Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing
Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated...
Saved in:
Published in: | Journal of biomedical materials research. Part A Vol. 104; no. 7; pp. 1728 - 1735 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-07-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728–1735, 2016. |
---|---|
AbstractList | Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 mu m microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728–1735, 2016. |
Author | Bowley, Chris M. Hoganson, David M. Goldman, Scott M. Meppelink, Amanda M. Bassett, Erik K. Finkelstein, Eric B. Vacanti, Joseph P. Owens, Gwen E. Hinkel, Cameron J. |
Author_xml | – sequence: 1 givenname: David M. surname: Hoganson fullname: Hoganson, David M. email: david.hoganson@cardio.chboston.org organization: Department of Cardiac Surgery, Boston Children's Hospital, Massachusetts, Boston – sequence: 2 givenname: Gwen E. surname: Owens fullname: Owens, Gwen E. organization: Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, California, Pasadena – sequence: 3 givenname: Amanda M. surname: Meppelink fullname: Meppelink, Amanda M. organization: Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Massachusetts, Boston – sequence: 4 givenname: Erik K. surname: Bassett fullname: Bassett, Erik K. organization: Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Massachusetts, Boston – sequence: 5 givenname: Chris M. surname: Bowley fullname: Bowley, Chris M. organization: DSM Biomedical, Pennsylvania, Exton – sequence: 6 givenname: Cameron J. surname: Hinkel fullname: Hinkel, Cameron J. organization: Department of Biomedical Engineering, Washington University in St. Louis, Missouri – sequence: 7 givenname: Eric B. surname: Finkelstein fullname: Finkelstein, Eric B. organization: Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, New York, Syracuse – sequence: 8 givenname: Scott M. surname: Goldman fullname: Goldman, Scott M. organization: DSM Biomedical, Pennsylvania, Exton – sequence: 9 givenname: Joseph P. surname: Vacanti fullname: Vacanti, Joseph P. organization: Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Massachusetts, Boston |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26946064$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0klv1DAUAGALFdEFTtyRJS5IKIOX2I6PbaEDVVkOICQuluO8UA9JPNhJO8Ovx8N05sChIFny9r1nW37H6GAIAyD0lJIZJYS9WtT9zM64UIQ_QEdUCFaUWoqDzbjUBWdaHqLjlBYZSyLYI3TIpC4lkeURun0NDrpu6mz0v6DBsBqj3a3g3o7Rr3DvXQxLG0fvOkjY5oZv4Hozw22IeO8b6PwNxDX2QyZ9yHMcWmwHm8bQh-QTvgbb-eH7Y_SwtV2CJ3f9Cfpy8ebz-dvi6uP83fnpVeGE1rxonXRNyaUqpa1lw0A0rqIVYW3tFOVAheSM5Q1R2ZJwUjkNZds2uua1qEHwE_Rim3cZw88J0mh6nzb3tQOEKRlaMVEKTTn9D0oqSUk-6t9UacYroiqd6fO_6CJMcchvNlQTJTjVvLpXKU0ZY4TwrF5uVf6OlCK0Zhl9b-PaUGI2tWByLRhr_tRC1s_uck51D83e7j4_A7YFt76D9X25zOXZ-9Nd1mIb5NMIq32QjT-MVFwJ8_XD3IiLs8tvcy7MJ_4bbULPUw |
CitedBy_id | crossref_primary_10_1016_j_powtec_2023_118501 crossref_primary_10_1016_j_msec_2019_109942 crossref_primary_10_1089_ten_tec_2020_0042 crossref_primary_10_1080_09205063_2020_1751523 crossref_primary_10_1016_j_addr_2018_07_019 crossref_primary_10_1002_adhm_201801217 crossref_primary_10_3390_pr8121656 crossref_primary_10_1177_0885328218824759 |
Cites_doi | 10.1016/j.stem.2008.08.003 10.1016/j.biomaterials.2012.09.079 10.1097/SLA.0000000000000599 10.1111/j.1525-1594.2011.01343.x 10.1016/j.biomaterials.2004.04.042 10.1016/j.jcws.2010.11.002 10.1016/j.jtcvs.2009.12.037 10.1016/S0140-6736(06)68438-9 10.3109/08941939309141619 10.1371/journal.pone.0001886 10.1186/scrt394 10.1163/156856298X00208 10.1007/s10856-012-4745-9 10.1002/jor.1100090504 10.1016/j.actbio.2010.10.005 10.1016/j.biomaterials.2007.02.029 10.1590/1678-775720140462 10.1016/j.biomaterials.2010.05.019 10.1016/j.urology.2013.02.023 10.1371/journal.pone.0007119 10.1016/j.biomaterials.2013.09.013 10.1016/j.biomaterials.2010.05.026 10.1111/j.1743-6109.2006.00148.x 10.1089/ten.tea.2010.0268 10.1111/j.1463-1318.2009.02004.x 10.1097/00002480-200207000-00003 10.1378/chest.12-2094 10.1016/j.jamcollsurg.2011.01.006 10.1245/s10434-013-3209-x 10.1161/CIRCRESAHA.108.179465 10.1089/ten.tea.2011.0301 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.35703 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Engineering Research Database CrossRef Materials Research Database MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 1735 |
ExternalDocumentID | 4067405021 10_1002_jbm_a_35703 26946064 JBMA35703 ark_67375_WNG_5FBJZG35_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: F32 DK076349‐01 – fundername: Kensey Nash Corporation (now DSM Biomedical) – fundername: NIDDK NIH HHS grantid: F32 DK076349 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c5993-fc6cd436746ab6d2e5dc81802fbc713e1563226d258a40308c9e4ffd9b3b5be53 |
IEDL.DBID | 33P |
ISSN | 1549-3296 |
IngestDate | Sat Aug 17 02:14:01 EDT 2024 Sat Aug 17 00:18:05 EDT 2024 Fri Aug 16 02:59:21 EDT 2024 Tue Nov 19 06:19:36 EST 2024 Thu Oct 10 20:08:48 EDT 2024 Thu Nov 21 22:34:24 EST 2024 Sat Sep 28 08:46:12 EDT 2024 Sat Aug 24 01:04:04 EDT 2024 Wed Oct 30 09:55:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | cell migration microparticles cell adhesion extracellular matrix 3-D cell culture |
Language | English |
License | 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5993-fc6cd436746ab6d2e5dc81802fbc713e1563226d258a40308c9e4ffd9b3b5be53 |
Notes | istex:439A79AF54BEE0968CBBF275FA55511563087A83 NIH - No. F32 DK076349-01 Kensey Nash Corporation (now DSM Biomedical) ArticleID:JBMA35703 ark:/67375/WNG-5FBJZG35-P A portion of these data were presented in abstract form at the annual meeting of the Society for Biomaterials April 10th–13th, 2013. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26946064 |
PQID | 1791222003 |
PQPubID | 2034572 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1825459131 proquest_miscellaneous_1808610258 proquest_miscellaneous_1792380789 proquest_journals_1907531938 proquest_journals_1791222003 crossref_primary_10_1002_jbm_a_35703 pubmed_primary_26946064 wiley_primary_10_1002_jbm_a_35703_JBMA35703 istex_primary_ark_67375_WNG_5FBJZG35_P |
PublicationCentury | 2000 |
PublicationDate | July 2016 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: A substrate for in vitro cell growth. J Biomater Sci Polym Ed 1998;9:863-878. Shin YS, Choi JW, Park JK, Kim YS, Yang SS, Min BH, Kim CH. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng 2014;43:1003-1013. Nascimento DS, Mosqueira D, Sousa LM, Teixeira M, Filipe M, Resende TP, Araugo AF, Valente M, Almeida J, Martins JP, Santos JM, Barcia RN, Cruz P, Cruz H, Pinto-do OP. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling following myocardial infarction by pro-angiogenic, anti-apoptotic and endogenous cell activation mechanisms. Stem Cell Res Ther 2014;5:5 Pittenger MF. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999;284:143-147. Hoganson DM, O'Doherty EM, Owens GE, Harilal DO, Goldman SM, Bowley CM, Neville CM, Kronengold RT, Vacanti JP. The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials 2010;31:6730-6770. Carlson M, Faria K, Shamis Y, Leman J, Ronfard V, Garlick J. Epidermal stem cells are preserved during commercial-scale manufacture of a bilayered, living cellular construct (Apligraf(R)). Tissue Eng Part A 2011;17:487-493. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2012;143:1590-1598. Zhao Y, Zhang Z, Wang J, Yin P, Zhou J, Zhen M, Cui W, Xu G, Yang D, Liu Z. Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs 2011;36:247-255. Fitzpatrick JR III, Frederick JR, McCormick RC, Harris DA, Kim AY, Muenzer JR, Gambogi AJ, Liu JP, Paulson EC, Woo YJ. Tissue-engineered pro-angiogenic fibroblast scaffold improves myocardial perfusion and function and limits ventricular remodeling after infarction. J Thorac Cardiovasc Surg 2010;140:667-676. Pound JC, Green DW, Roach HI, Mann S, Oreffo RO. An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 2007;28:2839-2849. Alves LB, Mariguela VC, Grisi MF, de Souza SL, Novaes Junior AB, Taba Junior M, de Oliveira PT, Palioto DB. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel. J Appl Oral Sci 2015;23:206-214. Baker AB, Ettenson DS, Jonas M, Nugent MA, Iozzo RV, Edelman ER. Endothelial cells provide feedback control for vascular remodeling through a mechanosensitive autocrine TGF-beta signaling pathway. Circ Res 2008;103:289-297. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 2008;3:340-345. Deeken CR, Melman L, Jenkins ED, Greco SC, Frisella MM, Matthews BD. Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg 2011;212:880-888. Sutherland FW, Perry TE, Nasseri BA, Wang J, Kaushal S, Guleserian KJ, Martin DP, Vacant JP, Mayer JE Jr. Advances in the mechanisms of cell delivery to cardiovascular scaffolds: comparison of two rotating cell culture systems. Asaio J 2002;48:346-349. Lee HJ, Cho HJ, Kwon YW, Park YB, Kim HS. Phenotypic modulation of human cardiospheres between stemness and paracrine activity, and implications for combined transplantation in cardiovascular regeneration. Biomaterials 2013;34:9819-9829. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS one 2008;3:e1886 Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006;367:1241-1246. Mazzitelli S, Luca G, Mancuso F, Calvitti M, Calafiore R, Nastruzzi C, Johnson S, Badylak SF. Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications. Acta Biomater 2010;7:1050-1062. Yuan JM, Xiong SH, Liu Z, Wen Y, Dang RS, Shen MR, Zhang YZ, Zhang X, Yang XQ, Zhang CS. Functional analysis in vivo of engineered valved venous conduit with decellularized matrix and two bone marrow-derived progenitors in sheep. J Tissue Eng Regen Med 2013. Vakalopoulos KA, Wu Z, Kroese L, Kleinrensink GJ, Jeekel J, Vendamme R, Dodou D, Lange JF. Mechanical strength and rheological properties of tissue adhesives with regard to colorectal anastomosis: An ex vivo study. Ann Surg 2015;261:323-331. Chen L, Tredget EE, Liu C, Wu Y. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PloS one 2009;4:e7119 Roessner E, Vitacolonna M, Schulmeister A, Pilz L, Tsagogiorgas C, Brockmann M, Hohenberger P. Human acellular dermis seeded with autologous fibroblasts enhances bronchial anastomotic healing in an irradiated rodent sleeve resection model. Ann Surg Oncol 2013;20 Suppl 3:S709-715. Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA, Kokini K, Sandusky GE, Morff RJ. Small intestinal submucosa as a vascular graft: A review. J Invest Surg 1993;6:297-310. Nejdet B, Ayhan C, Dogan F, Mehmet A, Huseyin E, Gulay D, Mustafa F, Nagehan B. An alternative to conventional hand-sewing colocolic anastomosis: Anastomosis with absorbable surgical barrier film without sutures. Colorectal Dis 2010;12:1260-1267. Hoganson DM, Owens GE, O'Doherty EM, Bowley CM, Goldman SM, Harilal DO, Neville CM, Kronengold RT, Vacanti JP. Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials 2010;31:6934-6940. Gilbert TW, Stolz DB, Biancaniello F, Simmons-Byrd A, Badylak SF. Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 2005;26:1431-1435. Kimmel H, Rahn M, Gilbert TW. The clinical effectiveness in wound healing with extracellular matrix derived from porcine urinary bladder matrix: a case series on severe chronic wounds. J Am Col Certif Wound Spec 2010;2:55-59. Hu S, Kirsner RS, Falanga V, Phillips T, Eaglstein WH. Evaluation of Apligraf persistence and basement membrane restoration in donor site wounds: A pilot study. Wound Repair Regen 2006;14:427-433. Zuo H, Peng D, Zheng B, Liu X, Wang Y, Wang L, Zhou X, Liu J. Regeneration of mature dermis by transplanted particulate acellular dermal matrix in a rat model of skin defect wound. J Mater Sci Mater Med 2012;23:2933-2944. Daly AB, Wallis JM, Borg ZD, Bonvillain RW, Deng B, Ballif BA, Jaworski DM, Allen GB, Weiss DJ. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 2011;18:1-16. Villoldo GM, Loresi M, Giudice C, Damia O, Moldes JM, DeBadiola F, Barbich M, Argibay P. Histologic changes after urethroplasty using small intestinal submucosa unseeded with cells in rabbits with injured urethra. Urology 2013;81:1380 e1-5. Murikipudi S, Methe H, Edelman ER. The effect of substrate modulus on the growth and function of matrix-embedded endothelial cells. Biomaterials 2013;34:677-684. Hoganson DM, Meppelink AM, Hinkel CJ, Goldman SM, Liu XH, Nunley RM, Gaut JP, Vacanti JP. Differentiation of human bone marrow mesenchymal stem cells on decellularized extracellular matrix materials. J Biomed Mater Res A 2013;102:2875-2883. 2010; 12 2015; 261 2010; 31 2011; 212 2012; 143 2013; 20 2006; 14 1999; 284 2010; 140 2008; 3 2008; 103 2011; 36 2005; 26 2011; 17 2011; 18 1993; 6 2007; 28 2015; 23 2002; 48 2014; 5 2013; 34 2013; 81 2014 2013 2009; 4 2010; 2 2012; 23 2010; 7 1998; 9 2006; 367 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 Yuan JM (e_1_2_6_13_1) 2013 Shin YS (e_1_2_6_16_1) 2014 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 Hoganson DM (e_1_2_6_6_1) 2013 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 6 start-page: 297 year: 1993 end-page: 310 article-title: Small intestinal submucosa as a vascular graft: A review publication-title: J Invest Surg – volume: 23 start-page: 2933 year: 2012 end-page: 2944 article-title: Regeneration of mature dermis by transplanted particulate acellular dermal matrix in a rat model of skin defect wound publication-title: J Mater Sci Mater Med – volume: 34 start-page: 677 year: 2013 end-page: 684 article-title: The effect of substrate modulus on the growth and function of matrix‐embedded endothelial cells publication-title: Biomaterials – volume: 3 start-page: 340 year: 2008 end-page: 345 article-title: A high‐efficiency system for the generation and study of human induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 7 start-page: 1050 year: 2010 end-page: 1062 article-title: Production and characterization of engineered alginate‐based microparticles containing ECM powder for cell/tissue engineering applications publication-title: Acta Biomater – volume: 48 start-page: 346 year: 2002 end-page: 349 article-title: Advances in the mechanisms of cell delivery to cardiovascular scaffolds: comparison of two rotating cell culture systems publication-title: Asaio J – volume: 12 start-page: 1260 year: 2010 end-page: 1267 article-title: An alternative to conventional hand‐sewing colocolic anastomosis: Anastomosis with absorbable surgical barrier film without sutures publication-title: Colorectal Dis – volume: 284 start-page: 143 year: 1999 end-page: 147 article-title: Multilineage Potential of Adult Human Mesenchymal Stem Cells publication-title: Science – year: 2013 article-title: Differentiation of human bone marrow mesenchymal stem cells on decellularized extracellular matrix materials publication-title: J Biomed Mater Res A – volume: 14 start-page: 427 year: 2006 end-page: 433 article-title: Evaluation of Apligraf persistence and basement membrane restoration in donor site wounds: A pilot study publication-title: Wound Repair Regen – volume: 28 start-page: 2839 year: 2007 end-page: 2849 article-title: An ex vivo model for chondrogenesis and osteogenesis publication-title: Biomaterials – volume: 36 start-page: 247 year: 2011 end-page: 255 article-title: Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow‐derived mesenchymal stem cells publication-title: Artif Organs – volume: 34 start-page: 9819 year: 2013 end-page: 9829 article-title: Phenotypic modulation of human cardiospheres between stemness and paracrine activity, and implications for combined transplantation in cardiovascular regeneration publication-title: Biomaterials – volume: 143 start-page: 1590 year: 2012 end-page: 1598 article-title: A placebo‐controlled, randomized trial of mesenchymal stem cells in COPD publication-title: Chest – volume: 17 start-page: 487 year: 2011 end-page: 493 article-title: Epidermal stem cells are preserved during commercial‐scale manufacture of a bilayered, living cellular construct (Apligraf(R)) publication-title: Tissue Eng Part A – volume: 3 start-page: e1886 year: 2008 article-title: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing publication-title: PloS one – volume: 5 start-page: 5 year: 2014 article-title: Human umbilical cord tissue‐derived mesenchymal stromal cells attenuate remodeling following myocardial infarction by pro‐angiogenic, anti‐apoptotic and endogenous cell activation mechanisms publication-title: Stem Cell Res Ther – year: 2013 article-title: Functional analysis in vivo of engineered valved venous conduit with decellularized matrix and two bone marrow‐derived progenitors in sheep publication-title: J Tissue Eng Regen Med – year: 2014 article-title: Tissue‐engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold publication-title: Ann Biomed Eng – volume: 81 start-page: 1380 e1 year: 2013 end-page: 5 article-title: Histologic changes after urethroplasty using small intestinal submucosa unseeded with cells in rabbits with injured urethra publication-title: Urology – volume: 2 start-page: 55 year: 2010 end-page: 59 article-title: The clinical effectiveness in wound healing with extracellular matrix derived from porcine urinary bladder matrix: a case series on severe chronic wounds publication-title: J Am Col Certif Wound Spec – volume: 20 start-page: S709 issue: Suppl 3 year: 2013 end-page: 715 article-title: Human acellular dermis seeded with autologous fibroblasts enhances bronchial anastomotic healing in an irradiated rodent sleeve resection model publication-title: Ann Surg Oncol – volume: 31 start-page: 6934 year: 2010 end-page: 6940 article-title: Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium publication-title: Biomaterials – volume: 23 start-page: 206 year: 2015 end-page: 214 article-title: Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three‐dimensional collagen gel publication-title: J Appl Oral Sci – volume: 26 start-page: 1431 year: 2005 end-page: 1435 article-title: Production and characterization of ECM powder: implications for tissue engineering applications publication-title: Biomaterials – volume: 18 start-page: 1 year: 2011 end-page: 16 article-title: Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow‐derived mesenchymal stromal cells publication-title: Tissue Eng Part A – volume: 4 start-page: e7119 year: 2009 article-title: Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice publication-title: PloS one – volume: 103 start-page: 289 year: 2008 end-page: 297 article-title: Endothelial cells provide feedback control for vascular remodeling through a mechanosensitive autocrine TGF‐beta signaling pathway publication-title: Circ Res – volume: 9 start-page: 863 year: 1998 end-page: 878 article-title: Small intestinal submucosa: A substrate for in vitro cell growth publication-title: J Biomater Sci Polym Ed – volume: 367 start-page: 1241 year: 2006 end-page: 1246 article-title: Tissue‐engineered autologous bladders for patients needing cystoplasty publication-title: Lancet – volume: 212 start-page: 880 year: 2011 end-page: 888 article-title: Histologic and biomechanical evaluation of crosslinked and non‐crosslinked biologic meshes in a porcine model of ventral incisional hernia repair publication-title: J Am Coll Surg – volume: 140 start-page: 667 year: 2010 end-page: 676 article-title: Tissue‐engineered pro‐angiogenic fibroblast scaffold improves myocardial perfusion and function and limits ventricular remodeling after infarction publication-title: J Thorac Cardiovasc Surg – volume: 31 start-page: 6730 year: 2010 end-page: 6770 article-title: The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis publication-title: Biomaterials – volume: 261 start-page: 323 year: 2015 end-page: 331 article-title: Mechanical strength and rheological properties of tissue adhesives with regard to colorectal anastomosis: An ex vivo study publication-title: Ann Surg – ident: e_1_2_6_22_1 doi: 10.1016/j.stem.2008.08.003 – ident: e_1_2_6_27_1 doi: 10.1016/j.biomaterials.2012.09.079 – ident: e_1_2_6_19_1 doi: 10.1097/SLA.0000000000000599 – ident: e_1_2_6_11_1 doi: 10.1111/j.1525-1594.2011.01343.x – ident: e_1_2_6_14_1 doi: 10.1016/j.biomaterials.2004.04.042 – ident: e_1_2_6_18_1 doi: 10.1016/j.jcws.2010.11.002 – ident: e_1_2_6_32_1 doi: 10.1016/j.jtcvs.2009.12.037 – ident: e_1_2_6_10_1 doi: 10.1016/S0140-6736(06)68438-9 – ident: e_1_2_6_9_1 doi: 10.3109/08941939309141619 – ident: e_1_2_6_35_1 doi: 10.1371/journal.pone.0001886 – ident: e_1_2_6_30_1 doi: 10.1186/scrt394 – ident: e_1_2_6_4_1 doi: 10.1163/156856298X00208 – ident: e_1_2_6_17_1 doi: 10.1007/s10856-012-4745-9 – ident: e_1_2_6_34_1 doi: 10.1002/jor.1100090504 – year: 2014 ident: e_1_2_6_16_1 article-title: Tissue‐engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold publication-title: Ann Biomed Eng contributor: fullname: Shin YS – ident: e_1_2_6_15_1 doi: 10.1016/j.actbio.2010.10.005 – ident: e_1_2_6_23_1 doi: 10.1016/j.biomaterials.2007.02.029 – ident: e_1_2_6_25_1 doi: 10.1590/1678-775720140462 – ident: e_1_2_6_3_1 doi: 10.1016/j.biomaterials.2010.05.019 – year: 2013 ident: e_1_2_6_13_1 article-title: Functional analysis in vivo of engineered valved venous conduit with decellularized matrix and two bone marrow‐derived progenitors in sheep publication-title: J Tissue Eng Regen Med contributor: fullname: Yuan JM – ident: e_1_2_6_7_1 doi: 10.1016/j.urology.2013.02.023 – ident: e_1_2_6_12_1 doi: 10.1371/journal.pone.0007119 – ident: e_1_2_6_31_1 doi: 10.1016/j.biomaterials.2013.09.013 – ident: e_1_2_6_2_1 doi: 10.1016/j.biomaterials.2010.05.026 – ident: e_1_2_6_29_1 doi: 10.1111/j.1743-6109.2006.00148.x – ident: e_1_2_6_28_1 doi: 10.1089/ten.tea.2010.0268 – ident: e_1_2_6_20_1 doi: 10.1111/j.1463-1318.2009.02004.x – ident: e_1_2_6_24_1 doi: 10.1097/00002480-200207000-00003 – ident: e_1_2_6_33_1 doi: 10.1378/chest.12-2094 – ident: e_1_2_6_8_1 doi: 10.1016/j.jamcollsurg.2011.01.006 – ident: e_1_2_6_21_1 doi: 10.1245/s10434-013-3209-x – year: 2013 ident: e_1_2_6_6_1 article-title: Differentiation of human bone marrow mesenchymal stem cells on decellularized extracellular matrix materials publication-title: J Biomed Mater Res A contributor: fullname: Hoganson DM – ident: e_1_2_6_26_1 doi: 10.1161/CIRCRESAHA.108.179465 – ident: e_1_2_6_5_1 doi: 10.1089/ten.tea.2011.0301 |
SSID | ssj0026052 |
Score | 2.2758577 |
Snippet | Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1728 |
SubjectTerms | 3-D cell culture Anastomosis Anastomosis, Surgical Animals Automotive components Binding sites Bioreactors cell adhesion cell migration Cell Movement Cellular Collagen Drug Delivery Systems - methods Electrochemical machining Exposure Extracellular matrix Extracellular Matrix - metabolism Fibroblasts Fibroblasts - cytology Gravitation Gravity Healing Humans In vitro methods and tests In vitro testing Microparticles Microspheres Models, Biological Paracrine signalling Peritoneum Repair Surface area Surgical implants Sus scrofa Tensile Strength Therapy Viability Wound Healing |
Title | Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing |
URI | https://api.istex.fr/ark:/67375/WNG-5FBJZG35-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.35703 https://www.ncbi.nlm.nih.gov/pubmed/26946064 https://www.proquest.com/docview/1791222003 https://www.proquest.com/docview/1907531938 https://search.proquest.com/docview/1792380789 https://search.proquest.com/docview/1808610258 https://search.proquest.com/docview/1825459131 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BucCB9yNQkJEqLihtEsdOfODQ0m5RJapKgEBcLNuxxYI2W21YKPx6ZpxNaKVqJYS0h9144mTHnvE3ycxngK3ScZ9n3KRKBZeWXMpUZbZKg6tVWRU1nhY3sX1XHX-q9w-IJufVUAvT80OMD9zIMqK_JgM3ttv5Sxr61c62zTYnBin0wBgnxAIOfjKGWwjU47tOjIBSXii5qs7Dlp1z515Yj66Ras8uA5sXsWtcfCa3_vO2b8PNFepku_00uQNXfHsXbpzjIrwHP_c9PcSnrNTpb98wdNoLMxxhM2LyP2MzSt87HZLpmMEP--G_0C-G6JeN8g3eJRrJLzZtUSRut8PmgZnWINiczbtpxwii4pXvw4fJwfvXb9LVrgypE5TsF5x0DQ5qVUpjZVN40TgqGC-CdRjxegwI0Ulgg6hNSWw4TvkyhEZZboX1gj-AjXbe-kfADAZfeW2lyr0oecGN4M5xGSrusrzJQgJbw9jo0558Q_c0y4VGPWqjox4TeBHHbZQxi2-Ur1YJ_fH4UIvJ3tHnQy70SQKbw8Dqlal2mvhZESRl1M9lzQpBFfopXifwfGxGGySNmtbPl7GLoifuXyNTY_CIaE6s64fCdaFynifwsJ9343-iimMMNssEXsbptU4h-mjv7W789vifpJ_AdcSDss9G3oSN74ulfwpXu2b5LJrWH4ckJSk |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9RAEJ4IPKgP4m-rqGtCfDGFttvddl9IQDgQ4UIiRuLLZrvdhsNcj9x5Cvz1zmyvFRJyiTHpQ9udbtvZne0325lvAVZTy10ccRMqVdkw5VKGKiqysLK5SrMkx8v8IrZfsv5Jvr1DNDkbbS5Mww_RTbiRZfjxmgycJqTX_7KGnhXDNbPGiUJqAZZSiV2RUjj4UedwIVT3fzvRBwp5ouQsPw9L1q9dfOOLtETKvbgNbt5Er_7z01v-3wd_CA9mwJNtNj3lEdxx9WO4f42O8An83nY0j0-BqYMrVzIct8emPcOGROZ_wYYUwXfextMxgxv75U7piCEAZp18iY-JdnLJBjWK-BV32KhipjaIN4ejyWDCCKXinZ_C197O8ce9cLYwQ2gFxftVVtoS2zVLpSlkmThRWsoZT6rCotPr0CfEcQILRG5SIsSxyqVVVaqCF6Jwgj-DxXpUuxfADPpfcV5IFTuR8oQbwa3lssq4jeIyqgJYbRtHnzf8G7phWk406lEb7fUYwHvfcJ2MGf-gkLVM6G_9XS16W_vfd7nQRwGstC2rZ9Y60UTRijgponpuK1aIq3Co4nkA77piNEPSqKndaOqrSBru_jkyOfqPCOjEvHrIYxcq5nEAz5uO170TJR2jv5kG8MH3r3kK0ftbh5t-7-U_Sb-Fu3vHhwf64FP_8yu4h_BQNsHJK7D4czx1r2FhUk7feDv7A_VuKVE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xTULwsPGbwAAjTbygbEkcJ_EDDxtdBwOqSoCYeLEcxxYFNa3aFTb-eu6cJmzSVAkh5SGJL45z9tnfOefPADup4TaOuA6ldCZMeZaFMirz0JlCpnlS4GN-E9uP-eCk6B0STc6rdi1Mww_RTbiRZfj-mgx8Wrm9v6Sh38vxrt7lxCC1BhspAnGizud82PlbiNT9z050gUKeyGy5PA9T9i48fGlA2iDdnl2FNi-DVz_69Lf-s9y3YHMJO9l-005uwzVb34GbF8gI78KvnqVZfApLHf22FcNee6bbO2xMVP5nbEzxe9M2mo5pPNhP-42uGMJf1slXWEq0knM2qlHE77fDJo7pWiPaHE_mozkjjIpvvgef-4efXr8Jl9syhEZQtJ8zmamwVvM002VWJVZUhlaMJ6406PJa9Aixl8AEUeiU6HCMtKlzlSx5KUor-H1Yrye1fQhMo_cVF2UmYytSnnAtuDE8czk3UVxFLoCdtm7UtGHfUA3PcqJQj0orr8cAXvh662T07AcFrOVCfRkcKdE_OP56xIUaBrDdVqxa2upcEUEroqSI8rkqWSKqwo6KFwE875LRCEmjuraThc8iaZj7V8gU6D0inBOr8iF_XciYxwE8aNpd90205JgaeQAvffNapRB1fPBh3589-ifpZ3B92Our928H7x7DDcSGWROZvA3rp7OFfQJr82rx1FvZHzUeJ_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decellularized+extracellular+matrix+microparticles+as+a+vehicle+for+cellular+delivery+in+a+model+of+anastomosis+healing&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Hoganson%2C+David+M.&rft.au=Owens%2C+Gwen+E.&rft.au=Meppelink%2C+Amanda+M.&rft.au=Bassett%2C+Erik+K.&rft.date=2016-07-01&rft.issn=1549-3296&rft.eissn=1552-4965&rft.volume=104&rft.issue=7&rft.spage=1728&rft.epage=1735&rft_id=info:doi/10.1002%2Fjbm.a.35703&rft.externalDBID=10.1002%252Fjbm.a.35703&rft.externalDocID=JBMA35703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |