Platelet olfactory receptor activation limits platelet reactivity and growth of aortic aneurysms

As blood transitions from steady laminar flow (S-flow) in healthy arteries to disturbed flow (D-flow) in aneurysmal arteries, platelets are subjected to external forces. Biomechanical platelet activation is incompletely understood and is a potential mechanism behind antiplatelet medication resistanc...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation Vol. 132; no. 9; pp. 1 - 16
Main Authors: Morrell, Craig N, Mix, Doran, Aggarwal, Anu, Bhandari, Rohan, Godwin, Matthew, Owens, 3rd, Phillip, Lyden, Sean P, Doyle, Adam, Krauel, Krystin, Rondina, Matthew T, Mohan, Amy, Lowenstein, Charles J, Shim, Sharon, Stauffer, Shaun, Josyula, Vara Prasad, Ture, Sara K, Yule, David I, Wagner, 3rd, Larry E, Ashton, John M, Elbadawi, Ayman, Cameron, Scott J
Format: Journal Article
Language:English
Published: United States American Society for Clinical Investigation 01-05-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As blood transitions from steady laminar flow (S-flow) in healthy arteries to disturbed flow (D-flow) in aneurysmal arteries, platelets are subjected to external forces. Biomechanical platelet activation is incompletely understood and is a potential mechanism behind antiplatelet medication resistance. Although it has been demonstrated that antiplatelet drugs suppress the growth of abdominal aortic aneurysms (AAA) in patients, we found that a certain degree of platelet reactivity persisted in spite of aspirin therapy, urging us to consider additional antiplatelet therapeutic targets. Transcriptomic profiling of platelets from patients with AAA revealed upregulation of a signal transduction pathway common to olfactory receptors, and this was explored as a mediator of AAA progression. Healthy platelets subjected to D-flow ex vivo, platelets from patients with AAA, and platelets in murine models of AAA demonstrated increased membrane olfactory receptor 2L13 (OR2L13) expression. A drug screen identified a molecule activating platelet OR2L13, which limited both biochemical and biomechanical platelet activation as well as AAA growth. This observation was further supported by selective deletion of the OR2L13 ortholog in a murine model of AAA that accelerated aortic aneurysm growth and rupture. These studies revealed that olfactory receptors regulate platelet activation in AAA and aneurysmal progression through platelet-derived mediators of aortic remodeling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authorship note: DM, AA, and RB contributed equally to this work.
ISSN:1558-8238
0021-9738
1558-8238
DOI:10.1172/JCI152373