Population Genetic Implications from Sequence Variation in Four Y Chromosome Genes
Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5′portion of gene UTY1 was completed by primer walk...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 97; no. 13; pp. 7354 - 7359 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences of the United States of America
20-06-2000
National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5′portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 × 10-5, 5.07 × 10-5, and 8.54 × 10-5for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9.16 × 10-5to 14.2 × 10-5for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbruck distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to ≈ 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals. |
---|---|
AbstractList | Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5′ portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY , were screened for polymorphic sites in 53–72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 × 10 −5 , 5.07 × 10 −5 , and 8.54 × 10 −5 for the coding regions of SMCY , DFFRY , and UTY1 , respectively, with no variant having been observed in DBY . In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9.16 × 10 −5 to 14.2 × 10 −5 for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria–Delbrück distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to ≈28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals. Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5' portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 x 10(-5), 5. 07 x 10(-5), and 8.54 x 10(-5) for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9. 16 x 10(-5) to 14.2 x 10(-5) for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbrück distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to approximately 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals. Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5′portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 × 10-5, 5.07 × 10-5, and 8.54 × 10-5for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9.16 × 10-5to 14.2 × 10-5for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbruck distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to ≈ 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals. Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5′ portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY , were screened for polymorphic sites in 53–72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 × 10 −5 , 5.07 × 10 −5 , and 8.54 × 10 −5 for the coding regions of SMCY , DFFRY , and UTY1 , respectively, with no variant having been observed in DBY . In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9.16 × 10 −5 to 14.2 × 10 −5 for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria–Delbrück distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to ≈28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals. Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5' portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 x 10 super(-5), 5.07 x 10 super(-5), and 8.54 x 10 super(-5) for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9.16 x 10 super(-5) to 14.2 x 10 super(-5) for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbrueck distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to approximately 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals. |
Author | Roxas, Adriane Lin, Alice A. Franco, Claudia Wang, Frank Yang, Wei-Hsien Oefner, Peter J. Hyman, Richard W. Underhill, Peter A. Sung, Raphael Cavalli-Sforza, L. Luca Shen, Peidong Vollrath, Douglas Davis, Ronald W. |
AuthorAffiliation | Stanford DNA Sequencing and Technology Center, 855 California Avenue, Palo Alto, CA 94304; and ‡ Department of Genetics, Stanford University, Stanford, CA 94305 |
AuthorAffiliation_xml | – name: Stanford DNA Sequencing and Technology Center, 855 California Avenue, Palo Alto, CA 94304; and ‡ Department of Genetics, Stanford University, Stanford, CA 94305 |
Author_xml | – sequence: 1 givenname: Peidong surname: Shen fullname: Shen, Peidong – sequence: 2 givenname: Frank surname: Wang fullname: Wang, Frank – sequence: 3 givenname: Peter A. surname: Underhill fullname: Underhill, Peter A. – sequence: 4 givenname: Claudia surname: Franco fullname: Franco, Claudia – sequence: 5 givenname: Wei-Hsien surname: Yang fullname: Yang, Wei-Hsien – sequence: 6 givenname: Adriane surname: Roxas fullname: Roxas, Adriane – sequence: 7 givenname: Raphael surname: Sung fullname: Sung, Raphael – sequence: 8 givenname: Alice A. surname: Lin fullname: Lin, Alice A. – sequence: 9 givenname: Richard W. surname: Hyman fullname: Hyman, Richard W. – sequence: 10 givenname: Douglas surname: Vollrath fullname: Vollrath, Douglas – sequence: 11 givenname: Ronald W. surname: Davis fullname: Davis, Ronald W. – sequence: 12 givenname: L. Luca surname: Cavalli-Sforza fullname: Cavalli-Sforza, L. Luca – sequence: 13 givenname: Peter J. surname: Oefner fullname: Oefner, Peter J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10861003$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLcLZw5IKOIAp2xnbCd2JC5oRUulSiC-JE6W12vTrBI7tRME_z3epsCWA5wszfze88y8E3Lkg7eEPEZYIQh2OnidVo1YIVsJVvF7ZIHQYFnzBo7IAoCKUnLKj8lJSjsAaCoJD8gxgqwRgC3I-3dhmDo9tsEX59bbsTXFRT90rbmppcLF0Bcf7PVkvbHFZx3bGW59cRamWHwp1lcZCSn09sYhPST3ne6SfXT7Lsmns9cf12_Ky7fnF-tXl6WppBxL6zjVBjZCbM1Wasawco7CBnPJOtoYNNQKjrBlWnDLJRi6RcM5b5gwzrEleTn7DtOmt1tj_Rh1p4bY9jr-UEG36m7Ht1fqa_imsK6yx5I8v5XHkLdLo-rbZGzXaW_DlJRAClUjq_-CKGqs6ppm8Nlf4C5fyOcbKArImloCz9DpDJkYUorW_R4YQe0zVftMVSMUMrXPNCueHu55wM8hHgB75a_2HYcX_wSUm7putN_HTD6ZyV0aQ_zzFaUSBfsJWrHBVw |
CitedBy_id | crossref_primary_10_1038_sj_hdy_6800803 crossref_primary_10_1016_j_jri_2011_01_012 crossref_primary_10_1016_S1055_7903_03_00039_3 crossref_primary_10_1093_oxfordjournals_molbev_a003911 crossref_primary_10_1007_s12033_009_9208_2 crossref_primary_10_1016_S0168_9525_02_02695_1 crossref_primary_10_1038_35038565 crossref_primary_10_1086_444436 crossref_primary_10_1534_genetics_107_077495 crossref_primary_10_1534_genetics_103_025361 crossref_primary_10_1007_BF02900470 crossref_primary_10_1534_genetics_110_118109 crossref_primary_10_1016_j_fertnstert_2006_11_050 crossref_primary_10_1038_hdy_2011_66 crossref_primary_10_1126_science_291_5509_1738 crossref_primary_10_1371_journal_pone_0180921 crossref_primary_10_1038_81685 crossref_primary_10_1002_ajhb_20604 crossref_primary_10_1093_jhered_esq047 crossref_primary_10_1016_j_mambio_2009_01_004 crossref_primary_10_1093_molbev_msu155 crossref_primary_10_1038_sj_ejhg_5201022 crossref_primary_10_1534_genetics_106_060301 crossref_primary_10_1038_nature01722 crossref_primary_10_1093_molbev_msi128 crossref_primary_10_1016_j_gde_2006_10_007 crossref_primary_10_1006_viro_2001_1569 crossref_primary_10_1016_j_bse_2010_06_011 crossref_primary_10_1073_pnas_97_13_6927 crossref_primary_10_1038_nature01723 crossref_primary_10_1111_j_1469_1809_2010_00601_x crossref_primary_10_1101_gr_156301 crossref_primary_10_1146_annurev_genom_5_061903_180021 crossref_primary_10_1186_s12885_018_4847_y crossref_primary_10_1086_323299 crossref_primary_10_1093_oxfordjournals_molbev_a004067 crossref_primary_10_1111_j_1365_2052_2006_01496_x crossref_primary_10_1002_ajpa_10382 crossref_primary_10_1038_35056058 crossref_primary_10_1046_j_1469_1809_2003_00015_x crossref_primary_10_1038_35057149 crossref_primary_10_1073_pnas_101456898 crossref_primary_10_1002_ajhb_23736 crossref_primary_10_1046_j_1365_2796_2002_00907_x crossref_primary_10_1038_nrg_2016_58 crossref_primary_10_1016_S1570_0232_02_00700_6 crossref_primary_10_1073_pnas_012364999 crossref_primary_10_1016_j_gde_2004_08_010 crossref_primary_10_1038_jhg_2013_108 crossref_primary_10_1007_s10038_007_0160_3 crossref_primary_10_1101_gr_226502 crossref_primary_10_1016_S0168_9525_00_02057_6 crossref_primary_10_1007_s10344_007_0093_3 crossref_primary_10_1016_S0960_9822_01_00223_8 crossref_primary_10_1002_bies_10062 crossref_primary_10_1126_science_290_5494_1155 crossref_primary_10_1038_nrg1124 crossref_primary_10_1534_genetics_105_043067 crossref_primary_10_18778_1898_6773_63_01 crossref_primary_10_2193_0022_541X_2005_69_1362_TMTGTI_2_0_CO_2 crossref_primary_10_1073_pnas_97_13_7360 crossref_primary_10_1016_S1360_1385_00_01724_6 crossref_primary_10_1038_81518 crossref_primary_10_1016_S1570_0232_02_00694_3 crossref_primary_10_1002_ajhb_20651 crossref_primary_10_1007_s13205_023_03785_8 crossref_primary_10_1002_humu_10117 crossref_primary_10_1046_j_0268_9146_2003_01044_x crossref_primary_10_1111_j_1420_9101_2004_00833_x crossref_primary_10_1590_S0001_37652002000200005 crossref_primary_10_1086_375120 crossref_primary_10_1002_humu_1130 crossref_primary_10_1093_genetics_162_1_501 crossref_primary_10_1534_genetics_107_071910 crossref_primary_10_1371_journal_pbio_0030193 crossref_primary_10_1002_humu_20154 crossref_primary_10_1038_jhg_2010_77 crossref_primary_10_1111_sji_12011 crossref_primary_10_1038_nrg3098 crossref_primary_10_1371_journal_pone_0041252 crossref_primary_10_1046_j_1365_3016_2001_00005_x crossref_primary_10_1006_geno_2000_6405 crossref_primary_10_1093_molbev_msp231 crossref_primary_10_1101_gr_167701 crossref_primary_10_1186_1471_2148_12_150 crossref_primary_10_1016_S0960_9822_02_00789_3 crossref_primary_10_1086_340257 crossref_primary_10_1093_genetics_164_4_1495 crossref_primary_10_1086_316890 crossref_primary_10_1016_S0379_0738_01_00385_1 crossref_primary_10_1002_humu_23 crossref_primary_10_1086_319521 crossref_primary_10_1128_JVI_75_21_10231_10243_2001 crossref_primary_10_1016_S0169_5347_01_02356_4 crossref_primary_10_1101_gr_2177404 crossref_primary_10_1086_342260 crossref_primary_10_1016_S0960_9822_00_00716_8 crossref_primary_10_18778_1898_6773_64_03 crossref_primary_10_1134_S1022795407030179 crossref_primary_10_1186_gb_2004_5_8_r55 crossref_primary_10_1537_ase_050712 crossref_primary_10_1086_318206 crossref_primary_10_1093_oxfordjournals_molbev_a003906 crossref_primary_10_1016_j_ajhg_2009_11_011 crossref_primary_10_1073_pnas_98_3_864 crossref_primary_10_1101_gr_7172008 crossref_primary_10_1038_sj_ejhg_5201040 crossref_primary_10_1046_j_0962_1083_2001_01314_x crossref_primary_10_1073_pnas_0405126101 crossref_primary_10_1080_03014460701206843 crossref_primary_10_1086_324681 crossref_primary_10_1146_annurev_genet_41_110306_130407 crossref_primary_10_1007_s11434_009_0724_z crossref_primary_10_1146_annurev_anthro_31_040402_085413 crossref_primary_10_1111_j_1582_4934_2003_tb00201_x crossref_primary_10_1101_gr_217602 crossref_primary_10_1146_annurev_genom_4_070802_110226 crossref_primary_10_1146_annurev_phyto_41_052002_095559 crossref_primary_10_1038_ng1326 crossref_primary_10_1086_321296 crossref_primary_10_1016_j_ajhg_2011_05_002 crossref_primary_10_1038_ng0206_141 crossref_primary_10_1556_Select_3_2002_1_9 crossref_primary_10_1111_j_1365_294X_2004_02304_x |
Cites_doi | 10.1093/genetics/116.1.153 10.1038/ng1096-128 10.1086/302680 10.1038/346240a0 10.1093/oxfordjournals.molbev.a026076 10.1093/genetics/123.3.585 10.1126/science.7761836 10.1093/genetics/123.3.597 10.7312/nei-92038 10.1038/70539 10.1046/j.1469-1809.1999.6310063.x 10.1073/pnas.96.22.12281 10.1038/378379a0 10.1016/0040-5809(75)90020-9 10.1038/317687a0 10.1086/204195 10.1093/genetics/28.6.491 10.1093/oxfordjournals.molbev.a026091 10.1101/gr.7.10.996 10.1073/pnas.97.13.7360 10.1093/hmg/5.7.933 10.1126/science.1439769 10.1073/pnas.92.2.532 10.1073/pnas.96.7.3796 10.1126/science.278.5338.675 10.1093/genetics/148.4.1921 |
ContentType | Journal Article |
Copyright | Copyright 1993-2000 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 20, 2000 Copyright © 2000, The National Academy of Sciences 2000 |
Copyright_xml | – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 20, 2000 – notice: Copyright © 2000, The National Academy of Sciences 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.97.13.7354 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7359 |
ExternalDocumentID | 57125804 10_1073_pnas_97_13_7354 10861003 97_13_7354 122817 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM55273 – fundername: NHGRI NIH HHS grantid: HG01707 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c588t-ef42ac0b77dcd8a3315ff20b10b7ef29c1c2e7410d3a74e480c2d1c444937cff3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:37:59 EDT 2024 Fri Oct 25 03:36:52 EDT 2024 Sat Oct 26 00:35:18 EDT 2024 Thu Oct 10 18:21:13 EDT 2024 Fri Aug 23 03:34:18 EDT 2024 Sat Sep 28 08:38:39 EDT 2024 Wed Nov 11 00:29:31 EST 2020 Thu May 30 08:51:23 EDT 2019 Fri Feb 02 07:05:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c588t-ef42ac0b77dcd8a3315ff20b10b7ef29c1c2e7410d3a74e480c2d1c444937cff3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Contributed by L. Luca Cavalli-Sforza To whom reprint requests should be addressed. E-mail: shen@genome.stanford.edu. |
OpenAccessLink | https://europepmc.org/articles/pmc16549?pdf=render |
PMID | 10861003 |
PQID | 201396804 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_97_13_7354 proquest_miscellaneous_71205985 pubmedcentral_primary_oai_pubmedcentral_nih_gov_16549 pnas_primary_97_13_7354 jstor_primary_122817 proquest_journals_201396804 pubmed_primary_10861003 proquest_miscellaneous_17615662 pnas_primary_97_13_7354_fulltext |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 20000620 2000-06-20 2000-Jun-20 |
PublicationDateYYYYMMDD | 2000-06-20 |
PublicationDate_xml | – month: 6 year: 2000 text: 20000620 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2000 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences of the United States of America – name: National Acad Sciences – name: National Academy of Sciences – name: The National Academy of Sciences |
References | 10860948 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6927-9 Tajima F (e_1_3_4_15_2) 1989; 123 Cooke H J (e_1_3_4_1_2) 1985; 317 Bergen A W (e_1_3_4_8_2) 1999; 63 Tajima F (e_1_3_4_14_2) 1989; 123 Whitfield L S (e_1_3_4_7_2) 1995; 368 Sinclair A H (e_1_3_4_2_2) 1990; 346 Jaruzelska J (e_1_3_4_26_2) 1999; 16 Watterson G A (e_1_3_4_18_2) 1975; 7 Su B (e_1_3_4_12_2) 1999; 65 Vogt P H (e_1_3_4_4_2) 1996; 5 Sherry S T (e_1_3_4_19_2) 1994; 66 Kimmel M (e_1_3_4_27_2) 1998; 148 Dorit R L (e_1_3_4_6_2) 1995; 268 Jin L (e_1_3_4_21_2) 1999; 96 Nei M (e_1_3_4_13_2) 1987 Thomson R (e_1_3_4_22_2) 2000; 97 Underhill P A (e_1_3_4_11_2) 1997; 7 Horai S (e_1_3_4_23_2) 1995; 92 Nachman M W (e_1_3_4_25_2) 1998; 15 Kent-First M G (e_1_3_4_5_2) 1996; 14 Luria S E (e_1_3_4_16_2) 1943; 28 Sun C (e_1_3_4_9_2) 1999; 23 Klein R G (e_1_3_4_29_2) 1999 Pritchard J K (e_1_3_4_28_2) 1999; 16 Lahn B T (e_1_3_4_3_2) 1997; 278 Hudson R R (e_1_3_4_24_2) 1987; 116 Harpending H C (e_1_3_4_20_2) 1993; 34 Smith F H (e_1_3_4_30_2) 1999; 96 Lea D E (e_1_3_4_17_2) 1949; 49 Vollrath D (e_1_3_4_10_2) 1992; 258 |
References_xml | – volume: 116 start-page: 153 year: 1987 ident: e_1_3_4_24_2 publication-title: Genetics doi: 10.1093/genetics/116.1.153 contributor: fullname: Hudson R R – volume: 49 start-page: 264 year: 1949 ident: e_1_3_4_17_2 publication-title: Genetics contributor: fullname: Lea D E – volume: 14 start-page: 128 year: 1996 ident: e_1_3_4_5_2 publication-title: Nat Genet doi: 10.1038/ng1096-128 contributor: fullname: Kent-First M G – volume: 65 start-page: 1718 year: 1999 ident: e_1_3_4_12_2 publication-title: Am J Hum Genet doi: 10.1086/302680 contributor: fullname: Su B – volume: 346 start-page: 240 year: 1990 ident: e_1_3_4_2_2 publication-title: Nature (London) doi: 10.1038/346240a0 contributor: fullname: Sinclair A H – volume: 16 start-page: 1633 year: 1999 ident: e_1_3_4_26_2 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026076 contributor: fullname: Jaruzelska J – volume: 123 start-page: 585 year: 1989 ident: e_1_3_4_14_2 publication-title: Genetics doi: 10.1093/genetics/123.3.585 contributor: fullname: Tajima F – volume: 268 start-page: 1183 year: 1995 ident: e_1_3_4_6_2 publication-title: Science doi: 10.1126/science.7761836 contributor: fullname: Dorit R L – volume: 123 start-page: 597 year: 1989 ident: e_1_3_4_15_2 publication-title: Genetics doi: 10.1093/genetics/123.3.597 contributor: fullname: Tajima F – start-page: 256 volume-title: Molecular Evolutionary Genetics year: 1987 ident: e_1_3_4_13_2 doi: 10.7312/nei-92038 contributor: fullname: Nei M – volume: 23 start-page: 429 year: 1999 ident: e_1_3_4_9_2 publication-title: Nat Genet doi: 10.1038/70539 contributor: fullname: Sun C – volume: 63 start-page: 62 year: 1999 ident: e_1_3_4_8_2 publication-title: Ann Hum Genet doi: 10.1046/j.1469-1809.1999.6310063.x contributor: fullname: Bergen A W – volume: 96 start-page: 12281 year: 1999 ident: e_1_3_4_30_2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.22.12281 contributor: fullname: Smith F H – volume: 368 start-page: 379 year: 1995 ident: e_1_3_4_7_2 publication-title: Nature (London) doi: 10.1038/378379a0 contributor: fullname: Whitfield L S – volume: 7 start-page: 256 year: 1975 ident: e_1_3_4_18_2 publication-title: Theor Popul Biol doi: 10.1016/0040-5809(75)90020-9 contributor: fullname: Watterson G A – volume: 317 start-page: 687 year: 1985 ident: e_1_3_4_1_2 publication-title: Nature (London) doi: 10.1038/317687a0 contributor: fullname: Cooke H J – volume: 34 start-page: 483 year: 1993 ident: e_1_3_4_20_2 publication-title: Curr Anthropol doi: 10.1086/204195 contributor: fullname: Harpending H C – volume: 28 start-page: 491 year: 1943 ident: e_1_3_4_16_2 publication-title: Genetics doi: 10.1093/genetics/28.6.491 contributor: fullname: Luria S E – volume: 16 start-page: 1791 year: 1999 ident: e_1_3_4_28_2 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026091 contributor: fullname: Pritchard J K – volume-title: The Human Career: Human Biological and Cultural Origins year: 1999 ident: e_1_3_4_29_2 contributor: fullname: Klein R G – volume: 7 start-page: 996 year: 1997 ident: e_1_3_4_11_2 publication-title: Genome Res doi: 10.1101/gr.7.10.996 contributor: fullname: Underhill P A – volume: 97 start-page: 7360 year: 2000 ident: e_1_3_4_22_2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.13.7360 contributor: fullname: Thomson R – volume: 5 start-page: 933 year: 1996 ident: e_1_3_4_4_2 publication-title: Hum Mol Genet doi: 10.1093/hmg/5.7.933 contributor: fullname: Vogt P H – volume: 66 start-page: 761 year: 1994 ident: e_1_3_4_19_2 publication-title: Hum Biol contributor: fullname: Sherry S T – volume: 258 start-page: 52 year: 1992 ident: e_1_3_4_10_2 publication-title: Science doi: 10.1126/science.1439769 contributor: fullname: Vollrath D – volume: 92 start-page: 532 year: 1995 ident: e_1_3_4_23_2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.2.532 contributor: fullname: Horai S – volume: 96 start-page: 3796 year: 1999 ident: e_1_3_4_21_2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.7.3796 contributor: fullname: Jin L – volume: 278 start-page: 675 year: 1997 ident: e_1_3_4_3_2 publication-title: Science doi: 10.1126/science.278.5338.675 contributor: fullname: Lahn B T – volume: 15 start-page: 1744 year: 1998 ident: e_1_3_4_25_2 publication-title: Mol Biol Evol contributor: fullname: Nachman M W – volume: 148 start-page: 1921 year: 1998 ident: e_1_3_4_27_2 publication-title: Genetics doi: 10.1093/genetics/148.4.1921 contributor: fullname: Kimmel M |
SSID | ssj0009580 |
Score | 2.0998755 |
Snippet | Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be... Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7354 |
SubjectTerms | Aged Alleles Base Sequence Biological Evolution Biological Sciences DBY gene DFFRY gene Evolution Evolutionary genetics Exons Genes Genetic Markers Genetic mutation Genetics, Population Haplotypes Human genetics Humans Male Middle Aged Molecular Sequence Data Nucleotides Polymerase chain reaction Polymorphism, Genetic Population growth Population size Prehistoric era SMCY gene UTY1 gene Y Chromosome |
SummonAdditionalLinks | – databaseName: JSTOR Life Sciences Collection dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xPXEBSnmE8rAEh3LI1q_EkyOCrsoFIQoITpbjOGolmq1I9_8zdpIli1qJqz12nLHH_qyZ-QzwxvsiYCgxVw6bPDriyObozuO05MGjqas65g6fnplPP_DDSaTJeT3lwsSwyhQXmLz4BJDqX-FYSInCLGCBHIeovRmvLg5ZJpI2Wy31xN5j1PFV5_plZZZCLY0q9M7BM8QeRkJTEroJXP4bIzk7dFb3_2u4D-DeiCnZu2ER7MOd0D2E_dFqe3Y0Uku_PYAvn7fvdbFYSg3Yx1lMOYvZJuxsDK9m3-kiPQhfdGxFn2E_WWTTvVz368uQeugfwbfVydf3p_n4qkLuC8TrPLRaOs9rYxrfoFNKFG0reS2oKLSy8sLLQDiDN8oZHTRyLxvhtdaEZHzbqsew16278BRY1Rh0hfFloENe1g49D5L6j5NSligzOJpUbq8G8gybnN5G2ah4WxkrlI2zk8FB0uNfuaTEDJ4kwal03oDdUmPbMWwmg8NpXu1omb2VEfOWyKmDV9taMqnoJ3FdWG96K0wZb7XydgkjJMFSLOLw0iqZ_R4SIOUqg2Jn_WwFIp33bk13cZ5ovWNeWfXsZj0cwt2BA6Ckbe057F3_3oQXsOibzctkD38AYIgIFw priority: 102 providerName: JSTOR |
Title | Population Genetic Implications from Sequence Variation in Four Y Chromosome Genes |
URI | https://www.jstor.org/stable/122817 http://www.pnas.org/content/97/13/7354.abstract https://www.ncbi.nlm.nih.gov/pubmed/10861003 https://www.proquest.com/docview/201396804 https://search.proquest.com/docview/17615662 https://search.proquest.com/docview/71205985 https://pubmed.ncbi.nlm.nih.gov/PMC16549 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnLggKG0J0K0PPdBDsvFHYudYURCXVghaqT1ZjuOIldjsqmH7-xk78XapyqVXe-w49ow9lt-8AfhgbeGUK1XKjWpS_xCHNod3HiNY7qySdVX72OHrO_n1h_p86WlyeIyFCaB9W8-z7mGRdfP7gK1cLews4sRmN18ufARONZvABD3DeEHf8OyqIeqE4eYrmIhsPpLPVp3ps0pmlGeSFyEhD_rzNI_5ssYzaYAleq5TlP-X3_k3fHLrPLo6gP3RkSSfhgEfwo7rXsHhaKo9OR_5pD8ewe3NJkkXQXXxUYtkvgUkJz7EhERMNfmNt-dBeN6RFj9DfhJ771F7_XLhQg_9a_h-dfnt4jodUymktlDqMXWtYMbmtZSNbZThnBZty_KaYpFrWWWpZQ6di7zhRgonVG5ZQ60QAt0X27b8Dex2y84dA6kaqUwhbenwZGe1UTZ3DPv3M1-WiiVwHidTrwbGDB1euiXXfkp1JTXl2i9BAkdhsv_IMaaoTOBtEIyl2w3ICzW6HbEyCZzGFdOjOfaaeUe3VDl28H5Ti3bkH0dM55brXlNZ-qsse1lCUoa-qCr88ML6b_3eoEcJFM80YyPgObyf16BqBy7voMon_9nuFPYGZoASN7sz2H38tXbvYNI362nAtk5DAo1psJAnEFITzw |
link.rule.ids | 230,315,729,782,786,808,811,887,27935,27936,53803,53805,58028,58040,58261,58273 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOLSXAqWlgQKW2gM9ZIkfiZ1jBawWlSJUaNWeLMdxVKSSRYT9_4ydZMlWIHG1x44znrHH8jefAT5bmzrlMhVzo8rYX8Shz-GZxwiWOKtkkRc-d3hyKc9_q-MTT5Pzqc-F8bDKgAsMt_gYIBX_3CFlTFG5DKupQptrcXsDZl3V5pkwXG4FEz1_j-SHt7VpRrkcUT6SPBULW0-LPvSUpij0VHj5P0pysO2M11404HV400WV5GtrBhuw5Oq3sNH5bUMOOnLpL5vw42L-YhfxpdiAnA5Q5cTnm5DLDmBNfuFRuhW-rskYP0P-EM-nezNtpjcu9NC8g5_jk6ujSdy9qxDbVKn72FWCGZsUUpa2VIZzmlYVSwqKRa5iuaWWOYw0kpIbKZxQiWUltUIIjGVsVfH3sFJPa_cBSF5KZVJpM4fbPCuMsolj2L-flCxTLIKDXuX6tqXP0OHaW3LtFa9zqSnXfnYi2Ax6fJQLSoxgKwj2pcMG5JkaXXXAmQh2-nnVnW82mvmoN0NLimB_XotO5W9KTO2ms0ZTmflzLXteQlKGgalK_fCClQx-T2FImvAI0gX7mQt4Qu_Fmvr6byD29pll-fbTetiHV5Or72f67PT82w68bhkBMlzkPsLK_d3M7cJyU872gm88AEt3C2Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkKpeoJQ-Ai34gAQ9ZDd-JHaOqLACUSEEbdWeLMdxVKSSXRH2_zN2kiVbgdSrPXacscf-rJn5DHBgbeqUy1TMjSpj74hDm8M7jxEscVbJIi987vDZjbz8pU5OPU3OYZ8L48MqQ1xg8OIjQCr-uvGsrMaUMUXlKqynCIhp-zTAgF1XtbkmDLdcwUTP4SP5eFabZpTLEeUjyVOxdPy0EYie1hSFnoOY_0ZKDo6eyeZ_D_oNbHTokhy3y2ELVlz9FrY6-23IUUcy_WUbrq8WL3cRX4oNyPkgupz4vBNy0wVak594pW6Fb2sywc-Q38Tz6t5Nm-mdCz007-DH5PT717O4e18htqlSD7GrBDM2KaQsbakM5zStKpYUFItcxXJLLXOIOJKSGymcUIllJbVCCMQ0tqr4e1irp7X7CCQvpTKptJnD454VRtnEMezfT0yWKRbBUa92PWtpNHRwf0uuvfJ1LjXl2s9QBNtBl09yQYkRfAiCfemwAXmhRlddAE0Eu_3c6s5GG808-s1Ugh3sL2rRuLzHxNRuOm80lZm_37KXJSRlCFBV6ocXVsrg9xRC04RHkC6toYWAJ_Zerqlv_wSCb59hlu88r4d9eHV1MtHfzi8vduF1SwyQ4V73CdYe7ufuM6w25XwvmMcjzjsN3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Genetic+Implications+from+Sequence+Variation+in+Four+Y+Chromosome+Genes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shen%2C+Peidong&rft.au=Wang%2C+Frank&rft.au=Underhill%2C+Peter+A.&rft.au=Franco%2C+Claudia&rft.date=2000-06-20&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=97&rft.issue=13&rft.spage=7354&rft.epage=7359&rft_id=info:doi/10.1073%2Fpnas.97.13.7354&rft.externalDocID=122817 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F13.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F13.cover.gif |