8v875T4uj0AcsipeMXrB8Lh2kCyaVME-KEyakKStK9dH9uyoNFfy4OE3pmlKhpZHPimPBVSXqip0Ut7MFX1yx71-_NbjF0GAYSPKrAJ0PK7KFYX0D-0QaHDBufECyjAhpIA6Cw0gcdh0ZPSx954f9OdnAEP0t8SHj4Abfh3ROIDS5MkLyY-7HNYy-j8-Lpy10CV883GfF5_fvrqazcv7pw8fpZF46ZYwp3dI5EJWiXDGNAg2TrqmEhKZyyOu6bhFlK6EyvGbKtcwwxalQqLHVHKg4K94edLe75QYblweM0Nlt9BuIe9uDt3_-BL-2q360lWSGcp0F3hwE1n-1zSZze1ej3NRaaTOyzL5-MIv9lx2mwV73u5iXmSxX3OhaU6P_S8kcjaKM1798XexTitg-mjNq72K3OXZ7H3tmX_0-5CP5M-cMXB6AG9_h_t9KdjpZHCR_AJbOumg |
CitedBy_id | crossref_primary_10_3389_fcell_2020_559554 crossref_primary_10_3389_fonc_2022_803899 crossref_primary_10_1210_endocr_bqab265 crossref_primary_10_1016_j_cellsig_2020_109822 crossref_primary_10_3390_ijms21186588 crossref_primary_10_1002_jcb_29886 crossref_primary_10_1111_febs_17107 crossref_primary_10_3389_fonc_2021_778752 crossref_primary_10_3390_molecules25184300 crossref_primary_10_1016_j_heliyon_2024_e28493 crossref_primary_10_3389_fendo_2022_1047433 crossref_primary_10_1016_j_arcmed_2022_11_004 crossref_primary_10_1152_ajpcell_00152_2022 crossref_primary_10_3390_cancers15061794 crossref_primary_10_3390_biom11040503 crossref_primary_10_3390_biom11060809 crossref_primary_10_1097_MD_0000000000030192 |
Cites_doi | 10.1074/jbc.M405382200 10.1371/journal.pone.0055298 10.1074/jbc.M112.398826 10.1093/carcin/bgp001 10.1387/ijdb.113396se 10.1074/mcp.M900031-MCP200 10.1038/sj.onc.1202367 10.1016/S0968-0004(98)01343-7 10.1146/annurev.biochem.68.1.729 10.1007/978-1-61779-498-8_8 10.1038/sj.onc.1207217 10.1002/jps.22288 10.1002/(SICI)1097-0215(19990719)82:2<268::AID-IJC18>3.0.CO;2-4 10.1016/S0304-4165(02)00398-7 10.2353/ajpath.2010.080639 10.1016/S0065-230X(05)94002-5 10.1002/ijc.31662 10.1073/pnas.1734137100 10.1074/jbc.M113.499269 10.3390/cells8101118 10.1007/s10719-016-9743-6 10.1054/bjoc.2001.2054 10.3390/ijms18112301 10.1042/BST0340438 10.1158/1535-7163.MCT-06-0082 10.1074/jbc.272.3.1484 10.1007/BF01806690 10.1158/1541-7786.MCR-14-0022 10.1101/gad.12.12.1894 10.1242/jcs.110.3.345 10.1242/jcs.107.11.3201 10.1111/febs.12111 10.1242/dev.078238 10.1042/BST0340442 10.1054/bjoc.2001.2178 10.1016/j.semcancer.2019.07.012 10.1073/pnas.0401591102 10.3389/fonc.2014.00221 10.1007/s10585-004-3503-x 10.1210/en.2002-220186 10.1038/nature10912 10.1021/bi002926p 10.1021/acs.chemrev.8b00354 10.1016/S0021-9258(20)80471-2 10.1146/annurev.biochem.71.110601.135458 10.1002/ijc.28921 10.1038/sj.onc.1207278 10.1038/sj.onc.1203245 10.1016/S0959-8049(03)00235-1 10.1080/15419060214147 10.1371/journal.pone.0038464 10.1093/glycob/cwq089 10.1007/s00216-014-7994-2 10.1016/j.cytogfr.2005.01.008 10.1073/pnas.241175798 10.1038/nrc842 10.1016/j.tibs.2014.03.001 10.1201/9780203852569 10.1074/jbc.273.39.24979 10.1172/JCI200113530 10.1016/S0021-9258(17)41946-6 10.1097/PPO.0b013e3181d24fc1 10.1016/j.molcel.2009.08.002 10.1038/onc.2010.386 10.1364/AO.47.000A52 10.1074/jbc.M510760200 10.1093/glycob/cwp031 10.1117/1.3431712 10.1111/j.1742-4658.2012.08529.x 10.1186/bcr1641 10.1038/nrc1649 10.1128/MMBR.68.2.320-344.2004 10.1038/nrm1681 10.1038/sj.onc.1204541 10.1371/journal.pone.0011644 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial - NoDerivatives |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PIMPY PQEST PQQKQ PQUKI PRINS 1XC VOOES 5PM |
DOI | 10.1111/cas.14539 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences Biological Science Database Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | VIJAYA KUMAR et al |
EISSN | 1349-7006 |
EndPage | 2922 |
ExternalDocumentID | oai_HAL_hal_02986569v1 10_1111_cas_14539 32573871 CAS14539 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: WWU fellowship of the University of Münster – fundername: Deutscher Akademischer Austauschdienst funderid: PROBRAL 54387857 – fundername: Deutsche Forschungsgemeinschaft funderid: GRK 1549 – fundername: Deutsche Forschungsgemeinschaft grantid: GRK 1549 – fundername: Deutscher Akademischer Austauschdienst grantid: PROBRAL 54387857 – fundername: ; grantid: GRK 1549 – fundername: ; grantid: PROBRAL 54387857 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACSCC ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5999-cbcca37502516e3e914cd734ad7ce2888fee4f4a792815cf19152035e6ef62a03 |
IEDL.DBID | RPM |
ISSN | 1347-9032 |
IngestDate | Tue Sep 17 21:15:21 EDT 2024 Tue Oct 15 15:49:49 EDT 2024 Thu Oct 10 19:18:02 EDT 2024 Thu Oct 10 19:38:31 EDT 2024 Thu Nov 21 20:47:39 EST 2024 Sat Sep 28 08:27:31 EDT 2024 Sat Aug 24 01:06:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 2-O-sulfotransferase breast cancer heparan sulfate MAPK signaling pathway proteoglycan |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5999-cbcca37502516e3e914cd734ad7ce2888fee4f4a792815cf19152035e6ef62a03 |
Notes | Juliana M. Motta and Martin Götte are shared senior authors of this study. |
ORCID | 0000-0003-1989-5783 0000-0002-3360-0171 0000-0001-7954-8340 0000-0001-9769-9986 0000-0001-6403-7345 0000-0003-2360-2496 0000-0003-3693-9397 0000-0001-6687-6222 0000-0003-3160-4678 0000-0002-1336-4271 0000-0001-7949-5429 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419026/ |
PMID | 32573871 |
PQID | 2432550128 |
PQPubID | 4378882 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7419026 hal_primary_oai_HAL_hal_02986569v1 proquest_journals_2529686096 proquest_journals_2432550128 crossref_primary_10_1111_cas_14539 pubmed_primary_32573871 wiley_primary_10_1111_cas_14539_CAS14539 |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Open Access John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Open Access – name: John Wiley and Sons Inc |
References | 2004; 21 1987; 1 2010; 16 2012; 485 2012; 287 2006; 34 1987; 9 2020; 62 1997; 272 1997; 110 2004; 23 2004; 68 2013; 288 2005; 20 2011; 55 2013; 280 2001; 108 1999; 82 2003; 114 2013; 8 2001; 40 2001; 85 1998; 273 2014; 135 2010; 20 2014; 4 2014; 406 1994; 269 2002; 143 2010; 29 2005; 102 1999; 18 2017; 34 2011; 20 2007; 9 2010; 153 2006; 281 2009; 19 1994; 107 2010; 5 2012; 139 1998; 12 2001; 98 2019; 8 2015; 13 2002; 9 1989; 8 1999; 68 1999; 24 2002; 2 2006; 5 2007 2006 2003; 39 1993; 268 2019; 144 2002; 1573 2006; 6191 2009; 35 2009; 30 2004; 279 2005; 5 2008; 47 2010; 176 2014; 37 2005; 6 2009; 8 2002; 71 2017; 18 1995; 189 2005; 94 2012; 279 1999; 118 2012; 7 2005; 16 2003; 100 2011; 100 2003; 22 2012; 836 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 Paget S (e_1_2_7_72_1) 1989; 8 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 Weinberg R (e_1_2_7_36_1) 2007 e_1_2_7_39_1 Birchmeier W (e_1_2_7_40_1) 1995; 189 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 Sainsbury JR (e_1_2_7_74_1) 1987; 1 e_1_2_7_16_1 Earp HS (e_1_2_7_56_1) 2003; 114 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Kemper B (e_1_2_7_29_1) 2006; 6191 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 Wang GK (e_1_2_7_57_1) 2005; 20 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Weinberg R (e_1_2_7_68_1) 2006 |
References_xml | – volume: 68 start-page: 320 year: 2004 end-page: 344 article-title: ERK and p38 MAPK‐activated protein kinases: a family of protein kinases with diverse biological functions publication-title: Microbiol Mol Biol Rev – volume: 288 start-page: 34384 year: 2013 end-page: 34393 article-title: Analysis of Drosophila glucuronyl C5‐epimerase: implications for developmental roles of heparan sulfate sulfation compensation and 2‐ sulfated glucuronic acid publication-title: J Biol Chem – volume: 281 start-page: 1731 year: 2006 end-page: 1740 article-title: VEGF165‐binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase publication-title: J Biol Chem – volume: 9 start-page: 17 year: 1987 end-page: 26 article-title: Review: biologic heterogeneity of cancer metastases publication-title: Breast Cancer Res Treat – start-page: 864 year: 2006 – volume: 34 start-page: 442 year: 2006 end-page: 445 article-title: Insights into the role of heparan sulphate in fibroblast growth factor signaling publication-title: Biochem Soc Trans – volume: 85 start-page: 1094 year: 2001 end-page: 1098 article-title: Heparan sulfate proteoglycans and cancer publication-title: Br J Cancer – volume: 47 start-page: A52 year: 2008 end-page: A61 article-title: Digital holographic microscopy for life cell applications and technical inspection publication-title: Appl Opt – volume: 35 start-page: 511 year: 2009 end-page: 522 article-title: RSK is a principal effector of the RAS‐ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells publication-title: Mol Cell – start-page: 587 year: 2007 end-page: 654 – volume: 144 start-page: 389 year: 2019 end-page: 401 article-title: Activation of WNT/β‐catenin signaling results in resistance to a dual PI3K/mTOR inhibitor in colorectal cancer cells harboring PIK3CA mutations publication-title: Int J Cancer – volume: 21 start-page: 525 year: 2004 end-page: 533 article-title: Breast cancer cells with inhibition of p38alpha have decreased MMP‐9 activity and exhibit decreased bone metastasis in mice publication-title: Clin Exp Metastasis – volume: 71 start-page: 435 year: 2002 end-page: 471 article-title: Order out of chaos: assembly of ligand binding sites in heparan sulfate publication-title: Annu Rev Biochem – volume: 139 start-page: 1296 year: 2012 end-page: 1305 article-title: 2‐O‐sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly publication-title: Development – volume: 107 start-page: 3201 year: 1994 end-page: 3212 article-title: Heparan sulfate proteoglycans as transducers of FGF‐2 signaling publication-title: J Cell Sci – volume: 8 year: 2013 article-title: APRIL induces tumorigenesis and metastasis of colorectal cancer cells via activation of the PI3K/Akt pathway publication-title: PLoS One – volume: 1 start-page: 1398 year: 1987 end-page: 1402 article-title: Epidermal‐growth‐factor receptor status as predictor of early recurrence of and death from breast cancer publication-title: Lancet – volume: 279 start-page: 1177 year: 2012 end-page: 1197 article-title: Glycosaminoglycans: key players in cancer cell biology and treatment publication-title: FEBS J – volume: 13 start-page: 138 year: 2015 end-page: 148 article-title: Alteration of cell‐cell and cell‐matrix adhesion in urothelial cells: an oncogenic mechanism for mutant FGFR3 publication-title: Mol Cancer Res – volume: 118 start-page: 9152 year: 1999 end-page: 9232 article-title: Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics publication-title: Chem Rev – volume: 19 start-page: 644 year: 2009 end-page: 654 article-title: Specific inhibition of FGF‐2 signaling with 2‐ sulfated octasaccharides of heparan sulfate publication-title: Glycobiology – volume: 20 start-page: 1274 year: 2010 end-page: 1282 article-title: Target selection of heparan sulfate hexuronic acid 2‐ sulfotransferase publication-title: Glycobiology – volume: 4 start-page: 221 year: 2014 article-title: Hormone resistance in two MCF‐7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis, and increased sensitivity to cytotoxic drugs publication-title: Front Oncol – volume: 287 start-page: 40061 year: 2012 end-page: 40073 article-title: Diversification of the structural determinants of fibroblast growth factor–heparin interactions: implications for binding specificity publication-title: J Biol Chem – volume: 18 start-page: 7860 year: 1999 end-page: 7872 article-title: Mechanism and function of signal transduction by the Wnt/beta‐catenin and Wnt/Ca pathways publication-title: Oncogene – volume: 272 start-page: 1484 year: 1997 end-page: 1492 article-title: Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action publication-title: J Biol Chem – volume: 9 start-page: R8 year: 2007 article-title: An expression signature of syndecan‐1 (CD138), E‐cadherin and c‐met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ publication-title: Breast Cancer Res – volume: 12 start-page: 1894 year: 1998 end-page: 1906 article-title: Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2‐sulfotransferase publication-title: Genes Dev – volume: 9 start-page: 87 year: 2002 end-page: 102 article-title: The invasive phenotype in HMT‐3522 cells requires increased EGF receptor signaling through both PI 3‐kinase and ERK 1,2 pathways publication-title: Cell Commun Adhes – volume: 40 start-page: 5548 year: 2001 end-page: 5555 article-title: Substrate specificity of the heparan sulfate hexuronic acid 2‐Osulfotransferase publication-title: Biochemistry – volume: 836 start-page: 117 year: 2012 end-page: 130 article-title: Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis publication-title: Methods Mol Biol – volume: 8 start-page: 98 year: 1989 end-page: 101 article-title: The distribution of secondary growths in cancer of the breast publication-title: Cancer Metastasis Rev – volume: 273 start-page: 24979 year: 1998 end-page: 24982 article-title: Regulated diversity of heparan sulfate publication-title: J Biol Chem – volume: 5 start-page: 526 year: 2005 end-page: 542 article-title: The sweet and sour of cancer: glycans as novel therapeutic targets publication-title: Nat Rev Cancer – volume: 82 start-page: 268 year: 1999 end-page: 273 article-title: Mitogen‐activated protein kinase (MAPK) regulates the expression of progelatinase B (MMP‐9) in breast epithelial cells publication-title: Int J Cancer – volume: 8 start-page: 2256 year: 2009 end-page: 2265 article-title: Identification of heparin‐binding sites in proteins by selective labeling publication-title: Mol Cell Proteomics – volume: 34 start-page: 438 year: 2006 end-page: 441 article-title: Multiprotein signaling complexes: regional assembly on heparan sulphate publication-title: Biochem Soc Trans – volume: 85 start-page: 1958 year: 2001 end-page: 1963 article-title: E‐cadherin as a prognostic indicator in primary breast cancer publication-title: Br J Cancer – volume: 22 start-page: 9243 year: 2003 end-page: 9253 article-title: Mammary gland development requires syndecan‐1 to create a beta‐catenin/TCF‐responsive mammary epithelial subpopulation publication-title: Oncogene – volume: 485 start-page: 55 year: 2012 end-page: 61 article-title: The translational landscape of mTOR signalling steers cancer initiation and metastasis publication-title: Nature – volume: 18 start-page: 813 year: 1999 end-page: 822 article-title: Constitutive activation of the 41‐/43‐kDa mitogen‐activated protein kinase pathway in human tumors publication-title: Oncogene – volume: 2 start-page: 521 year: 2002 end-page: 528 article-title: Roles of heparan‐sulfate glycosaminoglycans in cancer publication-title: Nat Rev Cancer – volume: 37 start-page: 277 year: 2014 end-page: 288 article-title: Heparan sulfate signaling in cancer publication-title: Trends Biochem Sci – volume: 100 start-page: 441 issue: 2 year: 2011 end-page: 450 article-title: Rapid characterization of glycosaminoglycans using a combined approach by infrared and Raman microspectroscopies publication-title: J Pharm Sci – volume: 268 start-page: 23906 year: 1993 end-page: 23914 article-title: Activating and inhibitory heparin sequences for FGF‐2 (basic FGF) publication-title: J Biol Chem – volume: 100 start-page: 10429 year: 2003 end-page: 10434 article-title: WNT7a induces E‐cadherin in lung cancer cells publication-title: PNAS – volume: 68 start-page: 729 year: 1999 end-page: 777 article-title: Functions of cell surface heparan sulfate proteoglycans publication-title: Annu Rev Biochem – volume: 16 start-page: 23 year: 2010 end-page: 32 article-title: Epidermal growth factor receptor in triplenegative and basal‐like breast cancer: promising clinical target or only a marker? publication-title: Cancer J – volume: 108 start-page: 169 year: 2001 end-page: 173 article-title: Molecular diversity of heparan sulfate publication-title: J Clin Invest – volume: 189 start-page: 124 year: 1995 end-page: 136 article-title: E‐cadherin as an invasion suppressor publication-title: Ciba Found Symp – volume: 62 start-page: 48 year: 2020 end-page: 67 article-title: Role of cell surface proteoglycans in cancer immunotherapy publication-title: Semin Cancer Biol – volume: 102 start-page: 1507 year: 2005 end-page: 1512 article-title: Heparan 2‐ sulfotransferase, hst‐2, is essential for normal cell migration in publication-title: Proc Natl Acad Sci – volume: 279 start-page: 42732 year: 2004 end-page: 42741 article-title: Heparan sulfate structure in mice with genetically modified heparan sulfate production publication-title: J Biol Chem – volume: 110 start-page: 345 year: 1997 end-page: 356 article-title: E‐cadherin mediates adhesion and suppresses cell motility via distinct mechanisms publication-title: J Cell Sci – volume: 34 start-page: 309 year: 2017 end-page: 323 article-title: Implementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systems publication-title: Glycoconj J – volume: 20 start-page: 4209 year: 2011 end-page: 4218 article-title: Temporal and quantitative regulation of mitogen‐activated protein kinase (MAPK) modulates cell motility and invasion publication-title: Oncogene – volume: 406 start-page: 5795 issue: 24 year: 2014 end-page: 5803 article-title: Glycosaminoglycan profiling in different cell types using infrared spectroscopy and imaging publication-title: Anal Bioanal Chem – volume: 16 start-page: 107 year: 2005 end-page: 137 article-title: Structural basis for fibroblast growth factor receptor activation publication-title: Cytokine Growth Factor Rev – volume: 5 year: 2010 article-title: Synthetic heparan sulfate oligosaccharides inhibit endothelial cell functions essential for angiogenesis publication-title: PLoS One – volume: 30 start-page: 397 year: 2009 end-page: 407 article-title: Differential roles for membrane‐bound and soluble syndecan‐1 (CD138) in breast cancer progression publication-title: Carcinogenesis – volume: 7 year: 2012 article-title: Tetraspanin CO‐029 inhibits colorectal cancer celln movement by deregulating cell‐matrix and cell‐cell adhesions publication-title: PLoS One – volume: 39 start-page: 1348 year: 2003 end-page: 1354 article-title: Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti‐EGFR drugs publication-title: Eur J Cancer – volume: 55 start-page: 685 year: 2011 end-page: 696 article-title: The epidermal growth factor receptor/Erb‐B/HER family in normal and malignant breast biology publication-title: Int J Dev Biol – volume: 135 start-page: 2579 year: 2014 end-page: 2592 article-title: HS3ST2 modulates breast cancer cell invasiveness via MAP kinase‐ and Tcf4 (Tcf7l2)‐dependent regulation of protease and cadherin expression publication-title: Int J Cancer – volume: 143 start-page: 3221 year: 2002 end-page: 3229 article-title: Activation of the MAPK pathway enhances sensitivity of MCF‐7 breast cancer cells to the mitogenic effect of estradiol publication-title: Endocrinology – volume: 23 start-page: 991 year: 2004 end-page: 999 article-title: Multiple G‐protein coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion publication-title: Oncogene – volume: 94 start-page: 29 year: 2005 end-page: 86 article-title: Activation of AKT kinases in cancer: implications for therapeutic targeting publication-title: Adv Cancer Res – volume: 114 start-page: 315 year: 2003 end-page: 333 article-title: The EGF receptor family– multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4 publication-title: Trans Am Clin Climatol Assoc – volume: 24 start-page: 73 year: 1999 end-page: 76 article-title: The role of the cell‐adhesion molecule E‐cadherin as a tumor‐suppressor gene publication-title: Trends Biochem Sci – volume: 1573 start-page: 312 year: 2002 end-page: 318 article-title: Heparan sulfate fine structure and specificity of proteoglycan functions publication-title: Biochim Biophys Acta – volume: 20 start-page: 593 year: 2005 end-page: 602 article-title: The signaling network of tumor invasion publication-title: Histol Histopathol – volume: 6191 start-page: T‐1 year: 2006 end-page: T‐8 article-title: Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells publication-title: Proceedings of SPIE – volume: 5 start-page: 2139 year: 2006 end-page: 2148 article-title: Therapeutic value of glycosaminoglycans in cancer publication-title: Mol Cancer Ther – volume: 8 start-page: 1118 year: 2019 article-title: The E‐Cadherin and N‐cadherin switch in epithelial‐to‐mesenchymal transition: signaling, therapeutic implications, and challenges publication-title: Cells – volume: 98 start-page: 12984 year: 2001 end-page: 12989 article-title: Enzyme interactions in heparan sulfate biosynthesis: uronosyl 5‐epimerase and 2‐ sulfotransferase interact in vivo publication-title: Proc Natl Acad Sci – volume: 153 year: 2010 article-title: Label‐free quantitative cell division monitoring of endothelial cells by digital holographic microscopy publication-title: J Biomedical Optics – volume: 29 start-page: 6569 year: 2010 end-page: 6580 article-title: miR‐145‐dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness publication-title: Oncogene – volume: 6 start-page: 530 year: 2005 end-page: 541 article-title: Heparan sulphate proteoglycans: the sweet side of development publication-title: Nat Rev Mol Cell Biol – volume: 269 start-page: 3903 year: 1994 article-title: Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor publication-title: J Biol Chem – volume: 176 start-page: 146 year: 2010 end-page: 157 article-title: Enoxaparin improves the course of dextran sodium sulfate‐induced colitis in syndecan‐1‐deficient mice publication-title: Am J Pathol – volume: 280 start-page: 2216 year: 2013 end-page: 2227 article-title: Syndecan‐1 modulates β‐integrin‐dependent and interleukin‐6‐dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation publication-title: FEBS J – volume: 18 start-page: 2301 issue: 11 year: 2017 article-title: Heparan sulfate biosynthetic system is inhibited in human glioma due to EXT1/2 and HS6ST1/2 down‐regulation publication-title: Int J Mol Sci – ident: e_1_2_7_27_1 doi: 10.1074/jbc.M405382200 – ident: e_1_2_7_59_1 doi: 10.1371/journal.pone.0055298 – ident: e_1_2_7_79_1 doi: 10.1074/jbc.M112.398826 – ident: e_1_2_7_26_1 doi: 10.1093/carcin/bgp001 – ident: e_1_2_7_76_1 doi: 10.1387/ijdb.113396se – ident: e_1_2_7_80_1 doi: 10.1074/mcp.M900031-MCP200 – ident: e_1_2_7_55_1 doi: 10.1038/sj.onc.1202367 – ident: e_1_2_7_67_1 doi: 10.1016/S0968-0004(98)01343-7 – ident: e_1_2_7_2_1 doi: 10.1146/annurev.biochem.68.1.729 – ident: e_1_2_7_33_1 doi: 10.1007/978-1-61779-498-8_8 – ident: e_1_2_7_45_1 doi: 10.1038/sj.onc.1207217 – ident: e_1_2_7_34_1 doi: 10.1002/jps.22288 – ident: e_1_2_7_54_1 doi: 10.1002/(SICI)1097-0215(19990719)82:2<268::AID-IJC18>3.0.CO;2-4 – ident: e_1_2_7_11_1 doi: 10.1016/S0304-4165(02)00398-7 – ident: e_1_2_7_50_1 doi: 10.2353/ajpath.2010.080639 – ident: e_1_2_7_60_1 doi: 10.1016/S0065-230X(05)94002-5 – ident: e_1_2_7_62_1 doi: 10.1002/ijc.31662 – ident: e_1_2_7_66_1 doi: 10.1073/pnas.1734137100 – ident: e_1_2_7_12_1 doi: 10.1074/jbc.M113.499269 – ident: e_1_2_7_69_1 doi: 10.3390/cells8101118 – ident: e_1_2_7_32_1 doi: 10.1007/s10719-016-9743-6 – ident: e_1_2_7_6_1 doi: 10.1054/bjoc.2001.2054 – ident: e_1_2_7_51_1 doi: 10.3390/ijms18112301 – ident: e_1_2_7_10_1 doi: 10.1042/BST0340438 – ident: e_1_2_7_24_1 doi: 10.1158/1535-7163.MCT-06-0082 – ident: e_1_2_7_83_1 doi: 10.1074/jbc.272.3.1484 – ident: e_1_2_7_37_1 doi: 10.1007/BF01806690 – ident: e_1_2_7_71_1 doi: 10.1158/1541-7786.MCR-14-0022 – volume: 8 start-page: 98 year: 1989 ident: e_1_2_7_72_1 article-title: The distribution of secondary growths in cancer of the breast publication-title: Cancer Metastasis Rev contributor: fullname: Paget S – ident: e_1_2_7_21_1 doi: 10.1101/gad.12.12.1894 – ident: e_1_2_7_41_1 doi: 10.1242/jcs.110.3.345 – ident: e_1_2_7_39_1 doi: 10.1242/jcs.107.11.3201 – ident: e_1_2_7_8_1 doi: 10.1111/febs.12111 – ident: e_1_2_7_70_1 doi: 10.1242/dev.078238 – ident: e_1_2_7_82_1 doi: 10.1042/BST0340442 – ident: e_1_2_7_42_1 doi: 10.1054/bjoc.2001.2178 – ident: e_1_2_7_5_1 doi: 10.1016/j.semcancer.2019.07.012 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.0401591102 – ident: e_1_2_7_64_1 doi: 10.3389/fonc.2014.00221 – ident: e_1_2_7_61_1 doi: 10.1007/s10585-004-3503-x – ident: e_1_2_7_65_1 doi: 10.1210/en.2002-220186 – ident: e_1_2_7_63_1 doi: 10.1038/nature10912 – ident: e_1_2_7_20_1 doi: 10.1021/bi002926p – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.8b00354 – ident: e_1_2_7_18_1 doi: 10.1016/S0021-9258(20)80471-2 – volume: 20 start-page: 593 year: 2005 ident: e_1_2_7_57_1 article-title: The signaling network of tumor invasion publication-title: Histol Histopathol contributor: fullname: Wang GK – ident: e_1_2_7_13_1 doi: 10.1146/annurev.biochem.71.110601.135458 – ident: e_1_2_7_46_1 doi: 10.1002/ijc.28921 – ident: e_1_2_7_77_1 doi: 10.1038/sj.onc.1207278 – ident: e_1_2_7_44_1 doi: 10.1038/sj.onc.1203245 – ident: e_1_2_7_75_1 doi: 10.1016/S0959-8049(03)00235-1 – start-page: 587 volume-title: Moving Out: Invasion and Metastasis. The Biology of Cancer. Chapter 14 year: 2007 ident: e_1_2_7_36_1 contributor: fullname: Weinberg R – ident: e_1_2_7_58_1 doi: 10.1080/15419060214147 – ident: e_1_2_7_73_1 doi: 10.1371/journal.pone.0038464 – ident: e_1_2_7_19_1 doi: 10.1093/glycob/cwq089 – volume: 189 start-page: 124 year: 1995 ident: e_1_2_7_40_1 article-title: E‐cadherin as an invasion suppressor publication-title: Ciba Found Symp contributor: fullname: Birchmeier W – ident: e_1_2_7_35_1 doi: 10.1007/s00216-014-7994-2 – ident: e_1_2_7_81_1 doi: 10.1016/j.cytogfr.2005.01.008 – volume: 114 start-page: 315 year: 2003 ident: e_1_2_7_56_1 article-title: The EGF receptor family– multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4 publication-title: Trans Am Clin Climatol Assoc contributor: fullname: Earp HS – volume: 1 start-page: 1398 year: 1987 ident: e_1_2_7_74_1 article-title: Epidermal‐growth‐factor receptor status as predictor of early recurrence of and death from breast cancer publication-title: Lancet contributor: fullname: Sainsbury JR – ident: e_1_2_7_14_1 doi: 10.1073/pnas.241175798 – ident: e_1_2_7_7_1 doi: 10.1038/nrc842 – ident: e_1_2_7_38_1 doi: 10.1016/j.tibs.2014.03.001 – start-page: 864 volume-title: The Biology of Cancer year: 2006 ident: e_1_2_7_68_1 doi: 10.1201/9780203852569 contributor: fullname: Weinberg R – ident: e_1_2_7_9_1 doi: 10.1074/jbc.273.39.24979 – ident: e_1_2_7_15_1 doi: 10.1172/JCI200113530 – ident: e_1_2_7_17_1 doi: 10.1016/S0021-9258(17)41946-6 – ident: e_1_2_7_47_1 doi: 10.1097/PPO.0b013e3181d24fc1 – ident: e_1_2_7_78_1 doi: 10.1016/j.molcel.2009.08.002 – ident: e_1_2_7_28_1 doi: 10.1038/onc.2010.386 – ident: e_1_2_7_30_1 doi: 10.1364/AO.47.000A52 – ident: e_1_2_7_16_1 doi: 10.1074/jbc.M510760200 – ident: e_1_2_7_48_1 doi: 10.1093/glycob/cwp031 – volume: 6191 start-page: T‐1 year: 2006 ident: e_1_2_7_29_1 article-title: Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells publication-title: Proceedings of SPIE contributor: fullname: Kemper B – ident: e_1_2_7_31_1 doi: 10.1117/1.3431712 – ident: e_1_2_7_23_1 doi: 10.1111/j.1742-4658.2012.08529.x – ident: e_1_2_7_43_1 doi: 10.1186/bcr1641 – ident: e_1_2_7_25_1 doi: 10.1038/nrc1649 – ident: e_1_2_7_53_1 doi: 10.1128/MMBR.68.2.320-344.2004 – ident: e_1_2_7_4_1 doi: 10.1038/nrm1681 – ident: e_1_2_7_52_1 doi: 10.1038/sj.onc.1204541 – ident: e_1_2_7_49_1 doi: 10.1371/journal.pone.0011644 |
SSID | ssj0036494 |
Score | 2.4602509 |
Snippet | Heparan sulfate proteoglycans (HSPGs) act as signaling co‐receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling... Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling... |
SourceID | pubmedcentral hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2907 |
SubjectTerms | 2‐O‐sulfotransferase Antigens, CD - metabolism Apoptosis Biochemistry, Molecular Biology Breast cancer Breast Neoplasms - pathology Butadienes - pharmacology Cadherins - metabolism Cell adhesion & migration Cell Movement - drug effects Cell Survival - drug effects Cell viability Cytokines Cytomegalovirus Epidermal growth factor Epidermal growth factor receptors ErbB Receptors - metabolism Extracellular matrix Female Fibroblast growth factor 2 Fibroblast Growth Factor 2 - metabolism Fibronectin Gene Knockdown Techniques Glycosaminoglycans Growth factors Heparan sulfate Heparan sulfate proteoglycans Humans Invasiveness Laminin Life Sciences MAP kinase MAP Kinase Signaling System - drug effects MAPK signaling pathway MCF-7 Cells Microscopy Motility Neoplasm Invasiveness - pathology Nitriles - pharmacology Original Phenotypes proteoglycan Proteoglycans RNA, Small Interfering - metabolism Signal transduction siRNA Sulfates Sulfotransferase Sulfotransferases - genetics Sulfotransferases - metabolism Tumor cell lines Wnt protein Wound healing |
Title | HS2ST1‐dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14539 https://www.ncbi.nlm.nih.gov/pubmed/32573871 https://www.proquest.com/docview/2432550128 https://www.proquest.com/docview/2529686096 https://hal.univ-reims.fr/hal-02986569 https://pubmed.ncbi.nlm.nih.gov/PMC7419026 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xPSAuCMpXoFQW4sCh6a4_EifH1dJqDy1C2iJxixzHVldi02p3u7Q3fgK_kV_CjBNXrNpeuEV2JCeZcTzPfvMG4GOuG55541JdSAQo3uvUaF-nhTN1U5vc1SFDbjrTX74Xn49IJieLuTCBtG_r-WH7Y3HYzs8Dt_JyYYeRJzb8ejrBVbBE7DAcwABjwwjRu9-vzFXZVbJVOi1HUvRyQkTfoSpiXGWSpEIl-qosNN9ajwbnxIa8G2reZUz-G8mGpej4GTztY0g27p71OTxy7S48Pu1PyV_A9XQmZmf8z6_fscTtmhFPw1DqOaMaxD_NzYo1PRPGsZqY6WtmyQOWjPby2WbeCXjfHLAFqfhfMxKWWHZpEKsDZtoGWzaG2O8s5vq_hG_HR2eTadpXWEhtRvIDtkYDSgwaMMrJnXQlV7bRUplGWycQHHvnlFdGl6LgmfUI7jIxkpnLnc-FGclXsNNetO4NsEY6xYWuKZ5RfFSUxpfWNMZ4wXEMm8CH-J2ry05Io4oABO1SBbvgTWiB236Svp6OTypqI6l4jD3LDU9gLxqo6ifcqhIKDZrRant_Nx0vFznitQRed6a8HSV6QgJ6y8hbj7Hdg44ZlLh7R0zgU3CHh1-smoxn4eLtfw_yDp4IwvqBfLgHO-vllXsPg1VztR82EvbDNPgLJGYNBQ |
link.rule.ids | 230,315,729,782,786,866,887,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2RIkEv5bNgKLBCHDjUjffDXvsYhVZGJBVSgsTNWq931UjErZI0tLf-BH5jf0ln1nZFVLj0Zu1aWlvz1jPjffOGkE-JqljstA1VKiBBcU6FWrkyTK0uq1IntvQVcvlEHf9MvxyiTE7c1cJ40r4pZwf1r_lBPTvx3Mqzuel3PLH-9_EQvGAGuUO_Rx7Cfo14l6Q3H2CRyKzpZStVmEWCt4JCSODBPmJMxgLFQgWgVaSKbXik3gnyIe8Gm3c5k3_Hst4ZHT2552s8JTtt9EkHzfQz8sDWz8mjcXu-_oJc5BM-mbLrqz9dc9wVRYaHxqJ1it2Lf-vLJa1aDo2lJXLaV9QgdhYUTwHoetZIf1_u0znq_19QlKRYNAUUy32q6wpG1hp587RTCXhJfhwdTod52PZmCE2MwgWmBNMLCDcgPkqssBmTplJC6koZyyGtdtZKJ7XKeMpi4yAtjHkkYptYl3AdiV2yVZ_W9jWhlbCScVViJCRZlGbaZUZXWjvOYA0TkI-dfYqzRoKj6FIXsGfh7Qk3geVu51E0Ox-MChxDkXmIWrM1C8heZ9ii3arLgksAQox--t_TeDCdJpDpBeRVA4HbVToEBURtgGPjMTZnAAtew7u1fUA-exj9_8WK4WDiL97ce5EP5HE-HY-K0dfjb2_JNsc_Bp7CuEe2Votz-470ltX5e7-JbgBauCGX |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6RIlVceFMMBVaIA4e68T7stY9R2iiItqqUInGz1vtQIxETJWlob_wEfiO_hJm1HREVLnCzdldar-Zbz4z3228IeZcpy1KvXaxyAQmK9yrWyldx7nRlK525KtyQG0_U2ef86BhlcjalvgJp31TTw_rL7LCeXgZu5Xxm-h1PrH9-OgQvWEDu0J9b3--Ru7BnE9kl6s1HWGSyaOrZShUXieCtqBCSeLCWGJOpQMFQAYgVuWJbXql3iZzI2wHnbd7k7_FscEijB_-xlIfkfhuF0kEz5BG54-rHZPe0PWd_Qq7HEz65YD-__-iK5K4oMj00Xl6nWMX4m75ZUttyaRytkNu-ogYxtKB4GkDX00YC_OaAzrAOwDVFaYpFc5FieUB1baFlrZE_Tzu1gKfk0-j4YjiO2xoNsUlRwMBUAAEBYQfESZkTrmDSWCWktso4Dum1d056qVXBc5YaD-lhyhORusz5jOtEPCM79dfaPSfUCicZVxVGRJIleaF9YbTV2nMGc5iIvO1sVM4bKY6yS2HApmWwKQwC6236UTx7PDgpsQ3F5iF6LdYsIvudcct2yy5LLgEMKfrrP3fjAXWeQcYXkb0GBptZOhRFRG0BZOs1tnsAD0HLu7V_RN4HKP19YeVwMAkPL_55kjdk9_xoVJ58OPv4ktzj-OMgMBn3yc5qceVekd7SXr0O--gXapokFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HS2ST1%E2%80%90dependent+signaling+pathways+determine+breast+cancer+cell+viability%2C+matrix+interactions%2C+and+invasive+behavior&rft.jtitle=Cancer+science&rft.au=Vijaya+Kumar%2C+Archana&rft.au=Br%C3%A9zillon%2C+St%C3%A9phane&rft.au=Untereiner%2C+Val%C3%A9rie&rft.au=Sockalingum%2C+Ganesh+Dhruvananda&rft.date=2020-08-01&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=111&rft.issue=8&rft.spage=2907&rft.epage=2922&rft_id=info:doi/10.1111%2Fcas.14539&rft.externalDBID=10.1111%252Fcas.14539&rft.externalDocID=CAS14539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |