ToTem: a tool for variant calling pipeline optimization

High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline o...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 19; no. 1; p. 243
Main Authors: Tom, Nikola, Tom, Ondrej, Malcikova, Jitka, Pavlova, Sarka, Kubesova, Blanka, Rausch, Tobias, Kolarik, Miroslav, Benes, Vladimir, Bystry, Vojtech, Pospisilova, Sarka
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 26-06-2018
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .
AbstractList Background High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Results Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. Conclusions ToTem is a tool for automated pipeline optimization which is freely available as a web application at Keywords: Variant calling, Benchmarking, Next generation sequencing, Parameter optimization
High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at https://totem.software.
BACKGROUNDHigh-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall.RESULTSHere we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data.CONCLUSIONSToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .
Abstract Background High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Results Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user’s priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. Conclusions ToTem is a tool for automated pipeline optimization which is freely available as a web application at https://totem.software.
High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .
Background High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Results Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user’s priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. Conclusions ToTem is a tool for automated pipeline optimization which is freely available as a web application at https://totem.software.
ArticleNumber 243
Audience Academic
Author Kubesova, Blanka
Bystry, Vojtech
Malcikova, Jitka
Tom, Ondrej
Pospisilova, Sarka
Pavlova, Sarka
Rausch, Tobias
Kolarik, Miroslav
Benes, Vladimir
Tom, Nikola
Author_xml – sequence: 1
  givenname: Nikola
  orcidid: 0000-0001-7440-0515
  surname: Tom
  fullname: Tom, Nikola
  organization: Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
– sequence: 2
  givenname: Ondrej
  surname: Tom
  fullname: Tom, Ondrej
  organization: Department of Computer Science, Faculty of Science, Palacky University, Olomouc, Czech Republic
– sequence: 3
  givenname: Jitka
  surname: Malcikova
  fullname: Malcikova, Jitka
  organization: Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
– sequence: 4
  givenname: Sarka
  surname: Pavlova
  fullname: Pavlova, Sarka
  organization: Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
– sequence: 5
  givenname: Blanka
  surname: Kubesova
  fullname: Kubesova, Blanka
  organization: Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
– sequence: 6
  givenname: Tobias
  surname: Rausch
  fullname: Rausch, Tobias
  organization: Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
– sequence: 7
  givenname: Miroslav
  surname: Kolarik
  fullname: Kolarik, Miroslav
  organization: Department of Computer Science, Faculty of Science, Palacky University, Olomouc, Czech Republic
– sequence: 8
  givenname: Vladimir
  surname: Benes
  fullname: Benes, Vladimir
  organization: Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
– sequence: 9
  givenname: Vojtech
  surname: Bystry
  fullname: Bystry, Vojtech
  email: vojtech.bystry@ceitec.muni.cz
  organization: Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic. vojtech.bystry@ceitec.muni.cz
– sequence: 10
  givenname: Sarka
  surname: Pospisilova
  fullname: Pospisilova, Sarka
  email: pospisilova.sarka@fnbrno.cz, pospisilova.sarka@fnbrno.cz
  organization: Department of Internal Medicine - Hematology and Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic. pospisilova.sarka@fnbrno.cz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29940847$$D View this record in MEDLINE/PubMed
BookMark eNptkl2L1DAUhousuB_6A7yRgjd60TVJ8-mFsCy6DiwIOl6HM2laM7RNTdJl9Neb2VmXqUgucjh53jfJ4T0vTkY_2qJ4idElxpK_i5hIpiqEZUUIEdXuSXGGqcAVwYidHNWnxXmMW4SwkIg9K06JUhRJKs4KsfZrO7wvoUze92XrQ3kHwcGYSgN978aunNxkc2FLPyU3uN-QnB-fF09b6KN98bBfFN8_fVxff65uv9ysrq9uK8MUTVVbGyZUq4DStiGsppbWbEOlEjU0BlqOCAWggtAGiAIGBBrBiLJccgukqS-K1cG38bDVU3ADhF_ag9P3DR86DSE501utsLS1IYJnHRVKbWrKSSsbQ6jiG0DZ68PBa5o3g22MHVOAfmG6PBndD935O51fiQiW2eDNg0HwP2cbkx5cNLbvYbR-jpogphhHFLGMvv4H3fo5jHlUmRKYMqXYEdVB_oAbW5_vNXtTfcUozz6ckExd_ofKq7GDMzkSrcv9heDtQpCZZHepgzlGvfr2dcniA2uCjzHY9nEeGOl9yvQhZTqnTO9TpndZ8-p4kI-Kv7Gq_wD4-Muz
CitedBy_id crossref_primary_10_3389_fgene_2020_544162
Cites_doi 10.1093/bioinformatics/btt750
10.1101/gr.129684.111
10.1038/ng.806
10.1038/leu.2017.230
10.1093/bib/bbs086
10.1002/0471250953.bi1110s43
10.1186/s13073-016-0269-0
10.1038/leu.2014.297
10.1038/nbt.2743
10.1038/srep17875
10.1093/bioinformatics/btu345
10.1101/023754
10.1038/nbt.2835
10.1093/bioinformatics/btu356
10.1038/sdata.2016.25
10.1093/bioinformatics/btp373
10.1093/bioinformatics/btp324
10.1093/bioinformatics/btw587
10.1038/srep14283
10.1093/nar/gkw227
10.1038/srep43169
10.1093/nar/gkw343
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-018-2227-x
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 243
ExternalDocumentID oai_doaj_org_article_918e3c276a2d4799b3462f8dc2496ba0
A546053622
10_1186_s12859_018_2227_x
29940847
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: LQ1601
– fundername: ;
  grantid: M2015064; CZ.02.1.01/0.0/0.0/16_013/0001818
– fundername: ;
  grantid: No 692298
– fundername: ;
  grantid: 15-30015A and 15-31834A
– fundername: ;
  grantid: MUNI/A/0968/2017
GroupedDBID ---
-A0
0R~
23N
2WC
3V.
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M0N
M1P
M48
M7P
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
AFGXO
AFPKN
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c594t-f3c579f9a44fd2534e435b48973adcaf6024aa4724da29a5a2ad7529e686ea2d3
IEDL.DBID RPM
ISSN 1471-2105
IngestDate Tue Oct 22 15:00:52 EDT 2024
Tue Sep 17 21:17:35 EDT 2024
Sat Oct 26 05:59:17 EDT 2024
Thu Oct 10 19:07:01 EDT 2024
Tue Nov 19 21:10:55 EST 2024
Tue Nov 12 22:42:11 EST 2024
Thu Aug 01 19:21:55 EDT 2024
Fri Nov 22 00:56:06 EST 2024
Sat Nov 02 12:26:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Benchmarking
Parameter optimization
Next generation sequencing
Variant calling
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-f3c579f9a44fd2534e435b48973adcaf6024aa4724da29a5a2ad7529e686ea2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7440-0515
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020218/
PMID 29940847
PQID 2071459955
PQPubID 44065
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_918e3c276a2d4799b3462f8dc2496ba0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6020218
proquest_miscellaneous_2059560405
proquest_journals_2071459955
gale_infotracmisc_A546053622
gale_infotracacademiconefile_A546053622
gale_incontextgauss_ISR_A546053622
crossref_primary_10_1186_s12859_018_2227_x
pubmed_primary_29940847
PublicationCentury 2000
PublicationDate 2018-06-26
PublicationDateYYYYMMDD 2018-06-26
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JM Zook (2227_CR10) 2016; 3
A Talwalkar (2227_CR7) 2014; 30
2227_CR14
2227_CR15
J Malcikova (2227_CR20) 2015; 29
2227_CR12
2227_CR13
DC Koboldt (2227_CR24) 2009; 25
Y Guo (2227_CR19) 2015; 5
OG Bahcall (2227_CR8) 2015; 16
S Hwang (2227_CR5) 2015; 5
rtg-tools (2227_CR11) 2017
S Pabinger (2227_CR2) 2014; 15
H Li (2227_CR18) 2014; 30
RL Goldfeder (2227_CR17) 2016; 8
E Afgan (2227_CR29) 2016; 44
S Sandmann (2227_CR6) 2017; 7
2227_CR27
MA DePristo (2227_CR3) 2011; 43
Z Lai (2227_CR23) 2016; 44
2227_CR28
2227_CR21
JM Zook (2227_CR9) 2014; 32
JY Park (2227_CR1) 2013; 31
DC Koboldt (2227_CR25) 2012; 22
GA Van der Auwera (2227_CR4) 2013; 43
M Gerstung (2227_CR22) 2014; 30
H Li (2227_CR26) 2009; 25
N Popitsch (2227_CR16) 2017; 33
References_xml – ident: 2227_CR27
– volume: 30
  start-page: 1198
  year: 2014
  ident: 2227_CR22
  publication-title: Bioinforma Oxf Engl.
  doi: 10.1093/bioinformatics/btt750
  contributor:
    fullname: M Gerstung
– volume: 22
  start-page: 568
  year: 2012
  ident: 2227_CR25
  publication-title: Genome Res
  doi: 10.1101/gr.129684.111
  contributor:
    fullname: DC Koboldt
– volume: 43
  start-page: 491
  year: 2011
  ident: 2227_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng.806
  contributor:
    fullname: MA DePristo
– ident: 2227_CR21
  doi: 10.1038/leu.2017.230
– volume: 15
  start-page: 256
  year: 2014
  ident: 2227_CR2
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs086
  contributor:
    fullname: S Pabinger
– volume: 43
  start-page: 11
  year: 2013
  ident: 2227_CR4
  publication-title: Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al
  doi: 10.1002/0471250953.bi1110s43
  contributor:
    fullname: GA Van der Auwera
– volume: 8
  start-page: 24
  year: 2016
  ident: 2227_CR17
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0269-0
  contributor:
    fullname: RL Goldfeder
– volume: 29
  start-page: 877
  year: 2015
  ident: 2227_CR20
  publication-title: Leukemia
  doi: 10.1038/leu.2014.297
  contributor:
    fullname: J Malcikova
– volume: 31
  start-page: 990
  year: 2013
  ident: 2227_CR1
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2743
  contributor:
    fullname: JY Park
– volume: 5
  start-page: srep17875
  year: 2015
  ident: 2227_CR5
  publication-title: Sci Rep
  doi: 10.1038/srep17875
  contributor:
    fullname: S Hwang
– volume: 30
  start-page: 2787
  year: 2014
  ident: 2227_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu345
  contributor:
    fullname: A Talwalkar
– ident: 2227_CR12
  doi: 10.1101/023754
– volume: 32
  start-page: 246
  year: 2014
  ident: 2227_CR9
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2835
  contributor:
    fullname: JM Zook
– volume: 30
  start-page: 2843
  year: 2014
  ident: 2227_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu356
  contributor:
    fullname: H Li
– volume: 16
  start-page: 194
  year: 2015
  ident: 2227_CR8
  publication-title: Nat Rev Genet
  contributor:
    fullname: OG Bahcall
– ident: 2227_CR14
– ident: 2227_CR28
– volume: 3
  start-page: sdata201625
  year: 2016
  ident: 2227_CR10
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.25
  contributor:
    fullname: JM Zook
– volume: 25
  start-page: 2283
  year: 2009
  ident: 2227_CR24
  publication-title: Bioinforma Oxf Engl.
  doi: 10.1093/bioinformatics/btp373
  contributor:
    fullname: DC Koboldt
– volume: 25
  start-page: 1754
  year: 2009
  ident: 2227_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
  contributor:
    fullname: H Li
– volume: 33
  start-page: 155
  year: 2017
  ident: 2227_CR16
  publication-title: Bioinforma Oxf Engl
  doi: 10.1093/bioinformatics/btw587
  contributor:
    fullname: N Popitsch
– volume: 5
  year: 2015
  ident: 2227_CR19
  publication-title: Sci Rep
  doi: 10.1038/srep14283
  contributor:
    fullname: Y Guo
– volume: 44
  year: 2016
  ident: 2227_CR23
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw227
  contributor:
    fullname: Z Lai
– volume-title: RTG tools: utilities for accurate VCF comparison and manipulation. Java. Real time genomics
  year: 2017
  ident: 2227_CR11
  contributor:
    fullname: rtg-tools
– ident: 2227_CR13
– volume: 7
  start-page: srep43169
  year: 2017
  ident: 2227_CR6
  publication-title: Sci Rep
  doi: 10.1038/srep43169
  contributor:
    fullname: S Sandmann
– volume: 44
  start-page: W3
  year: 2016
  ident: 2227_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw343
  contributor:
    fullname: E Afgan
– ident: 2227_CR15
SSID ssj0017805
Score 2.307385
Snippet High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing...
Background High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is...
BACKGROUNDHigh-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is...
Abstract Background High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 243
SubjectTerms Analysis
Artificial intelligence
Automation
Benchmarking
Bioinformatics
C plus plus
Computational Biology - methods
Computer graphics
Data processing
Gene sequencing
Genomes
Genomics
Graphical user interface
High-Throughput Nucleotide Sequencing - methods
High-throughput screening (Biochemical assaying)
Leukemia
Mathematical functions
Medical research
Mutation
Next generation sequencing
Optimization
Parameter estimation
Parameter optimization
Parameters
Process controls
Recall
Reproducibility
Reproducibility of Results
Research Design
Software
Variant calling
Web applications
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB-0IHiRtn5Fa4kiCEJostmPrLeqLfXiwT7B2zLJ7mqhTR7mvVL_-84keY8GD168Ziew-c3szkx25rcAb1XdFJX2MVNYNpkMlc2sDCKTEa1RoiaPzf8hz87N1x_V5xOmydle9cU1YSM98AjckS2qUDbCaBReGmvrUmoRK99Q3qBrHLP1XG-Sqen8gJn6pzNMmspRXzBPG6XNZBVCmOxm5oUGsv6_t-Q7PmleL3nHAZ3uwqMpckyPxxnvwb3Q7sOD8S7JP4_BLLpFuPqQYrrqusuUYtH0mvJgAi4lNXDTebq8WHL3eUg72ieupgbMJ_D99GTx6SybbkXIGmXlKotlo4yNFqWMXqhSBop4allZU6JvMGryuojSCOlRWFQo0BPqNuhKBwKxfAo7bdeG55CirE0Ral9GH1kag61EGWJdoM-NzxN4v0HJLUfyCzckDZV2I6SOIHUMqbtJ4CPjuBVk3urhAWnTTdp0_9JmAm9YC46ZKVouffmJ6753X86_uWPFR7jkb0UC7yah2JE-Gpw6CeijmMxqJnkwk6Sl08yHN8p209LtneCWLqZhUwm83g7zm1yO1oZuzTKK80oKdhN4NtrG9rvJv8ucfH4CZmY1M2DmI-3Fr4HYm1THIdeL_4HkS3go2N5znQl9ADur3-vwCu73fn04LJVbwQMWKQ
  priority: 102
  providerName: Directory of Open Access Journals
Title ToTem: a tool for variant calling pipeline optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/29940847
https://www.proquest.com/docview/2071459955
https://search.proquest.com/docview/2059560405
https://pubmed.ncbi.nlm.nih.gov/PMC6020218
https://doaj.org/article/918e3c276a2d4799b3462f8dc2496ba0
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_ugeCL-G31XKoIgtDbbZqPxrfzvOMOUcRbwbeQ5uNu4bZdrrui_70zbbps8c3XzZRNfzPJzDQzvxDyllc2L4ULGTeFzZgvVaaYpxkLRklOK_DY-B3y_FJ-_Vl-OkWaHD70wnRF-7ZaHtU3q6N6ed3VVq5XdjbUic2-fTkREOOAa5pNyARiwyFFj0cHSNIfjy9hFrM2R4o2yJjBICiVGRJPwxbM5iXeqLLnizrK_n835j3PNK6a3HNDZw_I_Rg_psf9PB-SO75-RO72N0r-eUzkoln41YfUpJumuUkhIk1_QTYM8KWgDGw9T9fLNfag-7SB3WIV2zCfkB9np4uT8yzejZBZrtgmC4XlUgVlGAuO8oJ5iHsqVipZGGdNAIiYMUxS5gxVhhtqHGCvvCiFN9QVT8lB3dT-OUkNq2TuK1cEF1DaeFXSwocqN24u3Twh7weU9LqnwNBd6lAK3aOrAV2N6OrfCfmIOO4Ekb26-6G5vdJRh1rlpS8slQImwqRSVcEEDaWzkAuKysA_vkEtaOSnqLEA5sps21ZfXH7XxxwPcsHr0oS8i0KhAX1YE_sJ4KWQ0mokeTiShAVkx8ODsnVcwK2m2NiFZGw8Ia93w_gkFqXVvtmiDMfsEkLehDzrbWP33oOJJUSOrGYEzHgErL2j947W_eK_n3xJ7lG097nIqDgkB5vbrX9FJq3bTiFpuPg87T48TLtl8xetBRkU
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYEIKX8TkIDAgICQkpa-LYcczbGJs6sU2IFYk3y_HHqLQm1dJO8N9zlzpVI972Gl8U-z58d_Hdz4R84JXJysL6hOvcJMyVMpHM0YR5LQWnFXhs_A85vhDnv8qvRwiTw_temK5o31TT_fpqtl9Pf3e1lfOZGfV1YqPvZ4cFxDjgmkZb5C7Ya5r2SXo4PECY_nCACfMYtRmCtEHODCpBqUgQeho2YZaWeKfKhjfqQPv_35o3fNOwbnLDER0_vOUSHpGdEHnGB6vhx-SOq5-Qe6u7KP8-JWLSTNzsc6zjRdNcxRDLxjeQRwPjYxAjNq3H8-kcu9dd3MA-MwsNnM_Iz-OjyeE4CbcqJIZLtkh8briQXmrGvKU8Zw4ipoqVUuTaGu1hZkxrJiizmkrNNdUWpCZdURZOU5vvku26qd0LEmtWicxVNvfWI7V2sqS581WmbSpsGpFPPXfVfAWeobqkoyzUSioKpKJQKupPRL4g_9eEiHvdPWiuL1VgnZJZ6XJDRQETYULKKmcF9aU1kEUWlYYvvkfpKUS2qLF05lIv21adXPxQBxyPgMFf04h8DES-ATkaHToRYFEIhjWg3BtQgumZ4XCvJCqYfqsotoQhjBuPyLv1ML6J5Wy1a5ZIwzEvhWA5Is9XOrVed6-aEREDbRswZjgCStYBgwelennrN9-S--PJ2ak6PTn_9oo8oGgzaZHQYo9sL66X7jXZau3yTWdu_wBoaSyh
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYhLeRYCBQJCQkJKkziOHXMrbVetgKqii8TNcvwoK3WTqNmt4N8zk2RXG3GDazxRbH9jz0w885mQd3lp0oJbH-U6MxFzhYwkczRiXkuR0xIsNv6HPLkQZz-Ko2OkyVlf9dUl7Ztytl9dzfer2c8ut7KZm3iVJxaffz3k4OOAaYob6-MtchvWbEJXgfpwgIBU_cMhJvQlblMkaoO4GdSCUhEh_TRsxCwp8F6VDYvUEff_vT1v2Kdx7uSGMZrc_49hPCA7gwcaHvQiD8ktVz0id_o7KX8_JmJaT938Y6jDRV1fheDThjcQTwMAIcCJxethM2uwit2FNew386GQ8wn5PjmeHp5Ew-0KkcklW0Q-M7mQXmrGvKV5xhx4TiUrpMi0NdpD75jWTFBmNZU611RbQE86XnCnqc12yXZVV-4ZCTUrRepKm3nrUVo7WdDM-TLVNhE2CciH1QyrpifRUF3wUXDVI6MAGYXIqF8B-YQYrAWR_7p7UF9fqmH6lEwLlxkqOHSECSnLjHHqC2sgmuSlhi--RQQVMlxUmEJzqZdtq04vvqmDHI-CwW7TgLwfhHwNWBo9VCTAoJAUayS5N5KEJWjGzStFUcMW0CqKpWFI55YH5M26Gd_EtLbK1UuUyTE-Bac5IE97vVqPe6WeAREjjRtNzLgFFK0jCB8U6_k_v_ma3D0_mqgvp2efX5B7FJdNwiPK98j24nrpXpKt1i5fdSvuD9-NLyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ToTem%3A+a+tool+for+variant+calling+pipeline+optimization&rft.jtitle=BMC+bioinformatics&rft.au=Tom%2C+Nikola&rft.au=Tom%2C+Ondrej&rft.au=Malcikova%2C+Jitka&rft.au=Pavlova%2C+Sarka&rft.date=2018-06-26&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=243&rft.epage=243&rft_id=info:doi/10.1186%2Fs12859-018-2227-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon