Fast Complementation of Split Fluorescent Protein Triggered by DNA Hybridization

Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein-protein or protein-nucleic acid interactions that reassemble the split poly...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 7; pp. 2052 - 2056
Main Authors: Demidov, Vadim V., Dokholyan, Nikolay V., Witte-Hoffmann, Carlos, Chalasani, Poornima, Yiu, Hung-Wei, Ding, Feng, Yu, Yong, Cantor, Charles R., Broude, Natalia E.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 14-02-2006
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein-protein or protein-nucleic acid interactions that reassemble the split polypeptides. However, in prior studies, it took hours to restore the fluorescence of a split fluorescent protein because the formation of the protein chromophore slowly occurred de novo concurrently with reassembly. Here we provide evidence that a fluorogenic chromophore can self-catalytically form within an isolated N-terminal fragment of the enhanced green fluorescent protein (EGFP). We show that restoration of the split protein fluorescence can be driven by nucleic acid complementary interactions. In our assay, fluorescence development is fast (within a few minutes) when complementary oligonucleotide-linked fragments of the split EGFP are combined. The ability of our EGFP system to respond quickly to DNA hybridization should be useful for detecting the kinetics of many other types of pairwise interactions both in vitro and in living cells.
AbstractList Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein-protein or protein-nucleic acid interactions that reassemble the split polypeptides. However, in prior studies, it took hours to restore the fluorescence of a split fluorescent protein because the formation of the protein chromophore slowly occurred de novo concurrently with reassembly. Here we provide evidence that a fluorogenic chromophore can self-catalytically form within an isolated N-terminal fragment of the enhanced green fluorescent protein (EGFP). We show that restoration of the split protein fluorescence can be driven by nucleic acid complementary interactions. In our assay, fluorescence development is fast (within a few minutes) when complementary oligonucleotide-linked fragments of the split EGFP are combined. The ability of our EGFP system to respond quickly to DNA hybridization should be useful for detecting the kinetics of many other types of pairwise interactions both in vitro and in living cells.
Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein–protein or protein–nucleic acid interactions that reassemble the split polypeptides. However, in prior studies, it took hours to restore the fluorescence of a split fluorescent protein because the formation of the protein chromophore slowly occurred de novo concurrently with reassembly. Here we provide evidence that a fluorogenic chromophore can self-catalytically form within an isolated N-terminal fragment of the enhanced green fluorescent protein (EGFP). We show that restoration of the split protein fluorescence can be driven by nucleic acid complementary interactions. In our assay, fluorescence development is fast (within a few minutes) when complementary oligonucleotide-linked fragments of the split EGFP are combined. The ability of our EGFP system to respond quickly to DNA hybridization should be useful for detecting the kinetics of many other types of pairwise interactions both in vitro and in living cells.
Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein–protein or protein–nucleic acid interactions that reassemble the split polypeptides. However, in prior studies, it took hours to restore the fluorescence of a split fluorescent protein because the formation of the protein chromophore slowly occurred de novo concurrently with reassembly. Here we provide evidence that a fluorogenic chromophore can self-catalytically form within an isolated N-terminal fragment of the enhanced green fluorescent protein (EGFP). We show that restoration of the split protein fluorescence can be driven by nucleic acid complementary interactions. In our assay, fluorescence development is fast (within a few minutes) when complementary oligonucleotide-linked fragments of the split EGFP are combined. The ability of our EGFP system to respond quickly to DNA hybridization should be useful for detecting the kinetics of many other types of pairwise interactions both in vitro and in living cells. split EGFP DNA duplex EGFP reassembly protein folding DMD simulations
Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein-protein or protein-nucleic acid interactions that reassemble the split polypeptides. However, in prior studies, it took hours to restore the fluorescence of a split fluorescent protein because the formation of the protein chromophore slowly occurred de novo concurrently with reassembly. Here we provide evidence that a fluorogenic chromophore can self-catalytically form within an isolated N-terminal fragment of the enhanced green fluorescent protein (EGFP). We show that restoration of the split protein fluorescence can be driven by nucleic acid complementary interactions. In our assay, fluorescence development is fast (within a few minutes) when complementary oligonucleotide-linked fragments of the split EGFP are combined. The ability of our EGFP system to respond quickly to DNA hybridization should be useful for detecting the kinetics of many other types of pairwise interactions both in vitro and in living cells. [PUBLICATION ABSTRACT]
Author Demidov, Vadim V.
Cantor, Charles R.
Dokholyan, Nikolay V.
Witte-Hoffmann, Carlos
Ding, Feng
Yiu, Hung-Wei
Yu, Yong
Broude, Natalia E.
Chalasani, Poornima
Author_xml – sequence: 1
  givenname: Vadim V.
  surname: Demidov
  fullname: Demidov, Vadim V.
– sequence: 2
  givenname: Nikolay V.
  surname: Dokholyan
  fullname: Dokholyan, Nikolay V.
– sequence: 3
  givenname: Carlos
  surname: Witte-Hoffmann
  fullname: Witte-Hoffmann, Carlos
– sequence: 4
  givenname: Poornima
  surname: Chalasani
  fullname: Chalasani, Poornima
– sequence: 5
  givenname: Hung-Wei
  surname: Yiu
  fullname: Yiu, Hung-Wei
– sequence: 6
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
– sequence: 7
  givenname: Yong
  surname: Yu
  fullname: Yu, Yong
– sequence: 8
  givenname: Charles R.
  surname: Cantor
  fullname: Cantor, Charles R.
– sequence: 9
  givenname: Natalia E.
  surname: Broude
  fullname: Broude, Natalia E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16461889$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMydQxKGc0o4_4o8LUrVlKVIFlShny0mcJaskTm0Hsfz1OOyqWxASJ2s0v_c8M-8EHQ1usAi9xHCOQdCLcTDhHAqcComBPkELDArnnCk4QgsAInLJCDtGJyFsAEAVEp6hY8wZx1KqBbpdmRCzpevHzvZ2iCa2bshck30ZuzZmq25y3oYqdbJb76Jth-zOt-u19bbOym129ekyu96Wvq3bn7-1z9HTxnTBvti_p-jr6v3d8jq_-fzh4_LyJq8KRWJel7Q0EkqhOBeN4GVllTSY1axJHV4R1mBigChOFKFUgiVcyJor05S4ZIKeonc733Eqe1vPE3rT6dG3vfFb7Uyr_-wM7Te9dt81ZpiKokgGZ3sD7-4nG6Lu27Ro15nBuiloLjjHhZL_BbGAdEo6O775C9y4yQ_pCpoAphIXkiToYgdV3oXgbfMwMgY9Z6rnTPUh06R4_XjTA78PMQFv98CsPNhRLdLHBdHN1HXR_oiPrP5NJuDVDtiE6PwDQQGYBKHoL2zBwG0
CitedBy_id crossref_primary_10_1002_pro_3482
crossref_primary_10_1016_j_cbpa_2011_10_014
crossref_primary_10_1016_j_bbrc_2008_05_075
crossref_primary_10_1177_1087057109341406
crossref_primary_10_1016_j_tibtech_2008_07_006
crossref_primary_10_1146_annurev_biophys_37_032807_125842
crossref_primary_10_1039_c1cs15212b
crossref_primary_10_1016_j_jmb_2013_11_002
crossref_primary_10_1038_nmeth1023
crossref_primary_10_1021_bi802027g
crossref_primary_10_1021_ac200657s
crossref_primary_10_1039_c1cs15054e
crossref_primary_10_2144_000113519
crossref_primary_10_3390_s100201355
crossref_primary_10_1073_pnas_0907495106
crossref_primary_10_1021_bi100975z
crossref_primary_10_1038_nchembio1007_598
crossref_primary_10_1002_pmic_200700739
crossref_primary_10_1146_annurev_biophys_051013_022846
crossref_primary_10_1016_j_febslet_2009_03_002
crossref_primary_10_1002_cbic_200900249
crossref_primary_10_1021_jz301893w
crossref_primary_10_1021_acs_jafc_6b05348
crossref_primary_10_1002_pro_735
crossref_primary_10_1002_jemt_21026
crossref_primary_10_1021_ja803782x
crossref_primary_10_1021_ja104395b
crossref_primary_10_1038_ncomms10935
crossref_primary_10_1021_bc300118m
crossref_primary_10_3390_ph4030494
crossref_primary_10_1016_j_addr_2019_08_001
crossref_primary_10_1021_acs_bioconjchem_5b00165
crossref_primary_10_1152_physrev_00038_2009
crossref_primary_10_1016_j_jmb_2009_08_069
crossref_primary_10_1021_acs_analchem_9b04502
crossref_primary_10_1016_j_mimet_2013_04_004
crossref_primary_10_1038_nprot_2006_201
crossref_primary_10_1002_ange_201914919
crossref_primary_10_1039_b909638h
crossref_primary_10_1002_bip_21440
crossref_primary_10_1039_C5CC09853J
crossref_primary_10_1016_j_jbiotec_2009_05_007
crossref_primary_10_1021_cr900323b
crossref_primary_10_1039_b807838f
crossref_primary_10_1002_wsbm_1415
crossref_primary_10_1038_nrm1929
crossref_primary_10_3390_molecules23123178
crossref_primary_10_1016_j_biomaterials_2015_01_038
crossref_primary_10_1002_ange_200802987
crossref_primary_10_1021_cr100002u
crossref_primary_10_1002_cbic_201000517
crossref_primary_10_1016_j_chembiol_2013_06_009
crossref_primary_10_1002_bip_21357
crossref_primary_10_1002_cbic_202200464
crossref_primary_10_1111_j_1476_5381_2009_00480_x
crossref_primary_10_1002_anie_201914919
crossref_primary_10_1126_sciadv_abk0425
crossref_primary_10_1038_nprot_2006_114
crossref_primary_10_1128_EC_00368_06
crossref_primary_10_1021_bc8003099
crossref_primary_10_1016_j_jmb_2009_06_072
crossref_primary_10_1038_ncomms3157
crossref_primary_10_1016_j_bpj_2009_12_4329
crossref_primary_10_1002_anie_200802987
crossref_primary_10_1002_0471143030_cb1711s37
crossref_primary_10_1016_j_neuron_2010_02_002
Cites_doi 10.1038/nature01406
10.1016/j.ymeth.2003.10.011
10.1126/science.273.5280.1392
10.1021/bi970281w
10.1016/j.tibtech.2005.07.001
10.1002/1522-2683(200205)23:10<1551::AID-ELPS1551>3.0.CO;2-9
10.1039/B418353N
10.1529/biophysj.104.044412
10.1002/1522-2683(200205)23:10<1543::AID-ELPS1543>3.0.CO;2-#
10.1038/nbt1044
10.1021/cr010142r
10.1016/0022-2836(71)90434-7
10.1073/pnas.0236088100
10.1038/415152a
10.1016/j.febslet.2004.11.025
10.1016/S0006-3495(01)76170-X
10.1093/nar/gki163
10.1074/jbc.274.26.18359
10.1016/j.bios.2003.12.012
10.1002/bip.1981.360200511
10.1103/PhysRevLett.95.078102
10.1016/0022-2836(71)90063-5
10.1093/nar/22.25.5530
10.1002/chem.200400646
10.1038/41048
10.1016/j.cell.2004.09.012
10.1021/ja046699g
10.1562/0031-8655(2001)074<0356:FCOPEG>2.0.CO;2
10.1073/pnas.93.24.13617
10.1002/anie.200400652
10.1021/ja051969w
10.1529/biophysj.104.046375
10.1002/pro.5560060604
10.1038/nbt791
10.1016/0022-2836(71)90433-5
10.1038/nbt816
10.1021/bi00436a025
10.1016/j.tibtech.2005.10.005
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 14, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 14, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0511078103
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


CrossRef
Nucleic Acids Abstracts

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2056
ExternalDocumentID 1001929931
10_1073_pnas_0511078103
16461889
103_7_2052
30048079
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c592t-db3ba80b79667f76bce98a14d4fb3b6c24f12a02962923380e2678d69afb1b473
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:11:48 EDT 2024
Fri Oct 25 10:51:45 EDT 2024
Fri Oct 25 22:41:43 EDT 2024
Thu Oct 10 19:51:17 EDT 2024
Thu Nov 21 21:19:52 EST 2024
Sat Sep 28 07:45:44 EDT 2024
Thu May 30 08:50:34 EDT 2019
Wed Nov 11 00:29:03 EST 2020
Fri Feb 02 07:05:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-db3ba80b79667f76bce98a14d4fb3b6c24f12a02962923380e2678d69afb1b473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Charles R. Cantor, December 22, 2005
Author contributions: V.V.D., N.V.D., C.W.-H., C.R.C., and N.E.B. designed research; V.V.D., N.V.D., C.W.-H., P.C., H.-W.Y., F.D., and Y.Y. performed research; V.V.D., N.V.D., F.D., C.R.C., and N.E.B. analyzed data; and V.V.D., C.R.C., and N.E.B. wrote the paper.
OpenAccessLink https://www.pnas.org/doi/pdf/10.1073/pnas.0511078103
PMID 16461889
PQID 201381582
PQPubID 42026
PageCount 5
ParticipantIDs proquest_journals_201381582
pnas_primary_103_7_2052_fulltext
proquest_miscellaneous_17088935
jstor_primary_30048079
crossref_primary_10_1073_pnas_0511078103
pubmed_primary_16461889
pnas_primary_103_7_2052
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1413755
proquest_miscellaneous_67661598
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2006-02-14
PublicationDateYYYYMMDD 2006-02-14
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-14
  day: 14
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 12116168 - Electrophoresis. 2002 May;23(10):1551-7
9194176 - Protein Sci. 1997 Jun;6(6):1157-66
15532060 - Angew Chem Int Ed Engl. 2005 Feb 11;44(8):1166-81
15142592 - Biosens Bioelectron. 2004 Jul 15;19(12):1591-7
5138337 - J Mol Biol. 1971 Dec 14;62(2):361-81
15454087 - Cell. 2004 Oct 1;119(1):137-44
11547577 - Photochem Photobiol. 2001 Aug;74(2):356-63
12116167 - Electrophoresis. 2002 May;23(10):1543-50
15580262 - Nat Biotechnol. 2005 Jan;23(1):102-7
11805829 - Nature. 2002 Jan 10;415(6868):152-5
16269193 - Trends Biotechnol. 2005 Dec;23(12):605-13
5133114 - J Mol Biol. 1971 Nov 14;61(3):525-42
16196826 - Phys Rev Lett. 2005 Aug 12;95(7):078102
12515863 - Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):478-83
5138338 - J Mol Biol. 1971 Dec 14;62(2):383-401
15003600 - Methods. 2004 Apr;32(4):381-8
15653637 - Nucleic Acids Res. 2005;33(1):366-75
2765487 - Biochemistry. 1989 May 16;28(10):4283-91
7225531 - Biopolymers. 1981 May;20(5):991-1011
15613627 - Biophys J. 2005 Mar;88(3):1932-47
12692560 - Nat Biotechnol. 2003 May;21(5):539-45
10373440 - J Biol Chem. 1999 Jun 25;274(26):18359-63
12577068 - Nat Biotechnol. 2003 Mar;21(3):287-93
8942983 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13617-22
15631464 - J Am Chem Soc. 2005 Jan 12;127(1):146-57
15515065 - Chemistry. 2005 Feb 4;11(4):1062-9
11890756 - Chem Rev. 2002 Mar;102(3):759-81
16038997 - Trends Biotechnol. 2005 Sep;23(9):450-5
7530841 - Nucleic Acids Res. 1994 Dec 25;22(25):5530-9
11259313 - Biophys J. 2001 Apr;80(4):2004-10
12540916 - Nature. 2003 Jan 23;421(6921):427-31
15533926 - Biophys J. 2005 Jan;88(1):147-55
8703075 - Science. 1996 Sep 6;273(5280):1392-5
9237752 - Nature. 1997 Jul 24;388(6640):355-8
9184161 - Biochemistry. 1997 Jun 3;36(22):6786-91
15680976 - FEBS Lett. 2005 Feb 7;579(4):927-32
15703789 - Org Biomol Chem. 2005 Feb 21;3(4):575-7
16076155 - J Am Chem Soc. 2005 Aug 10;127(31):10782-3
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_33_2
  doi: 10.1038/nature01406
– ident: e_1_3_3_3_2
  doi: 10.1016/j.ymeth.2003.10.011
– ident: e_1_3_3_8_2
  doi: 10.1126/science.273.5280.1392
– ident: e_1_3_3_6_2
  doi: 10.1021/bi970281w
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tibtech.2005.07.001
– ident: e_1_3_3_29_2
  doi: 10.1002/1522-2683(200205)23:10<1551::AID-ELPS1551>3.0.CO;2-9
– ident: e_1_3_3_26_2
  doi: 10.1039/B418353N
– ident: e_1_3_3_11_2
  doi: 10.1529/biophysj.104.044412
– ident: e_1_3_3_28_2
  doi: 10.1002/1522-2683(200205)23:10<1543::AID-ELPS1543>3.0.CO;2-#
– ident: e_1_3_3_37_2
  doi: 10.1038/nbt1044
– ident: e_1_3_3_7_2
  doi: 10.1021/cr010142r
– ident: e_1_3_3_24_2
  doi: 10.1016/0022-2836(71)90434-7
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0236088100
– ident: e_1_3_3_20_2
  doi: 10.1038/415152a
– ident: e_1_3_3_34_2
  doi: 10.1016/j.febslet.2004.11.025
– ident: e_1_3_3_18_2
  doi: 10.1016/S0006-3495(01)76170-X
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/gki163
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.274.26.18359
– ident: e_1_3_3_27_2
  doi: 10.1016/j.bios.2003.12.012
– ident: e_1_3_3_38_2
  doi: 10.1002/bip.1981.360200511
– ident: e_1_3_3_31_2
  doi: 10.1103/PhysRevLett.95.078102
– ident: e_1_3_3_25_2
  doi: 10.1016/0022-2836(71)90063-5
– ident: e_1_3_3_17_2
  doi: 10.1093/nar/22.25.5530
– ident: e_1_3_3_16_2
  doi: 10.1002/chem.200400646
– ident: e_1_3_3_30_2
  doi: 10.1038/41048
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cell.2004.09.012
– ident: e_1_3_3_4_2
  doi: 10.1021/ja046699g
– ident: e_1_3_3_14_2
  doi: 10.1562/0031-8655(2001)074<0356:FCOPEG>2.0.CO;2
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.93.24.13617
– ident: e_1_3_3_32_2
  doi: 10.1002/anie.200400652
– ident: e_1_3_3_5_2
  doi: 10.1021/ja051969w
– ident: e_1_3_3_9_2
  doi: 10.1529/biophysj.104.046375
– ident: e_1_3_3_19_2
  doi: 10.1002/pro.5560060604
– ident: e_1_3_3_1_2
  doi: 10.1038/nbt791
– ident: e_1_3_3_23_2
  doi: 10.1016/0022-2836(71)90433-5
– ident: e_1_3_3_2_2
  doi: 10.1038/nbt816
– ident: e_1_3_3_21_2
  doi: 10.1021/bi00436a025
– ident: e_1_3_3_35_2
  doi: 10.1016/j.tibtech.2005.10.005
SSID ssj0009580
Score 2.157984
Snippet Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2052
SubjectTerms Amino acids
Biochemistry
Biological Sciences
Chromophores
Complementation
Deoxyribonucleic acid
DNA
DNA - chemistry
Duchenne muscular dystrophy
Fluorescence
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - genetics
Hybridization
Nucleic Acid Hybridization
Oligonucleotides
Oligonucleotides - chemistry
Protein Folding
Protein refolding
Proteins
Sequence Deletion
Spectrometry, Fluorescence - methods
SummonAdditionalLinks – databaseName: JSTOR
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xPXEBWiiEAvUBpHIITfyI7WNFu11xqCptkbhZdmxDpSpbNbuH_nvGeey2iJV6nnFkjWc84_ibzwCfWcS0YYXOtY865yKKXIlAE90dd6r2ThepOXk2lxe_1OlZosn5MvbCJFhlhwvsbvGxQHI34Zj1nc96AhPVRd-P-fkDZl3V95lQ3G455SN_j2THt41tv6HXlYnRZnwWa0g9PfowUZqi0v_Ky39Rkg_SzvTlEyf8Cl4MdSU56R1hF56FZg92h8htydFAL_31NVxObbskaR8YkONpacgikjnWo0syvVkt7nqOJ3KZSByuG3KFR_jf6VFP4u7J6cUJmd2nRq-hhfMN_JyeXX2f5cO7CnktNF3m3jFnVeEkHnVklJWrg1a25J5HlFQ15bGktqC6olj-MVUEiinNV9pGVzou2T7sNIsmvAMSWRCMWs-i59xp5lTFtRdlHbnVzocMjkaTm9uePsN0196SmWR4s1mdDPY7O671RiNm8LZT3YxnRhpaCJoB2SIxcYDOZHAwrqwZorNFDXTFUij8wOFaimGV7kpsExar1pQy4b-Y2K5RSSxthFZpep2fbKZR8arE0RnIRx60VkiU3o8lzfWfjtq7xJpCCvF-my0O4Hn_DwijiX-AneXdKnyESetXn7qo-AvTTAkJ
  priority: 102
  providerName: JSTOR
Title Fast Complementation of Split Fluorescent Protein Triggered by DNA Hybridization
URI https://www.jstor.org/stable/30048079
http://www.pnas.org/content/103/7/2052.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16461889
https://www.proquest.com/docview/201381582
https://search.proquest.com/docview/17088935
https://search.proquest.com/docview/67661598
https://pubmed.ncbi.nlm.nih.gov/PMC1413755
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xPXFBFCikhcUHDuWQ3cQfsX2s2q6KEFUlQOIW2XFMV2qzqyZ76L9n7CS7LaIXzh5Hlj3jmYnfvAH4xDy6DSN0qp3XKRdepErUNNDdcasqZ3UWipMvvsvLX-rsPNDkiLEWJoL2K7ucNTe3s2Z5HbGV69tqPuLE5lffTnO8eaUQ8wlMMDYcU_Qt067q604oXr-c8pHPR7L5ujHtDLUwDww3WWyhU_AiV6HH-wOv1AMTA9spyv8r8vwbQPnAIy1ewoshlCQn_ZL34VndvIL9wVhbcjwwSn9-DVcL03Ykosd7sHg4DbLypMUQtCP-ZrO662mdSORtWDakw6z9d-jjSew9Obs8Idf3obZrqNp8Az8X5z9OL9KhlUJaCU271FlmjcqsxOxGelnYqtbK5NxxjyNFRbnPqcmoLihGfExlNUUv5gptvM0tl-wA9ppVU78D4lktGDWOece51cyqgmsn8spzo62rEzget7Jc94wZZXzplqwMG1ruDiCBg7jVWznWl7jrBN5G0d18VsqSZoImQJ4YKf2AlkngaDyxcjDIFiVQ-3Kh8AMft6NoSeF5xDT1atOWuQyQLyaeligkRjNCq7C8eP67ZQx6lIB8pBlbgcDi_XgElTuyeQ_KfPjfM4_gef9fCC2Mv4e97m5Tf4BJ6zZTzBG-fJ1GnOs0NtOYRlv5A41EFUQ
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB7RcoBLoUBhKVAfQCqHpbt-rO1jRRsFUaJKDRI3y45tqFRtqm5y6L_veB9Ji4jEecYrazzjGa-_-QzwkUVMG1boXPuocy6iyJUINNHdcadm3ukiNSePL-Tklzo5TTQ5n4ZemASrbHGB7S0-FkjuKhyxrvNZb8FjoQomO-TePW5d1XWaUNxwOeUDg49kR9e1bb6g35WJ02Z4GKtPPh3-MJGaotK_Csy_cZL3Es_o2X9O-Tns9JUlOe5cYRcehfoF7Pax25DDnmD680s4H9lmQdJO0GPH0-KQeSQXWJEuyOhqOb_pWJ7IeaJxuKzJFA_xv9OznsTdkpPJMRnfplavvonzFfwcnU6_jvP-ZYV8JjRd5N4xZ1XhJB52ZJSVmwWtbMk9jyipZpTHktqC6opiAchUESgmNV9pG13puGR7sF3P6_AGSGRBMGo9i55zp5lTFddelLPIrXY-ZHA4mNxcdwQapr34lswkw5v16mSw19pxpTcYMYPXrep6PDPS0ELQDMgGiYk9eCaD_WFlTR-fDWqgM5ZC4QcOVlIMrHRbYuswXzamlAkBxsRmjUpicSO0StNr_WQ9jYpXJY7OQD7woJVCIvV-KKkv_7Tk3iVWFVKIt5tscQBPxtMfZ-bs2-T7Pjzt_ghhbPF3sL24WYb3sNX45Yc2Qu4AAggMbA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7RIiEulAKFbYH6wKE9LNn1Y20fK9JVECiK1CJxs-x4DZWqTdRNDv33jPeRtIgcOM-sZI1nPOP1N98AfGIB04YVOtU-6JSLIFIlKhrp7rhTc-90FpuTJ1dy-lONLyNNzvnQCxNhlS0usH3FxwLJ3VajpQ8j1nU_6z14KvBWo7rhAA_4dVXXbULx0OWUDyw-ko2WtW0-o-_lkddmGI7VJ6AOgxiJTVHpX0Xm31jJB8mnPPiPZb-EF32FSS46lziEJ1X9Cg77GG7IWU80ff4aZqVtViSeCD2GPG4SWQRyhZXpipS368Vdx_ZEZpHO4aYm13iZ_xXHexJ3T8bTCzK5jy1ffTPnG_hRXl5_maT9hIV0LjRdpd4xZ1XmJF56ZJCFm1da2Zx7HlBSzCkPObUZ1QXFQpCprKKY3HyhbXC545IdwX69qKt3QAKrBKPWs-A5d5o5VXDtRT4P3GrnqwTOBrObZUekYdoHcMlMNL7Z7lACR60tN3qDERN426puv2dGGpoJmgDZITGhB9EkcDLsrunjtEENdMocHSqB040UAyy-mti6Wqwbk8uIBGNit0YhscgRWsXltb6yXUbBixy_TkA-8qKNQiT3fiypb363JN85VhdSiONdtjiFZ7Nxab5_nX47gefdjyEMMf4e9ld36-oD7DV-_bENkj-YIw7l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Complementation+of+Split+Fluorescent+Protein+Triggered+by+DNA+Hybridization&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Demidov%2C+Vadim+V.&rft.au=Dokholyan%2C+Nikolay+V.&rft.au=Witte-Hoffmann%2C+Carlos&rft.au=Chalasani%2C+Poornima&rft.date=2006-02-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=7&rft.spage=2052&rft.epage=2056&rft_id=info:doi/10.1073%2Fpnas.0511078103&rft.externalDocID=30048079
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F7.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F7.cover.gif