Effect of redox properties of LaCoO3 perovskite catalyst on production of lactic acid from cellulosic biomass
The LaCoO3 perovskite metal oxide with strong redox properties was used as the catalyst for the production of lactic acid from a variety of cellulosic biomass in hydrothermal media. [Display omitted] •First report of conversion of cellulosic biomass to lactic acid via redox catalysis.•Up to 40% lact...
Saved in:
Published in: | Catalysis today Vol. 269; pp. 56 - 64 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-07-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The LaCoO3 perovskite metal oxide with strong redox properties was used as the catalyst for the production of lactic acid from a variety of cellulosic biomass in hydrothermal media.
[Display omitted]
•First report of conversion of cellulosic biomass to lactic acid via redox catalysis.•Up to 40% lactic acid was yielded from glucose or xylose with the LaCoO3•LaCoO3 is a weak oxidant that selectively oxidizes aldose sugars under N2 atmosphere.•Oxidative decarboxylation of aldoses and reduction of pyruvic acid are key steps.•Perovskite structure retarded the leaching of LaCoO3 in hydrothermal media.
Cost-effective conversion of cellulosic biomass to value-added lactic acid with heterogeneous catalysts has attracted much attention recent years. While both solid Lewis acids and bases have been extensively studied, the role of redox catalysts for the production of lactic acid is barely understood. Herein, the LaCoO3 perovskite metal oxides with strong redox properties and a good stability in hydrothermal media were used as the catalysts for the conversion of a variety of cellulosic biomass to lactic acid. The effects of reaction conditions such as reaction temperature, catalyst loading, and gas atmosphere were investigated. At the optimum conditions, the yields of approximately 40%, 38%, and 24% lactic acid were obtained from glucose, xylose and cellulose, respectively. The key intermediates such as pyruvic acid were used as the probe reactants to explore the reaction mechanism. Unlike Lewis acid or base catalysed sugar conversion reactions, the redox pathway might start from the oxidative decarboxylation of aldose sugars and the lattice oxygen atoms in the LaCoO3 perovskite structure participate the redox cycles in the conversion of sugars to lactic acid. Lastly, the stability of the LaCoO3 catalyst in hydrothermal reaction media was discussed. |
---|---|
AbstractList | The LaCoO3 perovskite metal oxide with strong redox properties was used as the catalyst for the production of lactic acid from a variety of cellulosic biomass in hydrothermal media.
[Display omitted]
•First report of conversion of cellulosic biomass to lactic acid via redox catalysis.•Up to 40% lactic acid was yielded from glucose or xylose with the LaCoO3•LaCoO3 is a weak oxidant that selectively oxidizes aldose sugars under N2 atmosphere.•Oxidative decarboxylation of aldoses and reduction of pyruvic acid are key steps.•Perovskite structure retarded the leaching of LaCoO3 in hydrothermal media.
Cost-effective conversion of cellulosic biomass to value-added lactic acid with heterogeneous catalysts has attracted much attention recent years. While both solid Lewis acids and bases have been extensively studied, the role of redox catalysts for the production of lactic acid is barely understood. Herein, the LaCoO3 perovskite metal oxides with strong redox properties and a good stability in hydrothermal media were used as the catalysts for the conversion of a variety of cellulosic biomass to lactic acid. The effects of reaction conditions such as reaction temperature, catalyst loading, and gas atmosphere were investigated. At the optimum conditions, the yields of approximately 40%, 38%, and 24% lactic acid were obtained from glucose, xylose and cellulose, respectively. The key intermediates such as pyruvic acid were used as the probe reactants to explore the reaction mechanism. Unlike Lewis acid or base catalysed sugar conversion reactions, the redox pathway might start from the oxidative decarboxylation of aldose sugars and the lattice oxygen atoms in the LaCoO3 perovskite structure participate the redox cycles in the conversion of sugars to lactic acid. Lastly, the stability of the LaCoO3 catalyst in hydrothermal reaction media was discussed. |
Author | Yang, Xiaokun Fan, Wei Yang, Lisha Lin, Hongfei |
Author_xml | – sequence: 1 givenname: Xiaokun surname: Yang fullname: Yang, Xiaokun organization: Department of Chemical and Materials Engineering, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA – sequence: 2 givenname: Lisha surname: Yang fullname: Yang, Lisha organization: Department of Chemical and Materials Engineering, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA – sequence: 3 givenname: Wei surname: Fan fullname: Fan, Wei organization: Department of Chemical Engineering, University of Massachusetts Amherst, 686 N. Pleasant Street, Amherst, MA 01002, USA – sequence: 4 givenname: Hongfei surname: Lin fullname: Lin, Hongfei email: HongfeiL@unr.edu organization: Department of Chemical and Materials Engineering, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA |
BookMark | eNp9kM1qwzAQhEVJoUnaN-hBL2BX6z_Jl0IJ6Q8EcmnPQpZWoNS2guSE5u0rk5572mXYmR2-FVmMfkRCHoHlwKB5OuRaTZM3ecGgzqHIGStvyBIEL7OqZGJBlqwtWFaLBu7IKsYDY0yIqliSYWst6ol6SwMa_0OPwR8xTA7jrO3Uxu9LmhR_jt9uQpo-qf4Sk2Ocb81JTy6t6bZXadVUaWeoDX6gGvv-1PuYxM75QcV4T26t6iM-_M01-Xrdfm7es93-7WPzsst03dZTZpF3FTdQgMIWioZDq5qOWyF4JRosmE7tRak6pnQDgErpjnNdga2E4a0q16S65urgYwxo5TG4QYWLBCZnZPIgr8jkjExCIROyZHu-2jB1OzsMMmqHo0bjQoIkjXf_B_wCyuN6eA |
CitedBy_id | crossref_primary_10_1039_C6GC02443B crossref_primary_10_1016_j_jssc_2023_124108 crossref_primary_10_1016_j_jclepro_2021_129728 crossref_primary_10_1016_j_mcat_2022_112653 crossref_primary_10_1016_j_apcatb_2020_119520 crossref_primary_10_1021_acscatal_1c05713 crossref_primary_10_1007_s11164_022_04832_4 crossref_primary_10_1088_1742_6596_2516_1_012003 crossref_primary_10_3390_catal13050902 crossref_primary_10_1016_j_mcat_2021_111406 crossref_primary_10_1039_D0GC02573A crossref_primary_10_1007_s10570_024_05733_y crossref_primary_10_1155_2018_7617685 crossref_primary_10_1016_j_fuel_2021_121071 crossref_primary_10_1007_s13399_022_03650_3 crossref_primary_10_1016_j_ces_2024_120409 crossref_primary_10_1016_j_apcatb_2022_121170 crossref_primary_10_1016_j_carres_2022_108529 crossref_primary_10_1007_s12649_020_01179_y crossref_primary_10_1016_j_apcatb_2021_120123 crossref_primary_10_2174_2213346106666191127123730 crossref_primary_10_1002_cssc_201701902 crossref_primary_10_1016_j_cej_2021_130014 crossref_primary_10_1021_acs_iecr_7b03072 crossref_primary_10_1038_s41598_019_55487_y crossref_primary_10_1016_j_jmat_2021_03_002 crossref_primary_10_1016_j_jechem_2018_07_012 crossref_primary_10_1007_s10570_023_05684_w crossref_primary_10_1016_j_apcatb_2021_120698 crossref_primary_10_1002_cssc_202102653 crossref_primary_10_3390_catal7070221 crossref_primary_10_3390_catal7060170 crossref_primary_10_1038_s41598_020_71869_z crossref_primary_10_1016_j_cej_2019_123914 crossref_primary_10_1039_C9EE03793D crossref_primary_10_1038_srep26713 crossref_primary_10_1039_D1TC03627K crossref_primary_10_3390_en16145432 crossref_primary_10_1016_j_jece_2023_109981 crossref_primary_10_3390_catal8100483 crossref_primary_10_3389_fchem_2022_944552 crossref_primary_10_1016_j_mcat_2019_110518 crossref_primary_10_1016_j_apcata_2019_117304 crossref_primary_10_1039_D1GC04323D crossref_primary_10_1016_j_saa_2020_119367 crossref_primary_10_3390_catal11030344 crossref_primary_10_1016_j_dyepig_2020_108743 crossref_primary_10_1016_j_jclepro_2023_136876 crossref_primary_10_1021_acscatal_2c06147 crossref_primary_10_1039_C9CC07208J crossref_primary_10_1039_D1GC03057D crossref_primary_10_1016_j_fuel_2019_116380 crossref_primary_10_1039_C8CY00679B crossref_primary_10_1016_j_cherd_2022_09_014 crossref_primary_10_19053_01217488_v8_n1_2017_4748 crossref_primary_10_1007_s10562_017_1988_6 crossref_primary_10_1002_cjce_24738 crossref_primary_10_1007_s11244_021_01449_6 crossref_primary_10_1007_s41779_020_00547_0 crossref_primary_10_1039_C6RA28568F crossref_primary_10_1016_j_mssp_2022_106517 crossref_primary_10_1039_D0CC03424J |
Cites_doi | 10.1039/c3ee00069a 10.1246/bcsj.74.1145 10.1016/j.apcata.2010.05.048 10.1021/ef8005349 10.1016/j.matchemphys.2013.09.035 10.1016/j.apcata.2008.03.017 10.1002/aic.12193 10.1016/j.molcata.2005.06.017 10.1016/j.apcata.2010.07.043 10.1002/aic.14554 10.1016/S1381-1169(00)00319-8 10.1002/jctb.1486 10.1021/ja00811a022 10.1016/j.apcata.2014.05.029 10.1016/j.apcatb.2013.01.027 10.1126/science.1183990 10.1021/ie00023a066 10.1016/j.fuel.2012.09.017 10.1016/j.catcom.2013.03.039 10.1021/cr980129f 10.1016/j.apcata.2014.04.037 10.1023/A:1020200822435 10.1039/C4GC02131B 10.1016/1381-1169(96)00285-3 10.1002/aic.13960 10.1016/S0961-9534(02)00017-X 10.1039/b922286c 10.1021/ef100768e 10.1021/cr050989d 10.1021/ie040154d 10.2172/861485 10.1016/j.catcom.2011.08.019 10.1002/ep.670140318 10.1016/j.apcatb.2014.06.025 10.1016/j.cej.2013.07.029 10.1016/j.jpowsour.2013.01.142 10.1016/j.apcatb.2011.04.009 10.1016/j.jcat.2009.10.023 10.1007/s10562-008-9588-0 10.1016/j.biotechadv.2008.10.004 10.1016/j.jpowsour.2009.10.004 10.1016/j.biotechadv.2011.07.022 10.1002/cssc.201403057 10.1002/jctb.1797 10.1016/j.jcat.2007.04.023 10.1016/j.apcata.2008.09.037 10.1016/S0926-3373(00)00273-3 10.1016/j.apcatb.2012.03.017 10.1016/j.cattod.2011.02.062 10.15376/biores.8.3.3200-3211 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cattod.2015.12.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4308 |
EndPage | 64 |
ExternalDocumentID | 10_1016_j_cattod_2015_12_003 S0920586115007567 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSZ T5K ZMT ~02 ~G- AAQXK AAXKI AAYXX ABXDB ADMUD AFJKZ AI. AKRWK ASPBG AVWKF AZFZN BBWZM CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ XPP |
ID | FETCH-LOGICAL-c595t-fe7b47d121ae9126719a6b7f887486e20c08883ab0ac611eaacb77c41f48d79a3 |
ISSN | 0920-5861 |
IngestDate | Thu Sep 26 15:56:22 EDT 2024 Fri Feb 23 02:35:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Xylose Perovskite Redox catalysis Glucose Lactic acid Cellulose |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c595t-fe7b47d121ae9126719a6b7f887486e20c08883ab0ac611eaacb77c41f48d79a3 |
OpenAccessLink | http://manuscript.elsevier.com/S0920586115007567/pdf/S0920586115007567.pdf |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_cattod_2015_12_003 elsevier_sciencedirect_doi_10_1016_j_cattod_2015_12_003 |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Catalysis today |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Doornkamp, Ponec (bib0245) 2000; 162 Corma, Iborra, Velty (bib0010) 2007; 107 Stege, Cadús, Barbero (bib0185) 2011; 172 Tolborg, Sádaba, Osmundsen, Fristrup, Holm, Taarning (bib0095) 2015; 8 Yang, Su, Carl, Lynam, Yang, Lin (bib0070) 2015; 162 Deng, Lin, Sun, Pang, Zhuang, Ouyang (bib0190) 2008; 126 Yu, Savage (bib0120) 2001; 31 Wang, Liu, Li, Liu, Yang, Dong (bib0080) 2015; 17 Grieco, Gervasio, Baldi (bib0250) 2013; 103 Deng, Lin, Sun, Pang, Zhuang, Ouyang (bib0195) 2009; 23 Watanabe, Inomata, Arai (bib0115) 2002; 22 Deng, Lin, Liu (bib0200) 2010; 24 Zhang, Hou, Wang, Li, Wang, Zhang (bib0235) 2014; 60 Gao, Ma, Xu (bib0035) 2011; 29 John, Anisha, Nampoothiri, Pandey (bib0030) 2009; 27 Chambon, Rataboul, Pinel, Cabiac, Guillon, Essayem (bib0060) 2011; 105 Kong, Li, Wang, He, Ling (bib0045) 2008; 83 Higson (bib0025) 2011 Yan, Jin, Tohji, Kishita, Enomoto (bib0050) 2010; 56 Gloyna, Li (bib0105) 1995; 14 Valderrama, Urbina de Navarro, Goldwasser (bib0155) 2013; 234 Trahanovsky, Cramer, Brixius (bib0255) 1974; 96 Valderrama, Kiennemann, Goldwasser (bib0140) 2010; 195 Seri, Inoue, Ishida (bib0215) 2001; 74 Lei, Wang, Liu, Yang, Dong (bib0230) 2014; 482 Chen, Shen, Wang, Qi, Wang, Li (bib0160) 2013; 134–135 Singh, Li, Bennett, Rappe, Seshadri, Scott (bib0135) 2007; 249 Markova-Velichkova, Lazarova, Tumbalev, Ivanov, Kovacheva, Stefanov (bib0175) 2013; 231 Holm, Saravanamurugan, Taarning (bib0065) 2010; 328 A. Milbrandt, A geographic perspective on the current biomass resource availability in the United States, NREL Tech. Rep. NREL/TP-56 (2005) 1–50. Pichas, Pomonis, Petrakis, Ladavos (bib0150) 2010; 386 Ishida, Seri (bib0220) 1996; 112 Datta, Henry (bib0090) 2006; 81 Onda, Ochi, Kajiyoshi, Yanagisawa (bib0040) 2008; 343 Tomita, Oshima (bib0110) 2004; 43 Li, Wang, Wang, Ren, Peng, Sun (bib0210) 2013; 8 Chen, Shen, Wang, Wang, Su, Zhao (bib0165) 2013; 37 Escalona, Aranzaez, Leiva, Martínez, Pecchi (bib0205) 2014; 481 Liu, Li, Pan, Chen, Lou, Zheng (bib0100) 2011; 15 Dusselier, Van Wouwe, Dewaele, Makshina, Sels (bib0015) 2013; 6 Peña, Fierro (bib0130) 2001; 101 Dong, Xian, Lv, Liu, Guo, Meng (bib0170) 2014; 143 de Lima, da Silva, da Costa, Assaf, Mattos, Sarkari (bib0145) 2012; 121–122 Najjar, Batis (bib0180) 2010; 383 Epane, Laguerre, Wadouachi, Marek (bib0055) 2010; 12 Chang, Weng (bib0125) 1993; 32 West, Holm, Saravanamurugan, Xiong, Beversdorf, Taarning (bib0085) 2010; 269 Bicker, Endres, Ott, Vogel (bib0225) 2005; 239 Wang, Jin, Sasaki, Wang, Jing, Goto (bib0075) 2013; 59 Deng, Zhang, Dai, Au (bib0240) 2009; 352 Garlotta (bib0020) 2002; 9 Ishida (10.1016/j.cattod.2015.12.003_bib0220) 1996; 112 Onda (10.1016/j.cattod.2015.12.003_bib0040) 2008; 343 Higson (10.1016/j.cattod.2015.12.003_bib0025) 2011 Wang (10.1016/j.cattod.2015.12.003_bib0080) 2015; 17 Trahanovsky (10.1016/j.cattod.2015.12.003_bib0255) 1974; 96 Liu (10.1016/j.cattod.2015.12.003_bib0100) 2011; 15 de Lima (10.1016/j.cattod.2015.12.003_bib0145) 2012; 121–122 Escalona (10.1016/j.cattod.2015.12.003_bib0205) 2014; 481 Datta (10.1016/j.cattod.2015.12.003_bib0090) 2006; 81 Chen (10.1016/j.cattod.2015.12.003_bib0165) 2013; 37 Yang (10.1016/j.cattod.2015.12.003_bib0070) 2015; 162 Gloyna (10.1016/j.cattod.2015.12.003_bib0105) 1995; 14 Tomita (10.1016/j.cattod.2015.12.003_bib0110) 2004; 43 Kong (10.1016/j.cattod.2015.12.003_bib0045) 2008; 83 Peña (10.1016/j.cattod.2015.12.003_bib0130) 2001; 101 Singh (10.1016/j.cattod.2015.12.003_bib0135) 2007; 249 Najjar (10.1016/j.cattod.2015.12.003_bib0180) 2010; 383 Seri (10.1016/j.cattod.2015.12.003_bib0215) 2001; 74 Corma (10.1016/j.cattod.2015.12.003_bib0010) 2007; 107 Deng (10.1016/j.cattod.2015.12.003_bib0240) 2009; 352 Bicker (10.1016/j.cattod.2015.12.003_bib0225) 2005; 239 Garlotta (10.1016/j.cattod.2015.12.003_bib0020) 2002; 9 Chang (10.1016/j.cattod.2015.12.003_bib0125) 1993; 32 Deng (10.1016/j.cattod.2015.12.003_bib0190) 2008; 126 Holm (10.1016/j.cattod.2015.12.003_bib0065) 2010; 328 Wang (10.1016/j.cattod.2015.12.003_bib0075) 2013; 59 Lei (10.1016/j.cattod.2015.12.003_bib0230) 2014; 482 Yu (10.1016/j.cattod.2015.12.003_bib0120) 2001; 31 Li (10.1016/j.cattod.2015.12.003_bib0210) 2013; 8 John (10.1016/j.cattod.2015.12.003_bib0030) 2009; 27 West (10.1016/j.cattod.2015.12.003_bib0085) 2010; 269 Dong (10.1016/j.cattod.2015.12.003_bib0170) 2014; 143 Zhang (10.1016/j.cattod.2015.12.003_bib0235) 2014; 60 Valderrama (10.1016/j.cattod.2015.12.003_bib0155) 2013; 234 Epane (10.1016/j.cattod.2015.12.003_bib0055) 2010; 12 Markova-Velichkova (10.1016/j.cattod.2015.12.003_bib0175) 2013; 231 Chambon (10.1016/j.cattod.2015.12.003_bib0060) 2011; 105 10.1016/j.cattod.2015.12.003_bib0005 Chen (10.1016/j.cattod.2015.12.003_bib0160) 2013; 134–135 Dusselier (10.1016/j.cattod.2015.12.003_bib0015) 2013; 6 Deng (10.1016/j.cattod.2015.12.003_bib0195) 2009; 23 Tolborg (10.1016/j.cattod.2015.12.003_bib0095) 2015; 8 Deng (10.1016/j.cattod.2015.12.003_bib0200) 2010; 24 Yan (10.1016/j.cattod.2015.12.003_bib0050) 2010; 56 Stege (10.1016/j.cattod.2015.12.003_bib0185) 2011; 172 Watanabe (10.1016/j.cattod.2015.12.003_bib0115) 2002; 22 Valderrama (10.1016/j.cattod.2015.12.003_bib0140) 2010; 195 Gao (10.1016/j.cattod.2015.12.003_bib0035) 2011; 29 Grieco (10.1016/j.cattod.2015.12.003_bib0250) 2013; 103 Doornkamp (10.1016/j.cattod.2015.12.003_bib0245) 2000; 162 Pichas (10.1016/j.cattod.2015.12.003_bib0150) 2010; 386 |
References_xml | – volume: 101 start-page: 1981 year: 2001 end-page: 2017 ident: bib0130 article-title: Chemical structures and performance of perovskite oxides publication-title: Chem. Rev. contributor: fullname: Fierro – volume: 172 start-page: 53 year: 2011 end-page: 57 ident: bib0185 article-title: La1— publication-title: Catal. Today contributor: fullname: Barbero – volume: 43 start-page: 7740 year: 2004 end-page: 7743 ident: bib0110 article-title: Stability of manganese oxide in catalytic supercritical water oxidation of phenol publication-title: Ind. Eng. Chem. Res. contributor: fullname: Oshima – volume: 29 start-page: 930 year: 2011 end-page: 939 ident: bib0035 article-title: Biotechnological routes based on lactic acid production from biomass publication-title: Biotechnol. Adv. contributor: fullname: Xu – volume: 134–135 start-page: 251 year: 2013 end-page: 257 ident: bib0160 article-title: The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation publication-title: Appl. Catal. B Environ. contributor: fullname: Li – volume: 103 start-page: 393 year: 2013 end-page: 397 ident: bib0250 article-title: Lanthanum–chromium–nickel perovskites for the catalytic cracking of tar model compounds publication-title: Fuel contributor: fullname: Baldi – volume: 481 start-page: 1 year: 2014 end-page: 10 ident: bib0205 article-title: Ni nanoparticles prepared from Ce substituted LaNiO3 for the guaiacol conversion publication-title: Appl. Catal. A Gen. contributor: fullname: Pecchi – volume: 81 start-page: 1119 year: 2006 end-page: 1129 ident: bib0090 article-title: Lactic acid: recent advances in products, processes and technologies—a review publication-title: J. Chem. Technol. Biotechnol. contributor: fullname: Henry – volume: 112 start-page: L163 year: 1996 end-page: L165 ident: bib0220 article-title: Catalytic activity of lanthanoidec III ions for dehydration of publication-title: J. Mol. Catal. A Chem. contributor: fullname: Seri – volume: 343 start-page: 49 year: 2008 end-page: 54 ident: bib0040 article-title: A new chemical process for catalytic conversion of publication-title: Appl. Catal. A Gen. contributor: fullname: Yanagisawa – volume: 121–122 start-page: 1 year: 2012 end-page: 9 ident: bib0145 article-title: Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1— publication-title: Appl. Catal. B Environ. contributor: fullname: Sarkari – volume: 195 start-page: 1765 year: 2010 end-page: 1771 ident: bib0140 article-title: La–Sr–Ni–Co–O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane publication-title: J. Power Sources contributor: fullname: Goldwasser – volume: 23 start-page: 19 year: 2009 end-page: 24 ident: bib0195 article-title: Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process publication-title: Energy Fuels contributor: fullname: Ouyang – volume: 56 start-page: 2727 year: 2010 end-page: 2733 ident: bib0050 article-title: Hydrothermal conversion of carbohydrate biomass to lactic acid publication-title: AIChE J. contributor: fullname: Enomoto – volume: 482 start-page: 78 year: 2014 end-page: 83 ident: bib0230 article-title: One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst publication-title: Appl. Catal. A Gen. contributor: fullname: Dong – volume: 105 start-page: 171 year: 2011 end-page: 181 ident: bib0060 article-title: Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid publication-title: Appl. Catal. B Environ. contributor: fullname: Essayem – volume: 37 start-page: 105 year: 2013 end-page: 108 ident: bib0165 article-title: Catalytic performance of NO oxidation over LaMeO3 (Me publication-title: Catal. Commun. contributor: fullname: Zhao – volume: 6 start-page: 1415 year: 2013 end-page: 1442 ident: bib0015 article-title: Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis publication-title: Energy Environ. Sci. contributor: fullname: Sels – volume: 22 start-page: 405 year: 2002 end-page: 410 ident: bib0115 article-title: Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water publication-title: Biomass Bioenergy contributor: fullname: Arai – volume: 107 start-page: 2411 year: 2007 end-page: 2502 ident: bib0010 article-title: Chemical routes for the transformation of biomass into chemicals publication-title: Chem. Rev. contributor: fullname: Velty – volume: 234 start-page: 31 year: 2013 end-page: 37 ident: bib0155 article-title: CO2 reforming of CH4 over Co–La-based perovskite-type catalyst precursors publication-title: J. Power Sources contributor: fullname: Goldwasser – volume: 143 start-page: 578 year: 2014 end-page: 586 ident: bib0170 article-title: Influence of synthesis conditions on NO oxidation and NO publication-title: Mater. Chem. Phys. contributor: fullname: Meng – volume: 126 start-page: 106 year: 2008 end-page: 111 ident: bib0190 article-title: Perovskite-type oxide LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes publication-title: Catal. Lett. contributor: fullname: Ouyang – volume: 27 start-page: 145 year: 2009 end-page: 152 ident: bib0030 article-title: Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production publication-title: Biotechnol. Adv. contributor: fullname: Pandey – volume: 239 start-page: 151 year: 2005 end-page: 157 ident: bib0225 article-title: Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production publication-title: J. Mol. Catal. A Chem. contributor: fullname: Vogel – volume: 32 start-page: 2930 year: 1993 end-page: 2933 ident: bib0125 article-title: Deep oxidation of toluene on perovskite catalyst publication-title: Ind. Eng. Chem. Res. contributor: fullname: Weng – volume: 12 start-page: 502 year: 2010 ident: bib0055 article-title: Microwave-assisted conversion of publication-title: Green Chem. contributor: fullname: Marek – volume: 352 start-page: 43 year: 2009 end-page: 49 ident: bib0240 article-title: In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate publication-title: Appl. Catal. A Gen. contributor: fullname: Au – volume: 383 start-page: 192 year: 2010 end-page: 201 ident: bib0180 article-title: La–Mn perovskite-type oxide prepared by combustion method: catalytic activity in ethanol oxidation publication-title: Appl. Catal. A Gen. contributor: fullname: Batis – volume: 74 start-page: 1145 year: 2001 end-page: 1150 ident: bib0215 article-title: Catalytic activity of lanthanide(III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water publication-title: Bull. Chem. Soc. Jpn. contributor: fullname: Ishida – volume: 162 start-page: 19 year: 2000 end-page: 32 ident: bib0245 article-title: The universal character of the Mars and Van Krevelen mechanism publication-title: J. Mol. Catal. A Chem. contributor: fullname: Ponec – volume: 17 start-page: 2455 year: 2015 end-page: 2463 ident: bib0080 article-title: Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10 publication-title: Green Chem. contributor: fullname: Dong – volume: 8 start-page: 613 year: 2015 end-page: 617 ident: bib0095 article-title: Tin-containing silicates: alkali salts improve methyl lactate yield from sugars publication-title: ChemSusChem contributor: fullname: Taarning – volume: 96 start-page: 1077 year: 1974 end-page: 1081 ident: bib0255 article-title: Oxidation of organic compounds with cerium (IV)-oxidative decarboxylation of substituted phenylacetic acids publication-title: J. Am. Chem. Soc. contributor: fullname: Brixius – volume: 24 start-page: 4797 year: 2010 end-page: 4802 ident: bib0200 article-title: Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes publication-title: Energy Fuels contributor: fullname: Liu – volume: 8 start-page: 3200 year: 2013 end-page: 3211 ident: bib0210 article-title: One-step heterogeneous catalytic process for the dehydration of xylan into furfural publication-title: Bioresources contributor: fullname: Sun – volume: 14 start-page: 182 year: 1995 end-page: 192 ident: bib0105 article-title: Supercritical water oxidation research and development update publication-title: Environ. Prog. contributor: fullname: Li – volume: 31 start-page: 123 year: 2001 end-page: 132 ident: bib0120 article-title: Catalyst activity, stability, and transformations during oxidation in supercritical water publication-title: Appl. Catal. B Environ. contributor: fullname: Savage – volume: 328 start-page: 602 year: 2010 end-page: 605 ident: bib0065 article-title: Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts publication-title: Science contributor: fullname: Taarning – volume: 386 start-page: 116 year: 2010 end-page: 123 ident: bib0150 article-title: Kinetic study of the catalytic dry reforming of CH4 with CO 2 over La2— publication-title: Appl. Catal. A Gen. contributor: fullname: Ladavos – volume: 269 start-page: 122 year: 2010 end-page: 130 ident: bib0085 article-title: Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars publication-title: J. Catal. contributor: fullname: Taarning – volume: 15 start-page: 82 year: 2011 end-page: 87 ident: bib0100 article-title: Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts publication-title: Catal. Commun. contributor: fullname: Zheng – volume: 9 start-page: 63 year: 2002 end-page: 84 ident: bib0020 article-title: A literature review of poly (lactic acid) publication-title: J. Polym. Environ. contributor: fullname: Garlotta – volume: 59 start-page: 2096 year: 2013 end-page: 2104 ident: bib0075 article-title: Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions publication-title: AIChE J. contributor: fullname: Goto – volume: 162 start-page: 149 year: 2015 end-page: 157 ident: bib0070 article-title: Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media publication-title: Appl. Catal. B Environ. contributor: fullname: Lin – volume: 60 start-page: 3804 year: 2014 end-page: 3813 ident: bib0235 article-title: Kinetic study of retro–aldol condensation of glucose to glycolaldehyde with ammonium metatungstate as the catalyst publication-title: AIChE J. contributor: fullname: Zhang – start-page: 1 year: 2011 end-page: 2 ident: bib0025 article-title: Lactic acid publication-title: Renew. Chem. Factsheet contributor: fullname: Higson – volume: 83 start-page: 383 year: 2008 end-page: 388 ident: bib0045 article-title: Hydrothermal catalytic conversion of biomass for lactic acid production publication-title: J. Chem. Technol. Biotechnol. contributor: fullname: Ling – volume: 249 start-page: 349 year: 2007 end-page: 358 ident: bib0135 article-title: A Pd-doped perovskite catalyst, BaCe1– publication-title: J. Catal. contributor: fullname: Scott – volume: 231 start-page: 236 year: 2013 end-page: 244 ident: bib0175 article-title: Complete oxidation of hydrocarbons on YFeO3 and LaFeO3 catalysts publication-title: Chem. Eng. J. contributor: fullname: Stefanov – volume: 6 start-page: 1415 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0015 article-title: Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00069a contributor: fullname: Dusselier – start-page: 1 year: 2011 ident: 10.1016/j.cattod.2015.12.003_bib0025 article-title: Lactic acid publication-title: Renew. Chem. Factsheet contributor: fullname: Higson – volume: 74 start-page: 1145 year: 2001 ident: 10.1016/j.cattod.2015.12.003_bib0215 article-title: Catalytic activity of lanthanide(III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.74.1145 contributor: fullname: Seri – volume: 383 start-page: 192 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0180 article-title: La–Mn perovskite-type oxide prepared by combustion method: catalytic activity in ethanol oxidation publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2010.05.048 contributor: fullname: Najjar – volume: 23 start-page: 19 year: 2009 ident: 10.1016/j.cattod.2015.12.003_bib0195 article-title: Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process publication-title: Energy Fuels doi: 10.1021/ef8005349 contributor: fullname: Deng – volume: 143 start-page: 578 year: 2014 ident: 10.1016/j.cattod.2015.12.003_bib0170 article-title: Influence of synthesis conditions on NO oxidation and NOx storage performances of La0.7Sr0.3MnO3 perovskite-type catalyst in lean-burn atmospheres publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.09.035 contributor: fullname: Dong – volume: 343 start-page: 49 year: 2008 ident: 10.1016/j.cattod.2015.12.003_bib0040 article-title: A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2008.03.017 contributor: fullname: Onda – volume: 56 start-page: 2727 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0050 article-title: Hydrothermal conversion of carbohydrate biomass to lactic acid publication-title: AIChE J. doi: 10.1002/aic.12193 contributor: fullname: Yan – volume: 239 start-page: 151 year: 2005 ident: 10.1016/j.cattod.2015.12.003_bib0225 article-title: Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2005.06.017 contributor: fullname: Bicker – volume: 386 start-page: 116 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0150 article-title: Kinetic study of the catalytic dry reforming of CH4 with CO 2 over La2—xSrxNiO4 perovskite-type oxides publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2010.07.043 contributor: fullname: Pichas – volume: 60 start-page: 3804 year: 2014 ident: 10.1016/j.cattod.2015.12.003_bib0235 article-title: Kinetic study of retro–aldol condensation of glucose to glycolaldehyde with ammonium metatungstate as the catalyst publication-title: AIChE J. doi: 10.1002/aic.14554 contributor: fullname: Zhang – volume: 162 start-page: 19 year: 2000 ident: 10.1016/j.cattod.2015.12.003_bib0245 article-title: The universal character of the Mars and Van Krevelen mechanism publication-title: J. Mol. Catal. A Chem. doi: 10.1016/S1381-1169(00)00319-8 contributor: fullname: Doornkamp – volume: 81 start-page: 1119 year: 2006 ident: 10.1016/j.cattod.2015.12.003_bib0090 article-title: Lactic acid: recent advances in products, processes and technologies—a review publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1486 contributor: fullname: Datta – volume: 96 start-page: 1077 year: 1974 ident: 10.1016/j.cattod.2015.12.003_bib0255 article-title: Oxidation of organic compounds with cerium (IV)-oxidative decarboxylation of substituted phenylacetic acids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00811a022 contributor: fullname: Trahanovsky – volume: 482 start-page: 78 year: 2014 ident: 10.1016/j.cattod.2015.12.003_bib0230 article-title: One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.05.029 contributor: fullname: Lei – volume: 134–135 start-page: 251 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0160 article-title: The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.01.027 contributor: fullname: Chen – volume: 328 start-page: 602 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0065 article-title: Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts publication-title: Science doi: 10.1126/science.1183990 contributor: fullname: Holm – volume: 32 start-page: 2930 year: 1993 ident: 10.1016/j.cattod.2015.12.003_bib0125 article-title: Deep oxidation of toluene on perovskite catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00023a066 contributor: fullname: Chang – volume: 103 start-page: 393 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0250 article-title: Lanthanum–chromium–nickel perovskites for the catalytic cracking of tar model compounds publication-title: Fuel doi: 10.1016/j.fuel.2012.09.017 contributor: fullname: Grieco – volume: 37 start-page: 105 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0165 article-title: Catalytic performance of NO oxidation over LaMeO3 (Me=Mn, Fe, Co) perovskite prepared by the sol-gel method publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.03.039 contributor: fullname: Chen – volume: 101 start-page: 1981 year: 2001 ident: 10.1016/j.cattod.2015.12.003_bib0130 article-title: Chemical structures and performance of perovskite oxides publication-title: Chem. Rev. doi: 10.1021/cr980129f contributor: fullname: Peña – volume: 481 start-page: 1 year: 2014 ident: 10.1016/j.cattod.2015.12.003_bib0205 article-title: Ni nanoparticles prepared from Ce substituted LaNiO3 for the guaiacol conversion publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.04.037 contributor: fullname: Escalona – volume: 9 start-page: 63 year: 2002 ident: 10.1016/j.cattod.2015.12.003_bib0020 article-title: A literature review of poly (lactic acid) publication-title: J. Polym. Environ. doi: 10.1023/A:1020200822435 contributor: fullname: Garlotta – volume: 17 start-page: 2455 year: 2015 ident: 10.1016/j.cattod.2015.12.003_bib0080 article-title: Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10 publication-title: Green Chem. doi: 10.1039/C4GC02131B contributor: fullname: Wang – volume: 112 start-page: L163 year: 1996 ident: 10.1016/j.cattod.2015.12.003_bib0220 article-title: Catalytic activity of lanthanoidec III ions for dehydration of d-glucose to 5 (hydroxymethyl) furfural publication-title: J. Mol. Catal. A Chem. doi: 10.1016/1381-1169(96)00285-3 contributor: fullname: Ishida – volume: 59 start-page: 2096 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0075 article-title: Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions publication-title: AIChE J. doi: 10.1002/aic.13960 contributor: fullname: Wang – volume: 22 start-page: 405 year: 2002 ident: 10.1016/j.cattod.2015.12.003_bib0115 article-title: Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(02)00017-X contributor: fullname: Watanabe – volume: 12 start-page: 502 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0055 article-title: Microwave-assisted conversion of d-glucose into lactic acid under solvent-free conditions publication-title: Green Chem. doi: 10.1039/b922286c contributor: fullname: Epane – volume: 24 start-page: 4797 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0200 article-title: Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes publication-title: Energy Fuels doi: 10.1021/ef100768e contributor: fullname: Deng – volume: 107 start-page: 2411 year: 2007 ident: 10.1016/j.cattod.2015.12.003_bib0010 article-title: Chemical routes for the transformation of biomass into chemicals publication-title: Chem. Rev. doi: 10.1021/cr050989d contributor: fullname: Corma – volume: 43 start-page: 7740 year: 2004 ident: 10.1016/j.cattod.2015.12.003_bib0110 article-title: Stability of manganese oxide in catalytic supercritical water oxidation of phenol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie040154d contributor: fullname: Tomita – ident: 10.1016/j.cattod.2015.12.003_bib0005 doi: 10.2172/861485 – volume: 15 start-page: 82 year: 2011 ident: 10.1016/j.cattod.2015.12.003_bib0100 article-title: Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts publication-title: Catal. Commun. doi: 10.1016/j.catcom.2011.08.019 contributor: fullname: Liu – volume: 14 start-page: 182 year: 1995 ident: 10.1016/j.cattod.2015.12.003_bib0105 article-title: Supercritical water oxidation research and development update publication-title: Environ. Prog. doi: 10.1002/ep.670140318 contributor: fullname: Gloyna – volume: 162 start-page: 149 year: 2015 ident: 10.1016/j.cattod.2015.12.003_bib0070 article-title: Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.06.025 contributor: fullname: Yang – volume: 231 start-page: 236 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0175 article-title: Complete oxidation of hydrocarbons on YFeO3 and LaFeO3 catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.029 contributor: fullname: Markova-Velichkova – volume: 234 start-page: 31 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0155 article-title: CO2 reforming of CH4 over Co–La-based perovskite-type catalyst precursors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.142 contributor: fullname: Valderrama – volume: 105 start-page: 171 year: 2011 ident: 10.1016/j.cattod.2015.12.003_bib0060 article-title: Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.04.009 contributor: fullname: Chambon – volume: 269 start-page: 122 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0085 article-title: Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars publication-title: J. Catal. doi: 10.1016/j.jcat.2009.10.023 contributor: fullname: West – volume: 126 start-page: 106 year: 2008 ident: 10.1016/j.cattod.2015.12.003_bib0190 article-title: Perovskite-type oxide LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes publication-title: Catal. Lett. doi: 10.1007/s10562-008-9588-0 contributor: fullname: Deng – volume: 27 start-page: 145 year: 2009 ident: 10.1016/j.cattod.2015.12.003_bib0030 article-title: Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2008.10.004 contributor: fullname: John – volume: 195 start-page: 1765 year: 2010 ident: 10.1016/j.cattod.2015.12.003_bib0140 article-title: La–Sr–Ni–Co–O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.004 contributor: fullname: Valderrama – volume: 29 start-page: 930 year: 2011 ident: 10.1016/j.cattod.2015.12.003_bib0035 article-title: Biotechnological routes based on lactic acid production from biomass publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.07.022 contributor: fullname: Gao – volume: 8 start-page: 613 year: 2015 ident: 10.1016/j.cattod.2015.12.003_bib0095 article-title: Tin-containing silicates: alkali salts improve methyl lactate yield from sugars publication-title: ChemSusChem doi: 10.1002/cssc.201403057 contributor: fullname: Tolborg – volume: 83 start-page: 383 year: 2008 ident: 10.1016/j.cattod.2015.12.003_bib0045 article-title: Hydrothermal catalytic conversion of biomass for lactic acid production publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1797 contributor: fullname: Kong – volume: 249 start-page: 349 year: 2007 ident: 10.1016/j.cattod.2015.12.003_bib0135 article-title: A Pd-doped perovskite catalyst, BaCe1–xPdxO3–δBaCe1–xPdxO3–δ, for CO oxidation publication-title: J. Catal. doi: 10.1016/j.jcat.2007.04.023 contributor: fullname: Singh – volume: 352 start-page: 43 year: 2009 ident: 10.1016/j.cattod.2015.12.003_bib0240 article-title: In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2008.09.037 contributor: fullname: Deng – volume: 31 start-page: 123 year: 2001 ident: 10.1016/j.cattod.2015.12.003_bib0120 article-title: Catalyst activity, stability, and transformations during oxidation in supercritical water publication-title: Appl. Catal. B Environ. doi: 10.1016/S0926-3373(00)00273-3 contributor: fullname: Yu – volume: 121–122 start-page: 1 year: 2012 ident: 10.1016/j.cattod.2015.12.003_bib0145 article-title: Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1—xCexNiO3 perovskite-type oxides publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.03.017 contributor: fullname: de Lima – volume: 172 start-page: 53 year: 2011 ident: 10.1016/j.cattod.2015.12.003_bib0185 article-title: La1—xCaxMnO3 perovskites as catalysts for total oxidation of volatile organic compounds publication-title: Catal. Today doi: 10.1016/j.cattod.2011.02.062 contributor: fullname: Stege – volume: 8 start-page: 3200 year: 2013 ident: 10.1016/j.cattod.2015.12.003_bib0210 article-title: One-step heterogeneous catalytic process for the dehydration of xylan into furfural publication-title: Bioresources doi: 10.15376/biores.8.3.3200-3211 contributor: fullname: Li |
SSID | ssj0008842 |
Score | 2.4977777 |
Snippet | The LaCoO3 perovskite metal oxide with strong redox properties was used as the catalyst for the production of lactic acid from a variety of cellulosic biomass... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 56 |
SubjectTerms | Cellulose Glucose Lactic acid Perovskite Redox catalysis Xylose |
Title | Effect of redox properties of LaCoO3 perovskite catalyst on production of lactic acid from cellulosic biomass |
URI | https://dx.doi.org/10.1016/j.cattod.2015.12.003 |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa63QNwQLCAWF7ygVsVlIcT28dVKSqogsMuopwi23FQd5ekoimCf89M7DxEEQIkLlE1alp35tPMZDrzDSHPI81CZkodWCOTgAkVB1KnMsi0yXQotWXtMpjlOX-7Fi8XbDGZdM3ug-y_WhpkYGucnP0La_cfCgJ4DTaHK1gdrn9kd09HDDkgUoF-wwasLfZOO3LZlZrX7xIkK66_7rBwO2vrN993Df5rsHX0rz6HvG7np2bKbAo3hYJF_v11DXad4dS-8r0bPc9B4_lNmnFrzkdfkF5vVH21r34Wr3D7cw8iV439YDedZOUoDpZ19an0Ul-iiLK-ndXXzQ5mZ1wBEh5cU-Go2F9Y534FB8AkoRj759jtcvEeNs1GsdoRoB9EAVeQuEQOUPjF2L-XtjXfMBmiXt-LeI4HwXNAagz5U8aPyHEMXiudkuOz14v1mz6wC9HuYuoP3k1itu2Ch9_160xnlL1c3CG3_WMHPXN4uUsmtjohN-bdtr8TcmtETHmPfHYoonVJWxTRAUUocyiiA4pohyJaV3RAEb7XoYgiiiiiiA4ooh5F98n7V4uL-TLwizkCk8q0CUrLNeNFFEfKyijOeCRVpnkJAYuJzMahAV2JROlQGdCrVcpozg2LSiYKLlXygEyrurIPCUX6SqWk1nFiWcE5xANIsBVnRZKG4ChOSdApMd86_pW8a0y8zJ3Sc1R6HsXIc3tKeKfp3OeQLjfMARy_vfPRP9_5mNwcUP-ETJsve_uUHO2K_TMPoR9Xdpcp |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+redox+properties+of+LaCoO3+perovskite+catalyst+on+production+of+lactic+acid+from+cellulosic+biomass&rft.jtitle=Catalysis+today&rft.au=Yang%2C+Xiaokun&rft.au=Yang%2C+Lisha&rft.au=Fan%2C+Wei&rft.au=Lin%2C+Hongfei&rft.date=2016-07-01&rft.pub=Elsevier+B.V&rft.issn=0920-5861&rft.eissn=1873-4308&rft.volume=269&rft.spage=56&rft.epage=64&rft_id=info:doi/10.1016%2Fj.cattod.2015.12.003&rft.externalDocID=S0920586115007567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon |