Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis
It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low fr...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 14; pp. 5765 - 5770 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
05-04-2011
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (ApcMin) using Sleeping Beauty (SB) transposon-mediated mutagenesis. ApcMin SB-mutagenized mice developed three times as many polyps as mice with the ApcMin allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the ApcMin phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. |
---|---|
AbstractList | It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (Apc(Min)) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc(Min) SB-mutagenized mice developed three times as many polyps as mice with the Apc(Min) allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc(Min) phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli ( APC ) gene. To identify mutations that cooperate with mutant APC , we performed a forward genetic screen in mice carrying a mutant allele of Apc ( Apc Min ) using Sleeping Beauty ( SB ) transposon-mediated mutagenesis. Apc Min SB -mutagenized mice developed three times as many polyps as mice with the Apc Min allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB -induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc Min phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common ratelimiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele ot Ape (Apc Min ) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc Min BS-mutagenized mice developed three times as many polyps as mice with the Apc Min allele alone. Analysis of transposon common insertion sites (CIS) identified the Ape locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Ape inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc Min phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (Apc...) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc... SB-mutagenized mice developed three times as many polyps as mice with the Apc... allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc... phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. (ProQuest: ... denotes formulae/symbols omitted.) It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (ApcMin) using Sleeping Beauty (SB) transposon-mediated mutagenesis. ApcMin SB-mutagenized mice developed three times as many polyps as mice with the ApcMin allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the ApcMin phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. |
Author | Starr, Timothy K Than, Bich L.N Dupuy, Adam J Largaespada, David A Zhao, Lei Scott, Patricia M Cormier, Robert T Marsh, Benjamin M O'Sullivan, M. Gerard Sarver, Aaron L |
Author_xml | – sequence: 1 fullname: Starr, Timothy K – sequence: 2 fullname: Scott, Patricia M – sequence: 3 fullname: Marsh, Benjamin M – sequence: 4 fullname: Zhao, Lei – sequence: 5 fullname: Than, Bich L.N – sequence: 6 fullname: O'Sullivan, M. Gerard – sequence: 7 fullname: Sarver, Aaron L – sequence: 8 fullname: Dupuy, Adam J – sequence: 9 fullname: Largaespada, David A – sequence: 10 fullname: Cormier, Robert T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21436051$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URLeFMyfA6gU4hI6_EueCVCq-pEocWs6W13YWrxI72AnS_hT-bb3dZRc42ZKfeTzvzBk6CTE4hJ4TeEegYZdj0LnciARCCchHaEGgJVXNWzhBCwDaVJJTforOcl4DQCskPEGnlHBWgyAL9Pu2d270YYU_OD1PGzwlHfIYcwzV4KzXk7M4m-RcwN66MPnOu4yHOfngcJ6zcePkl773pXblQnnrYsK6oHHQU5wzHmO_KUKfsYm9x2-uRvO2sm50YevDPkwuTz7oHk_zEJN_sPj8FD3udJ_ds_15ju4-fby7_lLdfPv89frqpjJCNlOldSclt3LZAWuZ4XZZ15YKQallS6uppZwy07IyBQOWQcdMI0xDwTCniWTn6P1OO87LEtiUlpLu1Zj8oNNGRe3Vvy_B_1Cr-EsxaCQTpAhe7wUp_pxLFDX4MpW-18GV-KqtJakFf_jq4j9yHedUgmcla8JJS9q2QJc7yKSYc3LdoRUCartztd25Ou68VLz8O8GB_7PkArzaA9vKo04qwpVoalGIFztinaeYDggnhAoOcDR0Oiq9Sj6r77cUSA1AWsokYfesX8wR |
CitedBy_id | crossref_primary_10_1089_dna_2020_5585 crossref_primary_10_1016_j_gde_2011_12_003 crossref_primary_10_1016_j_gde_2015_04_007 crossref_primary_10_1073_pnas_1318639110 crossref_primary_10_1186_s13059_015_0794_y crossref_primary_10_1371_journal_pone_0097280 crossref_primary_10_1038_s42003_018_0163_y crossref_primary_10_1016_j_trsl_2012_12_005 crossref_primary_10_1007_s11888_016_0334_5 crossref_primary_10_1007_s12011_016_0738_8 crossref_primary_10_1080_10409238_2016_1237935 crossref_primary_10_1038_jid_2012_245 crossref_primary_10_1038_s41568_020_0275_9 crossref_primary_10_1053_j_gastro_2013_01_067 crossref_primary_10_1002_9780470942390_mo110087 crossref_primary_10_1002_bies_201500032 crossref_primary_10_1073_pnas_1115433109 crossref_primary_10_1002_fsn3_1005 crossref_primary_10_1073_pnas_1702723114 crossref_primary_10_1007_s13258_023_01408_3 crossref_primary_10_1186_s13059_020_02118_9 crossref_primary_10_1111_cas_14901 crossref_primary_10_1084_jem_20200261 crossref_primary_10_1158_0008_5472_CAN_15_1697 crossref_primary_10_1093_carcin_bgs185 crossref_primary_10_1182_blood_2013_02_486035 crossref_primary_10_1016_j_canlet_2011_11_006 crossref_primary_10_1016_j_jmb_2019_03_028 crossref_primary_10_1177_0300060519858900 crossref_primary_10_1038_ng_3175 crossref_primary_10_1186_2051_5960_1_35 crossref_primary_10_1158_1541_7786_MCR_13_0244 crossref_primary_10_3390_molecules23061360 crossref_primary_10_1016_j_semcdb_2014_01_006 crossref_primary_10_1038_onc_2013_350 crossref_primary_10_3389_fonc_2019_00611 crossref_primary_10_1182_blood_2016_01_692855 crossref_primary_10_1002_hep4_1422 crossref_primary_10_1016_j_copbio_2015_05_005 crossref_primary_10_1186_s12943_015_0475_1 crossref_primary_10_3390_ijms21031172 crossref_primary_10_1038_nrc3299 crossref_primary_10_18632_oncotarget_22300 crossref_primary_10_1073_pnas_1701512114 crossref_primary_10_1186_1471_2164_15_1150 crossref_primary_10_3748_wjg_v22_i2_815 crossref_primary_10_1038_s41419_023_05885_y crossref_primary_10_1042_BSR20181598 crossref_primary_10_1002_path_4184 crossref_primary_10_1038_s41417_023_00723_x crossref_primary_10_3892_mmr_2017_6915 crossref_primary_10_1016_j_bbcan_2012_09_001 crossref_primary_10_1371_journal_pone_0024668 crossref_primary_10_1038_s41598_018_33527_3 crossref_primary_10_1073_pnas_1202490109 crossref_primary_10_1534_g3_112_002436 |
Cites_doi | 10.1016/S1471-4914(01)02050-0 10.1146/annurev.genom.3.022502.103043 10.1126/science.2296722 10.1002/ijc.22115 10.1126/science.1145720 10.1073/pnas.94.8.3789 10.1126/science.1350108 10.1126/science.1083413 10.1093/carcin/bgm270 10.1126/science.1651563 10.1111/j.1349-7006.2008.00881.x 10.1007/s00535-006-1801-6 10.1126/science.1163040 10.1002/gene.20042 10.1073/pnas.132275099 10.1038/sj.bjc.6602928 10.1158/0008-5472.CAN-08-1376 10.1093/carcin/bgh134 10.1038/ng1055 10.1126/science.2814500 10.1158/0008-5472.CAN-06-3026 10.1038/sj.emboj.7601194 10.1158/0008-5472.CAN-09-1135 10.1126/science.2565047 10.1002/gcc.20382 10.1242/jcs.03072 10.1038/359235a0 10.1016/0092-8674(93)90484-8 10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2 10.1093/hmg/ddl231 10.1093/carcin/bgp132 10.1126/science.271.5248.521 10.1038/nbt.1526 10.1038/ng0997-88 10.1007/s00109-006-0126-5 10.1038/nature03681 10.1016/S0959-8049(02)00040-0 10.1038/nrc1299 10.1128/MCB.24.20.8981-8993.2004 |
ContentType | Journal Article |
Copyright | Copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 5, 2011 |
Copyright_xml | – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 5, 2011 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1018012108 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5770 |
ExternalDocumentID | 2317589211 10_1073_pnas_1018012108 21436051 108_14_5765 41125400 US201600192381 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA134759 – fundername: NCI NIH HHS grantid: R01CA113636-01A1 – fundername: NCI NIH HHS grantid: K99 CA151672 – fundername: NCI NIH HHS grantid: R01 CA134759-01A1 – fundername: NCI NIH HHS grantid: R01 CA113636 – fundername: NCI NIH HHS grantid: 1K99CA151672-01 – fundername: NCI NIH HHS grantid: T32 CA009138 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c587t-aaf884d8bf0393c4db66d25522d3bda2d2423c93424c0d30f3c75c720c3ea183 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:12:56 EDT 2024 Fri Aug 16 21:34:19 EDT 2024 Thu Oct 10 17:02:01 EDT 2024 Thu Nov 21 21:35:54 EST 2024 Sat Sep 28 08:51:53 EDT 2024 Wed Nov 11 00:29:32 EST 2020 Fri Feb 02 07:04:41 EST 2024 Wed Dec 27 19:18:08 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-aaf884d8bf0393c4db66d25522d3bda2d2423c93424c0d30f3c75c720c3ea183 |
Notes | http://dx.doi.org/10.1073/pnas.1018012108 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Edited* by William F. Dove, University of Wisconsin, Madison, WI, and approved March 2, 2011 (received for review December 1, 2010) Author contributions: T.K.S., P.M.S., D.A.L., and R.T.C. designed research; T.K.S., P.M.S., B.M.M., L.Z., B.L.N.T., M.G.O., and R.T.C. performed research; A.J.D. contributed new reagents/analytic tools; T.K.S., P.M.S., B.M.M., L.Z., B.L.N.T., M.G.O., A.L.S., and R.T.C. analyzed data; and T.K.S. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc3078351?pdf=render |
PMID | 21436051 |
PQID | 861419199 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_41125400 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3078351 pubmed_primary_21436051 pnas_primary_108_14_5765 proquest_journals_861419199 crossref_primary_10_1073_pnas_1018012108 proquest_miscellaneous_968165418 fao_agris_US201600192381 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2011-04-05 |
PublicationDateYYYYMMDD | 2011-04-05 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 8703849 - Genes Chromosomes Cancer. 1996 Apr;15(4):234-45 12805549 - Science. 2003 Jun 13;300(5626):1749-51 16778766 - EMBO J. 2006 Jul 12;25(13):3089-99 16868030 - J Cell Sci. 2006 Aug 1;119(Pt 15):3025-32 19251594 - Science. 2009 Mar 27;323(5922):1747-50 14993899 - Nat Rev Cancer. 2004 Mar;4(3):177-83 2565047 - Science. 1989 Apr 14;244(4901):207-11 8560270 - Science. 1996 Jan 26;271(5248):521-5 16421597 - Br J Cancer. 2006 Jan 30;94(2):318-22 12060718 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8927-31 16699851 - J Gastroenterol. 2006 Mar;41(3):185-92 2814500 - Science. 1989 Nov 10;246(4931):780-6 15001537 - Carcinogenesis. 2004 Aug;25(8):1345-57 9288104 - Nat Genet. 1997 Sep;17(1):88-91 19808965 - Cancer Res. 2009 Oct 15;69(20):8150-6 16858678 - Int J Cancer. 2006 Nov 15;119(10):2339-46 15456872 - Mol Cell Biol. 2004 Oct;24(20):8981-93 18564138 - Cancer Sci. 2008 Sep;99(9):1835-40 12142355 - Annu Rev Genomics Hum Genet. 2002;3:101-28 1651563 - Science. 1991 Aug 9;253(5020):665-9 11978510 - Eur J Cancer. 2002 May;38(7):867-71 8242739 - Cell. 1993 Nov 19;75(4):631-9 17932254 - Science. 2007 Nov 16;318(5853):1108-13 1350108 - Science. 1992 May 1;256(5057):668-70 11516998 - Trends Mol Med. 2001 Aug;7(8):369-73 7954428 - Cancer Res. 1994 Nov 15;54(22):5953-8 16923799 - Hum Mol Genet. 2006 Oct 1;15(19):2903-10 17332369 - Cancer Res. 2007 Mar 1;67(5):2366-72 17143621 - J Mol Med (Berl). 2007 Mar;85(3):293-304 19234449 - Nat Biotechnol. 2009 Mar;27(3):264-74 12447373 - Nat Genet. 2003 Jan;33(1):33-9 7954427 - Cancer Res. 1994 Nov 15;54(22):5947-52 11221861 - Cancer Res. 2001 Feb 1;61(3):818-22 17044061 - Genes Chromosomes Cancer. 2007 Jan;46(1):10-26 1528264 - Nature. 1992 Sep 17;359(6392):235-7 9108056 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3789-94 18048385 - Carcinogenesis. 2008 Feb;29(2):434-9 18974144 - Cancer Res. 2008 Nov 1;68(21):8993-7 15282745 - Genesis. 2004 Jul;39(3):186-93 16015333 - Nature. 2005 Jul 14;436(7048):272-6 19520794 - Carcinogenesis. 2009 Sep;30(9):1581-90 2296722 - Science. 1990 Jan 19;247(4940):322-4 e_1_3_3_17_2 Luongo C (e_1_3_3_10_2) 1994; 54 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_31_2 Levy DB (e_1_3_3_9_2) 1994; 54 e_1_3_3_40_2 Shih IM (e_1_3_3_30_2) 2001; 61 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1016/S1471-4914(01)02050-0 – ident: e_1_3_3_1_2 doi: 10.1146/annurev.genom.3.022502.103043 – ident: e_1_3_3_4_2 doi: 10.1126/science.2296722 – ident: e_1_3_3_18_2 doi: 10.1002/ijc.22115 – ident: e_1_3_3_3_2 doi: 10.1126/science.1145720 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.94.8.3789 – ident: e_1_3_3_5_2 doi: 10.1126/science.1350108 – ident: e_1_3_3_42_2 doi: 10.1126/science.1083413 – volume: 61 start-page: 818 year: 2001 ident: e_1_3_3_30_2 article-title: Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis publication-title: Cancer Res contributor: fullname: Shih IM – ident: e_1_3_3_31_2 doi: 10.1093/carcin/bgm270 – ident: e_1_3_3_35_2 doi: 10.1126/science.1651563 – ident: e_1_3_3_32_2 doi: 10.1111/j.1349-7006.2008.00881.x – ident: e_1_3_3_2_2 doi: 10.1007/s00535-006-1801-6 – ident: e_1_3_3_12_2 doi: 10.1126/science.1163040 – ident: e_1_3_3_17_2 doi: 10.1002/gene.20042 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.132275099 – ident: e_1_3_3_24_2 doi: 10.1038/sj.bjc.6602928 – ident: e_1_3_3_34_2 doi: 10.1158/0008-5472.CAN-08-1376 – ident: e_1_3_3_27_2 doi: 10.1093/carcin/bgh134 – ident: e_1_3_3_11_2 doi: 10.1038/ng1055 – ident: e_1_3_3_20_2 doi: 10.1126/science.2814500 – ident: e_1_3_3_37_2 doi: 10.1158/0008-5472.CAN-06-3026 – ident: e_1_3_3_36_2 doi: 10.1038/sj.emboj.7601194 – ident: e_1_3_3_16_2 doi: 10.1158/0008-5472.CAN-09-1135 – ident: e_1_3_3_25_2 doi: 10.1126/science.2565047 – ident: e_1_3_3_28_2 doi: 10.1002/gcc.20382 – ident: e_1_3_3_39_2 doi: 10.1242/jcs.03072 – ident: e_1_3_3_13_2 doi: 10.1038/359235a0 – ident: e_1_3_3_7_2 doi: 10.1016/0092-8674(93)90484-8 – ident: e_1_3_3_26_2 doi: 10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2 – ident: e_1_3_3_33_2 doi: 10.1093/hmg/ddl231 – ident: e_1_3_3_38_2 doi: 10.1093/carcin/bgp132 – volume: 54 start-page: 5947 year: 1994 ident: e_1_3_3_10_2 article-title: Loss of Apc+ in intestinal adenomas from Min mice publication-title: Cancer Res contributor: fullname: Luongo C – ident: e_1_3_3_40_2 doi: 10.1126/science.271.5248.521 – volume: 54 start-page: 5953 year: 1994 ident: e_1_3_3_9_2 article-title: Inactivation of both APC alleles in human and mouse tumors publication-title: Cancer Res contributor: fullname: Levy DB – ident: e_1_3_3_21_2 doi: 10.1038/nbt.1526 – ident: e_1_3_3_8_2 doi: 10.1038/ng0997-88 – ident: e_1_3_3_29_2 doi: 10.1007/s00109-006-0126-5 – ident: e_1_3_3_14_2 doi: 10.1038/nature03681 – ident: e_1_3_3_6_2 doi: 10.1016/S0959-8049(02)00040-0 – ident: e_1_3_3_23_2 doi: 10.1038/nrc1299 – ident: e_1_3_3_41_2 doi: 10.1128/MCB.24.20.8981-8993.2004 |
SSID | ssj0009580 |
Score | 2.3345478 |
Snippet | It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5765 |
SubjectTerms | adenomatous polyposis coli adenomatous polyposis coli protein Alleles Animals Biological Sciences Cancer carcinogenesis Cell Line, Tumor Cell proliferation cell viability Cells Colorectal cancer colorectal neoplasms Colorectal Neoplasms - genetics Colorectal Neoplasms - pathology Data processing development aid DNA Transposable Elements - genetics epigenetics Gene Silencing Genes Genetic loci Genetic mutation Genetic Predisposition to Disease - genetics Genetic screening Genetic Testing - methods Genetic transposition Genotype & phenotype Humans Insertion Intestine loci Metastases metastasis Mice Mice, Transgenic Mutagenesis Mutagenesis, Insertional - methods mutants Mutation phenotype Polyps RNA Interference RNA, Small Interfering - genetics Rodents transposon mutagenesis Transposons Tumorigenesis Tumors |
SummonAdditionalLinks | – databaseName: JSTOR Archive dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b9swECXqTFnaJmkaN2nAoQWcgY3ED5Ee3TZBpi5OgW4EJVGpAVs2Smnwb-mfzR0lOXHRAp1FnSjd8fhOvHtHyAevnNJ5rhjuj0wqUzGnXMq44lmlVCa1wELhu7n-9sN8vUGanI9DLQymVca8wHiKDwApX_prCaAAkAVE5iOTmC5v7xmzrunqTDi4W8nlwN-jxfWmduFTpKhCmiyzt_WMKrcechCR2BSG_g1k_pkr-WzzuX31n9N-TV726JLOOnM4Ii98fUyO-vUb6KQnmb46Ib9ndL70Hqul6Gfv2mZLm47nHAA4i_UkgEUpOBUIdOmi7JKKQMYKf897GtoQE2Jibu2WPqDLpACAqYOh6xV2Wg90s15uMSssUDC3BZ3MNsUVG9ruNhSpKsDD4IybdoUtulDKIrwh97c391_uWN-ogRXK6IY5VxkjS5NXWOlbyDLPshJiFc5LkZeOlwjaiqkA7RRJKZJKFFoVmieF8A58yik5qNe1PyPUcCd4nvlUuURWMnfOZbJK8qrA9qqpGpPJoEK76eg4bDxG18KiCu2TtsfkDFRs3QM4S_t9zpFKL-JZk47JaVTWTsSgKbgnSnkSbSA2shCTwZPPB-Ow_TIP1gC4gYB3Oh0TursK6xMPXVzt4UvbaWawYCyF-bztLGknnQNWhWgSpqP3bGw3AKm_96_Ui5-RAlzg6atK3_3rRc7JYffzW7JEXZCD5lfr35NRKNvLuHoeAax0F30 priority: 102 providerName: JSTOR |
Title | Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis |
URI | https://www.jstor.org/stable/41125400 http://www.pnas.org/content/108/14/5765.abstract https://www.ncbi.nlm.nih.gov/pubmed/21436051 https://www.proquest.com/docview/861419199 https://search.proquest.com/docview/968165418 https://pubmed.ncbi.nlm.nih.gov/PMC3078351 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RnrggCpSalmgPHNKDE3sf9uYYSqteQEgpEjdrvV4XS7Fj1fYhv4U_25n1owRx4mzvZJV57DfemW8I-WSllnGaSh_PR19Ilfta6tBnkkW5lJGIOTYK323jbz_VlxukyZFjL4wr2jdpsax25bIqfrnayro0q7FObPX96zXHuycZrmZkBthwTNEnpl3V950wCL-CiZHPJ-arutLN0lFWIW2WckTAggOgD49OpVmu92N5InKewqp_4c-_yyj_OJduX5NXA6Ckm37jp-SFrd6Q08FlG7oYeKWv3pLfG7rdWYsNUvSz1V17oG1PbQ6Y23ctJAA_KcQRyG1pkfV1RCCjxC_yljZd42pgXDntgT5glKSAeamGV_clDldvaL3fHbAQrKFgYQVdbGpz5Y-TdluK7BQQVHDHbVfiVC6UUjTvyP3tzf31nT_MZvCNVHHra50rJTKV5tjca0SWRlEG6QljGU8zzTLEaWbNQQEmyHiQcxNLE7PAcKshjJyRk2pf2XNCFdOcpZENpQ5ELlKtdSTyIM0NTlQNpUcWo2qSumfgSNzNecwTVE3yrFCPnIPqEv0A8TH5sWXInucgrAo9cub0OYkQADQBrQawxkl5Fq0gHUogDYNfvhiVngye3SQK8AzkuOu1R-j0FFwS71l0ZeGfTtaRwh6xEPbzvreQSfpobx6Jj2xnegHZvo-fgBM41u_B6D_898oL8rL_IC78QF6Sk_axsx_JrMm6uauEnbtxG3PnTU__WSIG |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53801,53803,58026,58038,58259,58271 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENbQcoALpUBpWh46wEx6ELX1sJVjgHbCUHpJmOGmkWW5zUziZLB9yG_hz7Ir22nDwAxny2vZu1p9a-1-S8g7r6xKs0wx3B-ZVLpgVtmYccWTQqlEpgILhSfT9PqH_nyBNDnv-1oYTKsMeYHhFB8AUrbw5xJAASALiMwfKh0J3Wbu3ePW1W2lCQeHK7nsGXxScb4ubfUhkFQhUZbe2Xz2CrvqsxCR2hSG_g1m_pkteW_7uTz4z4k_JU86fEnHrUEckge-fEYOuxVc0WFHM332nPwa0-nCe6yXoh-9beoNrVumc4DgLFSUABql4FYg1KXzvE0rAhlL_EHvadVUISUmZNdu6A06TQoQmFoYulpir_WKrleLDeaFVRQMbk6H47U7Y33j3ZoiWQX4GJxx3SyxSRdKmVcvyOzyYvZpwrpWDcwpndbM2kJrmeuswFpfJ_MsSXKIVjjPRZZbniNscyMB2nFRLqJCuFS5lEdOeAte5Yjsl6vSHxOquRU8S3ysbCQLmVlrE1lEWeGwwWqsBmTYq9CsW0IOEw7SU2FQheZO2wNyDCo29gbcpfk-5UimFxCtjgfkKChrK6LXFNwTpNyJ1hAdGYjK4MmnvXGYbqFXRgO8gZB3NBoQur0KKxSPXWzp4UubUaKxZCyG-bxsLWkrnQNahXgSppPu2Nh2AJJ_714p57eBBFzg-auKT_71Im_Jo8ns25W5-nL99ZQ8bn-FSxapV2S__tn412Svyps3YSX9BniQGtE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbYkBAvwICxMn74gYf2wTRx7Nh9LGzVEGhC6pB4s5zYGZXaNCLpQ_-W_bO7c5JuRfDAc5yLkzufv4vvviPkg5dWqiyTDPdHJqQumJU2ZlzytJAyFSrBQuGLubr8qc_OkSZn1NfCYFplyAsMp_gAkLKlH1euGAsABoAuIDp_KDVXcZu9d49fV7fVJhycruCiZ_FRybgqbf0xEFUhWZbe24AOCrvuMxGR3hSG_g1q_pkxeW8Lmj39j8k_I086nEmnrWEckQe-fE6OupVc02FHNz16QW6mdL70Huum6CdvN82WNi3jOUBxFipLAJVScC8Q8tKFa9OLQMYKf9R7Wm_qkBoTsmy39BqdJwUoTC0MXa-w53pNq_Vyi_lhNQXDW9DhtMpHrG_A21AkrQBfgzNuNits1oVSFvVLcjU7v_p8wbqWDSyXWjXM2kJr4XRWYM1vLlyWpg6iFs5dkjnLHcK3fJKAhvLIJVGR5Ermikd54i14l2NyWK5Lf0Ko5jbhWepjaSNRiMxam4oiyoocG63GckCGvRpN1RJzmHCgrhKDajR3Gh-QE1CzsdfgNs2POUdSvYBsdTwgx0FhOxG9puCeIOVOtIYoyUB0Bk8-7Q3EdAu-NhpgDoS-k8mA0N1VWKl4_GJLD1_aTFKNpWMxzOdVa0076RxQK8SVMB21Z2e7AUgCvn-lXPwKZOAJnsPK-PW_XuQ9efT9bGa-fbn8ekoet3_EBYvkG3LY_N74t-Sgdpt3YTHdAmdwHU4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sleeping+Beauty+transposon-mediated+screen+identifies+murine+susceptibility+genes+for+adenomatous+polyposis+coli+%28Apc%29-dependent+intestinal+tumorigenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Starr%2C+Timothy+K.&rft.au=Scott%2C+Patricia+M.&rft.au=Marsh%2C+Benjamin+M.&rft.au=Zhao%2C+Lei&rft.date=2011-04-05&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=14&rft.spage=5765&rft.epage=5770&rft_id=info:doi/10.1073%2Fpnas.1018012108&rft.externalDocID=41125400 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif |