Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis

It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low fr...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 14; pp. 5765 - 5770
Main Authors: Starr, Timothy K, Scott, Patricia M, Marsh, Benjamin M, Zhao, Lei, Than, Bich L.N, O'Sullivan, M. Gerard, Sarver, Aaron L, Dupuy, Adam J, Largaespada, David A, Cormier, Robert T
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 05-04-2011
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (ApcMin) using Sleeping Beauty (SB) transposon-mediated mutagenesis. ApcMin SB-mutagenized mice developed three times as many polyps as mice with the ApcMin allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the ApcMin phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease.
AbstractList It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (Apc(Min)) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc(Min) SB-mutagenized mice developed three times as many polyps as mice with the Apc(Min) allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc(Min) phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease.
It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli ( APC ) gene. To identify mutations that cooperate with mutant APC , we performed a forward genetic screen in mice carrying a mutant allele of Apc ( Apc Min ) using Sleeping Beauty ( SB ) transposon-mediated mutagenesis. Apc Min SB -mutagenized mice developed three times as many polyps as mice with the Apc Min allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB -induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc Min phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease.
It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common ratelimiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele ot Ape (Apc Min ) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc Min BS-mutagenized mice developed three times as many polyps as mice with the Apc Min allele alone. Analysis of transposon common insertion sites (CIS) identified the Ape locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Ape inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc Min phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease.
It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (Apc...) using Sleeping Beauty (SB) transposon-mediated mutagenesis. Apc... SB-mutagenized mice developed three times as many polyps as mice with the Apc... allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the Apc... phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease. (ProQuest: ... denotes formulae/symbols omitted.)
It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from resequencing of the coding regions of human CRC suggests that a relatively large number of mutations occur in individual human CRC, most at low frequency. The functional role of these low-frequency mutations in CRC, and specifically how they may cooperate with high-frequency mutations, is not well understood. One of the most common rate-limiting mutations in human CRC occurs in the adenomatous polyposis coli (APC) gene. To identify mutations that cooperate with mutant APC, we performed a forward genetic screen in mice carrying a mutant allele of Apc (ApcMin) using Sleeping Beauty (SB) transposon-mediated mutagenesis. ApcMin SB-mutagenized mice developed three times as many polyps as mice with the ApcMin allele alone. Analysis of transposon common insertion sites (CIS) identified the Apc locus as a major target of SB-induced mutagenesis, suggesting that SB insertions provide an efficient route to biallelic Apc inactivation. We also identified an additional 32 CIS genes/loci that may represent modifiers of the ApcMin phenotype. Five CIS genes tested for their role in proliferation caused a significant change in cell viability when message levels were reduced in human CRC cells. These findings demonstrate the utility of using transposon mutagenesis to identify low-frequency and cooperating cancer genes; this approach will aid in the development of combinatorial therapies targeting this deadly disease.
Author Starr, Timothy K
Than, Bich L.N
Dupuy, Adam J
Largaespada, David A
Zhao, Lei
Scott, Patricia M
Cormier, Robert T
Marsh, Benjamin M
O'Sullivan, M. Gerard
Sarver, Aaron L
Author_xml – sequence: 1
  fullname: Starr, Timothy K
– sequence: 2
  fullname: Scott, Patricia M
– sequence: 3
  fullname: Marsh, Benjamin M
– sequence: 4
  fullname: Zhao, Lei
– sequence: 5
  fullname: Than, Bich L.N
– sequence: 6
  fullname: O'Sullivan, M. Gerard
– sequence: 7
  fullname: Sarver, Aaron L
– sequence: 8
  fullname: Dupuy, Adam J
– sequence: 9
  fullname: Largaespada, David A
– sequence: 10
  fullname: Cormier, Robert T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21436051$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URLeFMyfA6gU4hI6_EueCVCq-pEocWs6W13YWrxI72AnS_hT-bb3dZRc42ZKfeTzvzBk6CTE4hJ4TeEegYZdj0LnciARCCchHaEGgJVXNWzhBCwDaVJJTforOcl4DQCskPEGnlHBWgyAL9Pu2d270YYU_OD1PGzwlHfIYcwzV4KzXk7M4m-RcwN66MPnOu4yHOfngcJ6zcePkl773pXblQnnrYsK6oHHQU5wzHmO_KUKfsYm9x2-uRvO2sm50YevDPkwuTz7oHk_zEJN_sPj8FD3udJ_ds_15ju4-fby7_lLdfPv89frqpjJCNlOldSclt3LZAWuZ4XZZ15YKQallS6uppZwy07IyBQOWQcdMI0xDwTCniWTn6P1OO87LEtiUlpLu1Zj8oNNGRe3Vvy_B_1Cr-EsxaCQTpAhe7wUp_pxLFDX4MpW-18GV-KqtJakFf_jq4j9yHedUgmcla8JJS9q2QJc7yKSYc3LdoRUCartztd25Ou68VLz8O8GB_7PkArzaA9vKo04qwpVoalGIFztinaeYDggnhAoOcDR0Oiq9Sj6r77cUSA1AWsokYfesX8wR
CitedBy_id crossref_primary_10_1089_dna_2020_5585
crossref_primary_10_1016_j_gde_2011_12_003
crossref_primary_10_1016_j_gde_2015_04_007
crossref_primary_10_1073_pnas_1318639110
crossref_primary_10_1186_s13059_015_0794_y
crossref_primary_10_1371_journal_pone_0097280
crossref_primary_10_1038_s42003_018_0163_y
crossref_primary_10_1016_j_trsl_2012_12_005
crossref_primary_10_1007_s11888_016_0334_5
crossref_primary_10_1007_s12011_016_0738_8
crossref_primary_10_1080_10409238_2016_1237935
crossref_primary_10_1038_jid_2012_245
crossref_primary_10_1038_s41568_020_0275_9
crossref_primary_10_1053_j_gastro_2013_01_067
crossref_primary_10_1002_9780470942390_mo110087
crossref_primary_10_1002_bies_201500032
crossref_primary_10_1073_pnas_1115433109
crossref_primary_10_1002_fsn3_1005
crossref_primary_10_1073_pnas_1702723114
crossref_primary_10_1007_s13258_023_01408_3
crossref_primary_10_1186_s13059_020_02118_9
crossref_primary_10_1111_cas_14901
crossref_primary_10_1084_jem_20200261
crossref_primary_10_1158_0008_5472_CAN_15_1697
crossref_primary_10_1093_carcin_bgs185
crossref_primary_10_1182_blood_2013_02_486035
crossref_primary_10_1016_j_canlet_2011_11_006
crossref_primary_10_1016_j_jmb_2019_03_028
crossref_primary_10_1177_0300060519858900
crossref_primary_10_1038_ng_3175
crossref_primary_10_1186_2051_5960_1_35
crossref_primary_10_1158_1541_7786_MCR_13_0244
crossref_primary_10_3390_molecules23061360
crossref_primary_10_1016_j_semcdb_2014_01_006
crossref_primary_10_1038_onc_2013_350
crossref_primary_10_3389_fonc_2019_00611
crossref_primary_10_1182_blood_2016_01_692855
crossref_primary_10_1002_hep4_1422
crossref_primary_10_1016_j_copbio_2015_05_005
crossref_primary_10_1186_s12943_015_0475_1
crossref_primary_10_3390_ijms21031172
crossref_primary_10_1038_nrc3299
crossref_primary_10_18632_oncotarget_22300
crossref_primary_10_1073_pnas_1701512114
crossref_primary_10_1186_1471_2164_15_1150
crossref_primary_10_3748_wjg_v22_i2_815
crossref_primary_10_1038_s41419_023_05885_y
crossref_primary_10_1042_BSR20181598
crossref_primary_10_1002_path_4184
crossref_primary_10_1038_s41417_023_00723_x
crossref_primary_10_3892_mmr_2017_6915
crossref_primary_10_1016_j_bbcan_2012_09_001
crossref_primary_10_1371_journal_pone_0024668
crossref_primary_10_1038_s41598_018_33527_3
crossref_primary_10_1073_pnas_1202490109
crossref_primary_10_1534_g3_112_002436
Cites_doi 10.1016/S1471-4914(01)02050-0
10.1146/annurev.genom.3.022502.103043
10.1126/science.2296722
10.1002/ijc.22115
10.1126/science.1145720
10.1073/pnas.94.8.3789
10.1126/science.1350108
10.1126/science.1083413
10.1093/carcin/bgm270
10.1126/science.1651563
10.1111/j.1349-7006.2008.00881.x
10.1007/s00535-006-1801-6
10.1126/science.1163040
10.1002/gene.20042
10.1073/pnas.132275099
10.1038/sj.bjc.6602928
10.1158/0008-5472.CAN-08-1376
10.1093/carcin/bgh134
10.1038/ng1055
10.1126/science.2814500
10.1158/0008-5472.CAN-06-3026
10.1038/sj.emboj.7601194
10.1158/0008-5472.CAN-09-1135
10.1126/science.2565047
10.1002/gcc.20382
10.1242/jcs.03072
10.1038/359235a0
10.1016/0092-8674(93)90484-8
10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2
10.1093/hmg/ddl231
10.1093/carcin/bgp132
10.1126/science.271.5248.521
10.1038/nbt.1526
10.1038/ng0997-88
10.1007/s00109-006-0126-5
10.1038/nature03681
10.1016/S0959-8049(02)00040-0
10.1038/nrc1299
10.1128/MCB.24.20.8981-8993.2004
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 5, 2011
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 5, 2011
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1018012108
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList MEDLINE

CrossRef


Virology and AIDS Abstracts
Genetics Abstracts

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5770
ExternalDocumentID 2317589211
10_1073_pnas_1018012108
21436051
108_14_5765
41125400
US201600192381
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA134759
– fundername: NCI NIH HHS
  grantid: R01CA113636-01A1
– fundername: NCI NIH HHS
  grantid: K99 CA151672
– fundername: NCI NIH HHS
  grantid: R01 CA134759-01A1
– fundername: NCI NIH HHS
  grantid: R01 CA113636
– fundername: NCI NIH HHS
  grantid: 1K99CA151672-01
– fundername: NCI NIH HHS
  grantid: T32 CA009138
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c587t-aaf884d8bf0393c4db66d25522d3bda2d2423c93424c0d30f3c75c720c3ea183
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:12:56 EDT 2024
Fri Aug 16 21:34:19 EDT 2024
Thu Oct 10 17:02:01 EDT 2024
Thu Nov 21 21:35:54 EST 2024
Sat Sep 28 08:51:53 EDT 2024
Wed Nov 11 00:29:32 EST 2020
Fri Feb 02 07:04:41 EST 2024
Wed Dec 27 19:18:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-aaf884d8bf0393c4db66d25522d3bda2d2423c93424c0d30f3c75c720c3ea183
Notes http://dx.doi.org/10.1073/pnas.1018012108
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Edited* by William F. Dove, University of Wisconsin, Madison, WI, and approved March 2, 2011 (received for review December 1, 2010)
Author contributions: T.K.S., P.M.S., D.A.L., and R.T.C. designed research; T.K.S., P.M.S., B.M.M., L.Z., B.L.N.T., M.G.O., and R.T.C. performed research; A.J.D. contributed new reagents/analytic tools; T.K.S., P.M.S., B.M.M., L.Z., B.L.N.T., M.G.O., A.L.S., and R.T.C. analyzed data; and T.K.S. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc3078351?pdf=render
PMID 21436051
PQID 861419199
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_41125400
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3078351
pubmed_primary_21436051
pnas_primary_108_14_5765
proquest_journals_861419199
crossref_primary_10_1073_pnas_1018012108
proquest_miscellaneous_968165418
fao_agris_US201600192381
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2011-04-05
PublicationDateYYYYMMDD 2011-04-05
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 8703849 - Genes Chromosomes Cancer. 1996 Apr;15(4):234-45
12805549 - Science. 2003 Jun 13;300(5626):1749-51
16778766 - EMBO J. 2006 Jul 12;25(13):3089-99
16868030 - J Cell Sci. 2006 Aug 1;119(Pt 15):3025-32
19251594 - Science. 2009 Mar 27;323(5922):1747-50
14993899 - Nat Rev Cancer. 2004 Mar;4(3):177-83
2565047 - Science. 1989 Apr 14;244(4901):207-11
8560270 - Science. 1996 Jan 26;271(5248):521-5
16421597 - Br J Cancer. 2006 Jan 30;94(2):318-22
12060718 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8927-31
16699851 - J Gastroenterol. 2006 Mar;41(3):185-92
2814500 - Science. 1989 Nov 10;246(4931):780-6
15001537 - Carcinogenesis. 2004 Aug;25(8):1345-57
9288104 - Nat Genet. 1997 Sep;17(1):88-91
19808965 - Cancer Res. 2009 Oct 15;69(20):8150-6
16858678 - Int J Cancer. 2006 Nov 15;119(10):2339-46
15456872 - Mol Cell Biol. 2004 Oct;24(20):8981-93
18564138 - Cancer Sci. 2008 Sep;99(9):1835-40
12142355 - Annu Rev Genomics Hum Genet. 2002;3:101-28
1651563 - Science. 1991 Aug 9;253(5020):665-9
11978510 - Eur J Cancer. 2002 May;38(7):867-71
8242739 - Cell. 1993 Nov 19;75(4):631-9
17932254 - Science. 2007 Nov 16;318(5853):1108-13
1350108 - Science. 1992 May 1;256(5057):668-70
11516998 - Trends Mol Med. 2001 Aug;7(8):369-73
7954428 - Cancer Res. 1994 Nov 15;54(22):5953-8
16923799 - Hum Mol Genet. 2006 Oct 1;15(19):2903-10
17332369 - Cancer Res. 2007 Mar 1;67(5):2366-72
17143621 - J Mol Med (Berl). 2007 Mar;85(3):293-304
19234449 - Nat Biotechnol. 2009 Mar;27(3):264-74
12447373 - Nat Genet. 2003 Jan;33(1):33-9
7954427 - Cancer Res. 1994 Nov 15;54(22):5947-52
11221861 - Cancer Res. 2001 Feb 1;61(3):818-22
17044061 - Genes Chromosomes Cancer. 2007 Jan;46(1):10-26
1528264 - Nature. 1992 Sep 17;359(6392):235-7
9108056 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3789-94
18048385 - Carcinogenesis. 2008 Feb;29(2):434-9
18974144 - Cancer Res. 2008 Nov 1;68(21):8993-7
15282745 - Genesis. 2004 Jul;39(3):186-93
16015333 - Nature. 2005 Jul 14;436(7048):272-6
19520794 - Carcinogenesis. 2009 Sep;30(9):1581-90
2296722 - Science. 1990 Jan 19;247(4940):322-4
e_1_3_3_17_2
Luongo C (e_1_3_3_10_2) 1994; 54
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_31_2
Levy DB (e_1_3_3_9_2) 1994; 54
e_1_3_3_40_2
Shih IM (e_1_3_3_30_2) 2001; 61
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_19_2
  doi: 10.1016/S1471-4914(01)02050-0
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.genom.3.022502.103043
– ident: e_1_3_3_4_2
  doi: 10.1126/science.2296722
– ident: e_1_3_3_18_2
  doi: 10.1002/ijc.22115
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1145720
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.94.8.3789
– ident: e_1_3_3_5_2
  doi: 10.1126/science.1350108
– ident: e_1_3_3_42_2
  doi: 10.1126/science.1083413
– volume: 61
  start-page: 818
  year: 2001
  ident: e_1_3_3_30_2
  article-title: Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis
  publication-title: Cancer Res
  contributor:
    fullname: Shih IM
– ident: e_1_3_3_31_2
  doi: 10.1093/carcin/bgm270
– ident: e_1_3_3_35_2
  doi: 10.1126/science.1651563
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1349-7006.2008.00881.x
– ident: e_1_3_3_2_2
  doi: 10.1007/s00535-006-1801-6
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1163040
– ident: e_1_3_3_17_2
  doi: 10.1002/gene.20042
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.132275099
– ident: e_1_3_3_24_2
  doi: 10.1038/sj.bjc.6602928
– ident: e_1_3_3_34_2
  doi: 10.1158/0008-5472.CAN-08-1376
– ident: e_1_3_3_27_2
  doi: 10.1093/carcin/bgh134
– ident: e_1_3_3_11_2
  doi: 10.1038/ng1055
– ident: e_1_3_3_20_2
  doi: 10.1126/science.2814500
– ident: e_1_3_3_37_2
  doi: 10.1158/0008-5472.CAN-06-3026
– ident: e_1_3_3_36_2
  doi: 10.1038/sj.emboj.7601194
– ident: e_1_3_3_16_2
  doi: 10.1158/0008-5472.CAN-09-1135
– ident: e_1_3_3_25_2
  doi: 10.1126/science.2565047
– ident: e_1_3_3_28_2
  doi: 10.1002/gcc.20382
– ident: e_1_3_3_39_2
  doi: 10.1242/jcs.03072
– ident: e_1_3_3_13_2
  doi: 10.1038/359235a0
– ident: e_1_3_3_7_2
  doi: 10.1016/0092-8674(93)90484-8
– ident: e_1_3_3_26_2
  doi: 10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2
– ident: e_1_3_3_33_2
  doi: 10.1093/hmg/ddl231
– ident: e_1_3_3_38_2
  doi: 10.1093/carcin/bgp132
– volume: 54
  start-page: 5947
  year: 1994
  ident: e_1_3_3_10_2
  article-title: Loss of Apc+ in intestinal adenomas from Min mice
  publication-title: Cancer Res
  contributor:
    fullname: Luongo C
– ident: e_1_3_3_40_2
  doi: 10.1126/science.271.5248.521
– volume: 54
  start-page: 5953
  year: 1994
  ident: e_1_3_3_9_2
  article-title: Inactivation of both APC alleles in human and mouse tumors
  publication-title: Cancer Res
  contributor:
    fullname: Levy DB
– ident: e_1_3_3_21_2
  doi: 10.1038/nbt.1526
– ident: e_1_3_3_8_2
  doi: 10.1038/ng0997-88
– ident: e_1_3_3_29_2
  doi: 10.1007/s00109-006-0126-5
– ident: e_1_3_3_14_2
  doi: 10.1038/nature03681
– ident: e_1_3_3_6_2
  doi: 10.1016/S0959-8049(02)00040-0
– ident: e_1_3_3_23_2
  doi: 10.1038/nrc1299
– ident: e_1_3_3_41_2
  doi: 10.1128/MCB.24.20.8981-8993.2004
SSID ssj0009580
Score 2.3345478
Snippet It is proposed that a progressive series of mutations and epigenetic events leads to human colorectal cancer (CRC) and metastasis. Furthermore, data from...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5765
SubjectTerms adenomatous polyposis coli
adenomatous polyposis coli protein
Alleles
Animals
Biological Sciences
Cancer
carcinogenesis
Cell Line, Tumor
Cell proliferation
cell viability
Cells
Colorectal cancer
colorectal neoplasms
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Data processing
development aid
DNA Transposable Elements - genetics
epigenetics
Gene Silencing
Genes
Genetic loci
Genetic mutation
Genetic Predisposition to Disease - genetics
Genetic screening
Genetic Testing - methods
Genetic transposition
Genotype & phenotype
Humans
Insertion
Intestine
loci
Metastases
metastasis
Mice
Mice, Transgenic
Mutagenesis
Mutagenesis, Insertional - methods
mutants
Mutation
phenotype
Polyps
RNA Interference
RNA, Small Interfering - genetics
Rodents
transposon mutagenesis
Transposons
Tumorigenesis
Tumors
SummonAdditionalLinks – databaseName: JSTOR Archive
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b9swECXqTFnaJmkaN2nAoQWcgY3ED5Ee3TZBpi5OgW4EJVGpAVs2Smnwb-mfzR0lOXHRAp1FnSjd8fhOvHtHyAevnNJ5rhjuj0wqUzGnXMq44lmlVCa1wELhu7n-9sN8vUGanI9DLQymVca8wHiKDwApX_prCaAAkAVE5iOTmC5v7xmzrunqTDi4W8nlwN-jxfWmduFTpKhCmiyzt_WMKrcechCR2BSG_g1k_pkr-WzzuX31n9N-TV726JLOOnM4Ii98fUyO-vUb6KQnmb46Ib9ndL70Hqul6Gfv2mZLm47nHAA4i_UkgEUpOBUIdOmi7JKKQMYKf897GtoQE2Jibu2WPqDLpACAqYOh6xV2Wg90s15uMSssUDC3BZ3MNsUVG9ruNhSpKsDD4IybdoUtulDKIrwh97c391_uWN-ogRXK6IY5VxkjS5NXWOlbyDLPshJiFc5LkZeOlwjaiqkA7RRJKZJKFFoVmieF8A58yik5qNe1PyPUcCd4nvlUuURWMnfOZbJK8qrA9qqpGpPJoEK76eg4bDxG18KiCu2TtsfkDFRs3QM4S_t9zpFKL-JZk47JaVTWTsSgKbgnSnkSbSA2shCTwZPPB-Ow_TIP1gC4gYB3Oh0TursK6xMPXVzt4UvbaWawYCyF-bztLGknnQNWhWgSpqP3bGw3AKm_96_Ui5-RAlzg6atK3_3rRc7JYffzW7JEXZCD5lfr35NRKNvLuHoeAax0F30
  priority: 102
  providerName: JSTOR
Title Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis
URI https://www.jstor.org/stable/41125400
http://www.pnas.org/content/108/14/5765.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21436051
https://www.proquest.com/docview/861419199
https://search.proquest.com/docview/968165418
https://pubmed.ncbi.nlm.nih.gov/PMC3078351
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RnrggCpSalmgPHNKDE3sf9uYYSqteQEgpEjdrvV4XS7Fj1fYhv4U_25n1owRx4mzvZJV57DfemW8I-WSllnGaSh_PR19Ilfta6tBnkkW5lJGIOTYK323jbz_VlxukyZFjL4wr2jdpsax25bIqfrnayro0q7FObPX96zXHuycZrmZkBthwTNEnpl3V950wCL-CiZHPJ-arutLN0lFWIW2WckTAggOgD49OpVmu92N5InKewqp_4c-_yyj_OJduX5NXA6Ckm37jp-SFrd6Q08FlG7oYeKWv3pLfG7rdWYsNUvSz1V17oG1PbQ6Y23ctJAA_KcQRyG1pkfV1RCCjxC_yljZd42pgXDntgT5glKSAeamGV_clDldvaL3fHbAQrKFgYQVdbGpz5Y-TdluK7BQQVHDHbVfiVC6UUjTvyP3tzf31nT_MZvCNVHHra50rJTKV5tjca0SWRlEG6QljGU8zzTLEaWbNQQEmyHiQcxNLE7PAcKshjJyRk2pf2XNCFdOcpZENpQ5ELlKtdSTyIM0NTlQNpUcWo2qSumfgSNzNecwTVE3yrFCPnIPqEv0A8TH5sWXInucgrAo9cub0OYkQADQBrQawxkl5Fq0gHUogDYNfvhiVngye3SQK8AzkuOu1R-j0FFwS71l0ZeGfTtaRwh6xEPbzvreQSfpobx6Jj2xnegHZvo-fgBM41u_B6D_898oL8rL_IC78QF6Sk_axsx_JrMm6uauEnbtxG3PnTU__WSIG
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53801,53803,58026,58038,58259,58271
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENbQcoALpUBpWh46wEx6ELX1sJVjgHbCUHpJmOGmkWW5zUziZLB9yG_hz7Ir22nDwAxny2vZu1p9a-1-S8g7r6xKs0wx3B-ZVLpgVtmYccWTQqlEpgILhSfT9PqH_nyBNDnv-1oYTKsMeYHhFB8AUrbw5xJAASALiMwfKh0J3Wbu3ePW1W2lCQeHK7nsGXxScb4ubfUhkFQhUZbe2Xz2CrvqsxCR2hSG_g1m_pkteW_7uTz4z4k_JU86fEnHrUEckge-fEYOuxVc0WFHM332nPwa0-nCe6yXoh-9beoNrVumc4DgLFSUABql4FYg1KXzvE0rAhlL_EHvadVUISUmZNdu6A06TQoQmFoYulpir_WKrleLDeaFVRQMbk6H47U7Y33j3ZoiWQX4GJxx3SyxSRdKmVcvyOzyYvZpwrpWDcwpndbM2kJrmeuswFpfJ_MsSXKIVjjPRZZbniNscyMB2nFRLqJCuFS5lEdOeAte5Yjsl6vSHxOquRU8S3ysbCQLmVlrE1lEWeGwwWqsBmTYq9CsW0IOEw7SU2FQheZO2wNyDCo29gbcpfk-5UimFxCtjgfkKChrK6LXFNwTpNyJ1hAdGYjK4MmnvXGYbqFXRgO8gZB3NBoQur0KKxSPXWzp4UubUaKxZCyG-bxsLWkrnQNahXgSppPu2Nh2AJJ_714p57eBBFzg-auKT_71Im_Jo8ns25W5-nL99ZQ8bn-FSxapV2S__tn412Svyps3YSX9BniQGtE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbYkBAvwICxMn74gYf2wTRx7Nh9LGzVEGhC6pB4s5zYGZXaNCLpQ_-W_bO7c5JuRfDAc5yLkzufv4vvviPkg5dWqiyTDPdHJqQumJU2ZlzytJAyFSrBQuGLubr8qc_OkSZn1NfCYFplyAsMp_gAkLKlH1euGAsABoAuIDp_KDVXcZu9d49fV7fVJhycruCiZ_FRybgqbf0xEFUhWZbe24AOCrvuMxGR3hSG_g1q_pkxeW8Lmj39j8k_I086nEmnrWEckQe-fE6OupVc02FHNz16QW6mdL70Huum6CdvN82WNi3jOUBxFipLAJVScC8Q8tKFa9OLQMYKf9R7Wm_qkBoTsmy39BqdJwUoTC0MXa-w53pNq_Vyi_lhNQXDW9DhtMpHrG_A21AkrQBfgzNuNits1oVSFvVLcjU7v_p8wbqWDSyXWjXM2kJr4XRWYM1vLlyWpg6iFs5dkjnLHcK3fJKAhvLIJVGR5Ermikd54i14l2NyWK5Lf0Ko5jbhWepjaSNRiMxam4oiyoocG63GckCGvRpN1RJzmHCgrhKDajR3Gh-QE1CzsdfgNs2POUdSvYBsdTwgx0FhOxG9puCeIOVOtIYoyUB0Bk8-7Q3EdAu-NhpgDoS-k8mA0N1VWKl4_GJLD1_aTFKNpWMxzOdVa0076RxQK8SVMB21Z2e7AUgCvn-lXPwKZOAJnsPK-PW_XuQ9efT9bGa-fbn8ekoet3_EBYvkG3LY_N74t-Sgdpt3YTHdAmdwHU4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sleeping+Beauty+transposon-mediated+screen+identifies+murine+susceptibility+genes+for+adenomatous+polyposis+coli+%28Apc%29-dependent+intestinal+tumorigenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Starr%2C+Timothy+K.&rft.au=Scott%2C+Patricia+M.&rft.au=Marsh%2C+Benjamin+M.&rft.au=Zhao%2C+Lei&rft.date=2011-04-05&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=14&rft.spage=5765&rft.epage=5770&rft_id=info:doi/10.1073%2Fpnas.1018012108&rft.externalDocID=41125400
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif