3D Printed Polymer Photodetectors
Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fu...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 30; no. 40; pp. e1803980 - n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
28-08-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices.
Fully 3D‐printed polymer photodetectors are demonstrated on flexible substrates and hemispherical surfaces to integrate multidimensional image sensing arrays with high sensitivity and wide field of view. 3D printing multifunctional optoelectronic devices on a single platform is possible from a one‐pot, custom‐built extrusion‐based 3D manufacturing system. This work opens the possibility of the “off‐grid” printing of next‐generation wearable optoelectronic devices. |
---|---|
AbstractList | Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer-based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one-pot custom built 3D printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next-generation wearable and 3D structured optoelectronics, and validating the potential of 3D printing to achieve high performance integrated active electronic materials and devices.
Fully 3D printed polymer photodetectors are
demonstrated on flexible substrates and hemispherical surfaces to integrate multidimensional image sensing arrays with high sensitivity and wide field of view. 3D printing multifunctional optoelectronic devices on a single platform is possible from a one-pot, custom built extrusion-based 3D manufacturing system. This work opens the possibility of the “off-grid” printing of next-generation wearable optoelectronic devices. Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light-emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer-based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one-pot custom built 3D-printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light-emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D-printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next-generation wearable and 3D-structured optoelectronics, and validating the potential of 3D printing to achieve high-performance integrated active electronic materials and devices. Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices. Fully 3D‐printed polymer photodetectors are demonstrated on flexible substrates and hemispherical surfaces to integrate multidimensional image sensing arrays with high sensitivity and wide field of view. 3D printing multifunctional optoelectronic devices on a single platform is possible from a one‐pot, custom‐built extrusion‐based 3D manufacturing system. This work opens the possibility of the “off‐grid” printing of next‐generation wearable optoelectronic devices. |
Author | Park, Sung Hyun Su, Ruitao Guo, Shuang‐Zhuang Meng, Fanben McAlpine, Michael C. Jeong, Jaewoo Qiu, Kaiyan Joung, Daeha |
Author_xml | – sequence: 1 givenname: Sung Hyun surname: Park fullname: Park, Sung Hyun organization: University of Minnesota – sequence: 2 givenname: Ruitao orcidid: 0000-0002-6716-7046 surname: Su fullname: Su, Ruitao organization: University of Minnesota – sequence: 3 givenname: Jaewoo surname: Jeong fullname: Jeong, Jaewoo organization: University of Minnesota – sequence: 4 givenname: Shuang‐Zhuang surname: Guo fullname: Guo, Shuang‐Zhuang organization: University of Minnesota – sequence: 5 givenname: Kaiyan surname: Qiu fullname: Qiu, Kaiyan organization: University of Minnesota – sequence: 6 givenname: Daeha surname: Joung fullname: Joung, Daeha organization: University of Minnesota – sequence: 7 givenname: Fanben surname: Meng fullname: Meng, Fanben organization: University of Minnesota – sequence: 8 givenname: Michael C. surname: McAlpine fullname: McAlpine, Michael C. email: mcalpine@umn.edu organization: University of Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30151842$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PIzEQQK0TCAJHeyUKoqHZMGOvHbtBiviWOJHiqC3HO4FFu2uwN6D8e4wC4Y7mKsua5yfP22EbXeiIsV8IIwTgx65q3YgDahBGww82QMmxKMHIDTYAI2RhVKm32U5KjwBgFKgtti0AJeqSD9iBOBtOY931VA2noVm2FIfTh9CHinryfYjpJ9ucuybR3se5y-4uzv-cXhU3t5fXp5Obwks9hgJLqRSWxI0wjma8mtEcx5q8dOh5STNNTnOfr6LMc4UG5ZhLgEp7UN6JXXay8j4tZi1Vnro-usY-xbp1cWmDq-2_k65-sPfhxSqjtUSRBUcfghieF5R629bJU9O4jsIiWZ6jSC40qIwefkMfwyJ2eT3LEUutpFEyU6MV5WNIKdJ8_RkE-17fvte36_r5wf7fK6zxz9wZMCvgtW5o-R-dnZz9nnzJ3wD8AZGj |
CitedBy_id | crossref_primary_10_1002_adma_202104390 crossref_primary_10_1021_acsami_3c04121 crossref_primary_10_1002_smll_202202639 crossref_primary_10_1002_adma_201903182 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1360_SSV_2021_0084 crossref_primary_10_1016_j_pmatsci_2022_101020 crossref_primary_10_1088_1361_665X_aca370 crossref_primary_10_1021_acs_chemrev_1c00639 crossref_primary_10_1002_jbm_a_36979 crossref_primary_10_1142_S0217984924503007 crossref_primary_10_1002_adom_202000370 crossref_primary_10_1021_acsami_1c24235 crossref_primary_10_1002_adom_202102163 crossref_primary_10_1021_acsanm_9b01763 crossref_primary_10_1126_sciadv_abl8798 crossref_primary_10_3390_micro4020016 crossref_primary_10_1016_j_compstruct_2024_118038 crossref_primary_10_1073_pnas_2204852119 crossref_primary_10_1088_2058_8585_abf986 crossref_primary_10_1016_j_mattod_2023_06_019 crossref_primary_10_1002_admt_202201026 crossref_primary_10_1016_j_addma_2022_103094 crossref_primary_10_1021_acsanm_3c01814 crossref_primary_10_1038_s41596_022_00792_6 crossref_primary_10_1007_s12274_022_5053_4 crossref_primary_10_3390_met12111874 crossref_primary_10_1515_epoly_2021_0061 crossref_primary_10_1002_adfm_202211548 crossref_primary_10_3390_ma14164521 crossref_primary_10_1002_admt_202200827 crossref_primary_10_1021_acs_jpclett_1c03090 crossref_primary_10_1042_EBC20200131 crossref_primary_10_1016_j_cej_2020_124503 crossref_primary_10_1002_macp_201900474 crossref_primary_10_1002_adsr_202300013 crossref_primary_10_1002_aisy_202100071 crossref_primary_10_1126_sciadv_aba5575 crossref_primary_10_1002_sstr_202200159 crossref_primary_10_1002_adfm_201906237 crossref_primary_10_1021_acsnano_2c08731 crossref_primary_10_1007_s11709_021_0794_9 crossref_primary_10_1039_D0TC01112F crossref_primary_10_1016_j_bios_2019_111966 crossref_primary_10_1016_j_dsp_2021_103145 crossref_primary_10_1016_j_jmrt_2022_01_159 crossref_primary_10_3390_jmmp6010004 crossref_primary_10_1021_acssensors_9b02544 crossref_primary_10_1016_j_apmt_2022_101509 crossref_primary_10_14775_ksmpe_2024_23_05_084 crossref_primary_10_1089_3dp_2022_0386 crossref_primary_10_1002_adma_201904073 crossref_primary_10_1002_adsr_202200066 crossref_primary_10_1126_sciadv_adg5152 crossref_primary_10_1002_adfm_201907549 crossref_primary_10_1038_s41598_020_75556_x crossref_primary_10_1088_1361_6528_abf3ee crossref_primary_10_1126_sciadv_abm6922 crossref_primary_10_1002_inf2_12010 crossref_primary_10_1016_j_jsamd_2023_100565 crossref_primary_10_1021_acsmaterialsau_2c00026 crossref_primary_10_1002_adfm_201907384 crossref_primary_10_1515_nanoph_2020_0161 crossref_primary_10_1002_adma_202004456 crossref_primary_10_1002_smll_201907691 crossref_primary_10_15388_Amed_2021_28_1_7 crossref_primary_10_1021_acsnano_0c04075 crossref_primary_10_1002_advs_202201275 crossref_primary_10_1002_adfm_202213312 crossref_primary_10_1021_acsapm_1c00252 crossref_primary_10_1126_sciadv_abc9846 crossref_primary_10_1002_adma_201808138 crossref_primary_10_1002_admt_202200492 crossref_primary_10_1063_10_0006866 crossref_primary_10_1021_acs_chemrev_1c00303 crossref_primary_10_1016_j_ijpharm_2022_122094 crossref_primary_10_1002_admt_202100144 crossref_primary_10_1021_acsapm_1c00889 crossref_primary_10_1038_s41578_020_00235_2 crossref_primary_10_1021_acsmaterialslett_0c00176 crossref_primary_10_1002_adma_202002541 crossref_primary_10_1016_j_synthmet_2019_116137 crossref_primary_10_1016_j_rineng_2023_101318 crossref_primary_10_1038_s41528_022_00134_2 crossref_primary_10_1039_D2CC05281D crossref_primary_10_1002_admt_201900592 crossref_primary_10_1016_j_progpolymsci_2023_101711 crossref_primary_10_1039_D1NA00659B crossref_primary_10_1016_j_addma_2021_102199 crossref_primary_10_1016_j_matpr_2023_07_239 crossref_primary_10_1002_advs_201901603 crossref_primary_10_1002_advs_202001379 crossref_primary_10_1016_j_coche_2020_03_004 crossref_primary_10_1002_adfm_202100136 crossref_primary_10_1515_nanoph_2019_0483 crossref_primary_10_1002_adma_201907280 crossref_primary_10_1038_s41467_022_30427_z crossref_primary_10_3390_polym14214635 crossref_primary_10_1088_2631_7990_ab0fa5 crossref_primary_10_1002_aisy_202100167 crossref_primary_10_1002_adfm_201906040 crossref_primary_10_1016_j_sna_2024_115267 crossref_primary_10_1016_j_survophthal_2022_01_004 crossref_primary_10_1002_adom_202400059 |
Cites_doi | 10.1039/b607016g 10.1002/adma.201605198 10.1021/acsami.6b04235 10.1007/BF02403106 10.1021/nl5033292 10.1002/adma.201400334 10.1038/s41467-017-01926-1 10.1021/nl4007744 10.1038/nmat1500 10.1146/annurev-anchem-061417-125935 10.1038/ncomms6745 10.1002/adma.201003734 10.1021/ma900817t 10.1021/nl2001692 10.1002/adma.201703817 10.1126/science.270.5243.1789 10.1038/376498a0 10.1038/nature12083 10.1039/C7NR00250E 10.1002/anie.200703642 10.1063/1.120332 10.1088/1361-6528/aa57ae 10.1002/adma.201301036 10.1016/S1369-7021(06)71446-8 10.1002/adma.201701218 10.1016/j.orgel.2010.07.023 10.1063/1.114370 10.1038/natrevmats.2017.19 10.1016/j.elecom.2014.01.013 10.1021/acsami.8b03824 10.1038/s41467-017-01824-6 10.1038/srep09949 10.1364/OE.25.013010 10.1063/1.359792 10.1016/j.orgel.2011.06.021 10.1002/smll.201603217 10.1002/adfm.200902247 10.1002/adfm.201404559 10.1126/science.1176706 10.1002/adma.201706383 10.1002/adfm.200400073 10.1002/admt.201700235 10.1038/nphoton.2012.11 10.1002/adom.201600466 10.1126/sciadv.aat2390 10.1209/0295-5075/84/58002 10.1002/adfm.201707311 10.1038/nphoton.2013.188 10.1021/acs.nanolett.5b04965 10.1002/adma.201707495 10.1016/j.eml.2018.02.002 10.1002/adma.201502267 10.1108/13552541211212113 10.1016/j.orgel.2013.06.018 10.1021/acsami.6b07612 10.1016/j.orgel.2013.09.036 10.1016/j.orgel.2008.01.007 10.1002/adma.201004426 10.1002/admt.201600257 10.1063/1.2359579 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.201803980 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201803980 30151842 ADMA201803980 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: 1DP2EB020537 – fundername: National Science Foundation funderid: ECCS‐1542202 – fundername: NIBIB NIH HHS grantid: DP2 EB020537 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT NPM .Y3 31~ 6TJ 8WZ A6W AAMNL AAYOK AAYXX ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c5870-1456614e2939aeb2dbef178ec5a1c24eb8ea82cc5a34aeb6191572500d8c06ca3 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Tue Sep 17 21:14:09 EDT 2024 Fri Aug 16 10:04:06 EDT 2024 Tue Nov 19 04:40:10 EST 2024 Thu Nov 21 21:08:55 EST 2024 Sat Nov 02 12:25:21 EDT 2024 Sat Aug 24 00:49:36 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | photodetectors 3D printing functional materials optical sensors 3D printing photonic devices |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5870-1456614e2939aeb2dbef178ec5a1c24eb8ea82cc5a34aeb6191572500d8c06ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6716-7046 |
OpenAccessLink | https://europepmc.org/articles/pmc6988513?pdf=render |
PMID | 30151842 |
PQID | 2114865965 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988513 proquest_miscellaneous_2095523806 proquest_journals_2114865965 crossref_primary_10_1002_adma_201803980 pubmed_primary_30151842 wiley_primary_10_1002_adma_201803980_ADMA201803980 |
PublicationCentury | 2000 |
PublicationDate | 20180828 |
PublicationDateYYYYMMDD | 2018-08-28 |
PublicationDate_xml | – month: 8 year: 2018 text: 20180828 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2017; 8 2013; 25 2017; 2 2009; 42 1995; 78 2008; 9 2014; 26 2011; 11 2012; 18 2011; 12 1995; 376 2013; 7 2017; 9 2010; 20 2018; 3 2014; 5 2013; 14 2018; 4 2013; 13 1995; 67 2014; 14 2018; 30 2011; 23 1984; 19 2009; 325 2018; 28 2015; 5 2017; 25 2017; 28 2006; 9 2006; 8 2017; 29 2014; 41 2016; 16 2018; 21 1995; 270 2016; 4 2015; 25 2015; 27 1997; 71 2006; 89 2017; 13 2013; 497 2008; 47 2005; 4 2005; 15 2012; 6 2018; 11 2008; 84 2018; 10 2016; 8 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 9 start-page: 8580 year: 2017 publication-title: Nanoscale – volume: 13 start-page: 1603217 year: 2017 publication-title: Small – volume: 28 start-page: 1707311 year: 2018 publication-title: Adv. Funct. Mater. – volume: 4 start-page: eaat2390 year: 2018 publication-title: Sci. Adv. – volume: 497 start-page: 95 year: 2013 publication-title: Nature – volume: 25 start-page: 13010 year: 2017 publication-title: Opt. Express – volume: 8 start-page: 23212 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 2484 year: 2013 publication-title: Org. Electron. – volume: 78 start-page: 4510 year: 1995 publication-title: J. Appl. Phys. – volume: 8 start-page: 1782 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 1703817 year: 2017 publication-title: Adv. Mater. – volume: 42 start-page: 7396 year: 2009 publication-title: Macromolecules – volume: 8 start-page: 1664 year: 2017 publication-title: Nat. Commun. – volume: 28 start-page: 095204 year: 2017 publication-title: Nanotechnology – volume: 11 start-page: 1779 year: 2010 publication-title: Org. Electron. – volume: 26 start-page: 6307 year: 2014 publication-title: Adv. Mater. – volume: 14 start-page: 3206 year: 2013 publication-title: Org. Electron. – volume: 25 start-page: 2237 year: 2015 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 6496 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 369 year: 2008 publication-title: Org. Electron. – volume: 84 start-page: 58002 year: 2008 publication-title: EPL – volume: 14 start-page: 7017 year: 2014 publication-title: Nano Lett. – volume: 41 start-page: 20 year: 2014 publication-title: Electrochem. Commun. – volume: 18 start-page: 129 year: 2012 publication-title: Rapid Prototyping J. – volume: 2 start-page: 17019 year: 2017 publication-title: Nat. Rev. Mater. – volume: 29 start-page: 1605198 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 38 year: 2006 publication-title: Mater. Today – volume: 29 start-page: 1701218 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 12369 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 12937 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 1 year: 2018 publication-title: Extreme Mech. Lett. – volume: 11 start-page: 287 year: 2018 publication-title: Annu. Rev. Anal. Chem. – volume: 30 start-page: 1706383 year: 2018 publication-title: Adv. Mater. – volume: 325 start-page: 1665 year: 2009 publication-title: Science – volume: 13 start-page: 2634 year: 2013 publication-title: Nano Lett. – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 7 start-page: 811 year: 2013 publication-title: Nat. Photonics – volume: 47 start-page: 142 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 9949 year: 2015 publication-title: Sci. Rep. – volume: 30 start-page: 1707495 year: 2018 publication-title: Adv. Mater. – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 4 start-page: 1915 year: 2016 publication-title: Adv. Opt. Mater. – volume: 23 start-page: 1771 year: 2011 publication-title: Adv. Mater. – volume: 23 start-page: 1335 year: 2011 publication-title: Adv. Mater. – volume: 11 start-page: 1952 year: 2011 publication-title: Nano Lett. – volume: 89 start-page: 143517 year: 2006 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 1669 year: 2011 publication-title: Org. Electron. – volume: 20 start-page: 1458 year: 2010 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 5745 year: 2014 publication-title: Nat. Commun. – volume: 376 start-page: 498 year: 1995 publication-title: Nature – volume: 25 start-page: 4539 year: 2013 publication-title: Adv. Mater. – volume: 15 start-page: 290 year: 2005 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 864 year: 2005 publication-title: Nat. Mater. – volume: 16 start-page: 3448 year: 2016 publication-title: Nano Lett. – volume: 8 start-page: 3904 year: 2006 publication-title: Phys. Chem. Chem. Phys. – volume: 71 start-page: 3344 year: 1997 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 1 year: 1984 publication-title: J. Mater. Sci. – volume: 67 start-page: 1899 year: 1995 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 1600257 year: 2017 publication-title: Adv. Mater. Technol. – volume: 3 start-page: 1700235 year: 2018 publication-title: Adv. Mater. Technol. – ident: e_1_2_5_53_1 doi: 10.1039/b607016g – ident: e_1_2_5_9_1 doi: 10.1002/adma.201605198 – ident: e_1_2_5_20_1 doi: 10.1021/acsami.6b04235 – ident: e_1_2_5_42_1 doi: 10.1007/BF02403106 – ident: e_1_2_5_23_1 doi: 10.1021/nl5033292 – ident: e_1_2_5_3_1 doi: 10.1002/adma.201400334 – ident: e_1_2_5_26_1 doi: 10.1038/s41467-017-01926-1 – ident: e_1_2_5_10_1 doi: 10.1021/nl4007744 – ident: e_1_2_5_41_1 doi: 10.1038/nmat1500 – ident: e_1_2_5_12_1 doi: 10.1146/annurev-anchem-061417-125935 – ident: e_1_2_5_60_1 doi: 10.1038/ncomms6745 – ident: e_1_2_5_7_1 doi: 10.1002/adma.201003734 – ident: e_1_2_5_49_1 doi: 10.1021/ma900817t – ident: e_1_2_5_35_1 doi: 10.1021/nl2001692 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201703817 – ident: e_1_2_5_37_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_5_39_1 doi: 10.1038/376498a0 – ident: e_1_2_5_24_1 doi: 10.1038/nature12083 – ident: e_1_2_5_58_1 doi: 10.1039/C7NR00250E – ident: e_1_2_5_31_1 doi: 10.1002/anie.200703642 – ident: e_1_2_5_43_1 doi: 10.1063/1.120332 – ident: e_1_2_5_57_1 doi: 10.1088/1361-6528/aa57ae – ident: e_1_2_5_2_1 doi: 10.1002/adma.201301036 – ident: e_1_2_5_44_1 doi: 10.1016/S1369-7021(06)71446-8 – ident: e_1_2_5_14_1 doi: 10.1002/adma.201701218 – ident: e_1_2_5_33_1 doi: 10.1016/j.orgel.2010.07.023 – ident: e_1_2_5_28_1 doi: 10.1063/1.114370 – ident: e_1_2_5_22_1 doi: 10.1038/natrevmats.2017.19 – ident: e_1_2_5_5_1 doi: 10.1016/j.elecom.2014.01.013 – ident: e_1_2_5_56_1 doi: 10.1021/acsami.8b03824 – ident: e_1_2_5_27_1 doi: 10.1038/s41467-017-01824-6 – ident: e_1_2_5_48_1 doi: 10.1038/srep09949 – ident: e_1_2_5_25_1 doi: 10.1364/OE.25.013010 – ident: e_1_2_5_38_1 doi: 10.1063/1.359792 – ident: e_1_2_5_54_1 doi: 10.1016/j.orgel.2011.06.021 – ident: e_1_2_5_19_1 doi: 10.1002/smll.201603217 – ident: e_1_2_5_45_1 doi: 10.1002/adfm.200902247 – ident: e_1_2_5_21_1 doi: 10.1002/adfm.201404559 – ident: e_1_2_5_52_1 doi: 10.1126/science.1176706 – ident: e_1_2_5_16_1 doi: 10.1002/adma.201706383 – ident: e_1_2_5_29_1 doi: 10.1002/adfm.200400073 – ident: e_1_2_5_11_1 doi: 10.1002/admt.201700235 – ident: e_1_2_5_40_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_5_17_1 doi: 10.1002/adom.201600466 – ident: e_1_2_5_18_1 doi: 10.1126/sciadv.aat2390 – ident: e_1_2_5_32_1 doi: 10.1209/0295-5075/84/58002 – ident: e_1_2_5_59_1 doi: 10.1002/adfm.201707311 – ident: e_1_2_5_51_1 doi: 10.1038/nphoton.2013.188 – ident: e_1_2_5_6_1 doi: 10.1021/acs.nanolett.5b04965 – ident: e_1_2_5_13_1 doi: 10.1002/adma.201707495 – ident: e_1_2_5_8_1 doi: 10.1016/j.eml.2018.02.002 – ident: e_1_2_5_47_1 doi: 10.1002/adma.201502267 – ident: e_1_2_5_1_1 doi: 10.1108/13552541211212113 – ident: e_1_2_5_55_1 doi: 10.1016/j.orgel.2013.06.018 – ident: e_1_2_5_36_1 doi: 10.1021/acsami.6b07612 – ident: e_1_2_5_46_1 doi: 10.1016/j.orgel.2013.09.036 – ident: e_1_2_5_50_1 doi: 10.1016/j.orgel.2008.01.007 – ident: e_1_2_5_34_1 doi: 10.1002/adma.201004426 – ident: e_1_2_5_4_1 doi: 10.1002/admt.201600257 – ident: e_1_2_5_30_1 doi: 10.1063/1.2359579 |
SSID | ssj0009606 |
Score | 2.6163538 |
Snippet | Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various... Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light-emitting diodes using various... Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light emitting diodes using various... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e1803980 |
SubjectTerms | 3-D printers 3D printing 3D printing functional materials Cleanrooms Diodes Electronic devices Electronic materials Extrusion Field of view Inks optical sensors Optoelectronic devices Organic light emitting diodes photodetectors Photometers photonic devices Polymers Quantum efficiency Substrates Three dimensional printing |
Title | 3D Printed Polymer Photodetectors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803980 https://www.ncbi.nlm.nih.gov/pubmed/30151842 https://www.proquest.com/docview/2114865965 https://search.proquest.com/docview/2095523806 https://pubmed.ncbi.nlm.nih.gov/PMC6988513 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL2oK134flRH6YDgqtgmaZouB8fBjTKggruSlyhoK9OZhX_vTTpTp7gQdFFoSELzurnnJM0JwDnyM2VTQSOln0nEDDeRjC2JiCKMK8aUbq5OuM_unsTw2snktKf4G32IdsHNWYafr52BS1VffouGSuN1gxIR01w40o5UwZ_hoONv1V3uL9d0m31RzplYqDbG5LKbveuVfkDNn39MLiNZ74pGW_-vxDZszmFoOGjGzQ6s2HIXNpbECfegT4fheOLkJEw4rt4-3-0kHL9U08rYqV_qr_fhcXT9cHUTzS9UiHSKdhkliJbQHVt08blESm2UfU4yYXUqE02YVcJKQTQGKcN45FZJmiFGio3QMdeSHsBaWZX2CEKlM24yi-CRW5YkmaJ5zDJJZKLwoTqAi0WDFh-NbkbRKCSTwlW6aCsdQG_R3sXcfuqCOJrG05ynAfTbaBz5bjtDlraaYRqnnoeII-YBHDbd034Kp60UuSsJIOt0XJvAqWp3Y8rXF6-uzXOBKJQGQHzH_VL6YjC8HbSh479kOoF19-4Wqonowdp0MrOnsFqb2ZkfzV8ALvMc |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58HNSD70d9dkHwVGyTNE2Pi-uy4ioLruCt5CUK2so-Dv57J-1u3cWDIB56SCehTTLT-WbSfAE4x_hM2VjQQOlnEjDDTSBDSwKiCOOKMaWroxMekvsn0bp2NDnN6V6Yih-iTrg5yyi_187AXUL68ps1VJqSOCgSIU0FRu3LjKM2ul0ctPfNu8vL4zXdcl-QonzK2xiSy_n2837pB9j8-c_kLJYtnVF74x-6sQnrEyTqNyvV2YIFm2_D2gw_4Q40aMvvDRyjhPF7xdvnux34vZdiVBg7KrP9w114bF_3rzrB5EyFQMdomkGEgAk9skUvn0qMqo2yz1EirI5lpAmzSlgpiMYiZSjH8CqKE4RJoRE65FrSPVjKi9wegK90wk1iET9yy6IoUTQNWSKJjBReVHtwMR3R7KOizsgqkmSSuU5ndac9OJ4OeDYxoWFGXKTG45THHjRqMSq_W9GQuS3GWMcR6CHoCLkH-9X81I_CL1eM4SvxIJmbubqCI9ael-SvLyXBNk8FAlHqASln7pe3z5qtu2ZdOvxLozNY6fTvuln35v72CFbdfZe3JuIYlkaDsT2BxaEZn5aq_QVpHvdE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8QwFMcfLiB6cF_qWkHwVGyTNE2Pg-OgqENBBW8l26Cgrcxy8Nv70s7UGTwIeughTUKb5SX_l7S_AJyhf6ZsLGigdI8EzHATyNCSgCjCuGJM6frohIek-yzaVw6T0_zFX_MhmgU3ZxnVeO0M_MP0Lr6hodJU3KBIhDQV6LQvMtTijp5PafaN3eXV6Zputy9IORMTbGNILmbzz05LP7Tmz08mp6VsNRd11v5finVYHetQv1V3nA2Ys8UmrEzRCbfglLb9rO94EsbPyrfPd9v3s5dyWBo7rNb6B9vw1Ll6vLwOxicqBDpGwwwilEs4H1uc41OJPrVRthclwupYRpowq4SVgmgMUobx6FxFcYIiKTRCh1xLugMLRVnYPfCVTrhJLKpHblkUJYqmIUskkZHCi2oPzicVmn_U4Iy8RiST3BU6bwrtweGkvvOxAQ1y4vw0Hqc89uC0icau7_YzZGHLEaZx-DyUHCH3YLdunuZROG7F6LwSD5KZhmsSOKz2bEzx-lLhtXkqUIZSD0jVcL-8fd5q37ea0P5fMp3AUtbu5Hc33dsDWHa33aI1EYewMOyP7BHMD8zouOrYX2Uy9eo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printed+Polymer+Photodetectors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Park%2C+Sung+Hyun&rft.au=Su%2C+Ruitao&rft.au=Jeong%2C+Jaewoo&rft.au=Guo%2C+Shuang%E2%80%90Zhuang&rft.date=2018-08-28&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201803980&rft.externalDBID=10.1002%252Fadma.201803980&rft.externalDocID=ADMA201803980 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |