Objective characterization of hip pain levels during walking by combining quantitative electroencephalography with machine learning

Pain is an undesirable sensory experience that can induce depression and limit individuals’ activities of daily living, in turn negatively impacting the labor force. Affected people frequently feel pain during activity; however, pain is subjective and difficult to judge objectively, particularly dur...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 11; no. 1; pp. 3192 - 10
Main Authors: Kimura, Atsushi, Mitsukura, Yasue, Oya, Akihito, Matsumoto, Morio, Nakamura, Masaya, Kanaji, Arihiko, Miyamoto, Takeshi
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 04-02-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pain is an undesirable sensory experience that can induce depression and limit individuals’ activities of daily living, in turn negatively impacting the labor force. Affected people frequently feel pain during activity; however, pain is subjective and difficult to judge objectively, particularly during activity. Here, we developed a system to objectively judge pain levels in walking subjects by recording their quantitative electroencephalography (qEEG) and analyzing data by machine learning. To do so, we enrolled 23 patients who had undergone total hip replacement for pain, and recorded their qEEG during a five-minute walk via a wearable device with a single electrode placed over the Fp1 region, based on the 10–20 Electrode Placement System, before and three months after surgery. We also assessed subject hip pain using a numerical rating scale. Brain wave amplitude differed significantly among subjects with different levels of hip pain at frequencies ranging from 1 to 35 Hz. qEEG data were also analyzed by a support vector machine using the Radial Basis Functional Kernel, a function used in machine learning. That approach showed that an individual’s hip pain during walking can be recognized and subdivided into pain quartiles with 79.6% recognition Accuracy. Overall, we have devised an objective and non-invasive tool to monitor an individual’s pain during walking.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-82696-1