3D Printed Polymer Photodetectors

Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fu...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 30; no. 40; pp. e1803980 - n/a
Main Authors: Park, Sung Hyun, Su, Ruitao, Jeong, Jaewoo, Guo, Shuang‐Zhuang, Qiu, Kaiyan, Joung, Daeha, Meng, Fanben, McAlpine, Michael C.
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 28-08-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices. Fully 3D‐printed polymer photodetectors are demonstrated on flexible substrates and hemispherical surfaces to integrate multidimensional image sensing arrays with high sensitivity and wide field of view. 3D printing multifunctional optoelectronic devices on a single platform is possible from a one‐pot, custom‐built extrusion‐based 3D manufacturing system. This work opens the possibility of the “off‐grid” printing of next‐generation wearable optoelectronic devices.
AbstractList Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer-based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one-pot custom built 3D printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next-generation wearable and 3D structured optoelectronics, and validating the potential of 3D printing to achieve high performance integrated active electronic materials and devices. Fully 3D printed polymer photodetectors are demonstrated on flexible substrates and hemispherical surfaces to integrate multidimensional image sensing arrays with high sensitivity and wide field of view. 3D printing multifunctional optoelectronic devices on a single platform is possible from a one-pot, custom built extrusion-based 3D manufacturing system. This work opens the possibility of the “off-grid” printing of next-generation wearable optoelectronic devices.
Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light-emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer-based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one-pot custom built 3D-printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light-emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D-printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next-generation wearable and 3D-structured optoelectronics, and validating the potential of 3D printing to achieve high-performance integrated active electronic materials and devices.
Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices. Fully 3D‐printed polymer photodetectors are demonstrated on flexible substrates and hemispherical surfaces to integrate multidimensional image sensing arrays with high sensitivity and wide field of view. 3D printing multifunctional optoelectronic devices on a single platform is possible from a one‐pot, custom‐built extrusion‐based 3D manufacturing system. This work opens the possibility of the “off‐grid” printing of next‐generation wearable optoelectronic devices.
Author Park, Sung Hyun
Su, Ruitao
Guo, Shuang‐Zhuang
Meng, Fanben
McAlpine, Michael C.
Jeong, Jaewoo
Qiu, Kaiyan
Joung, Daeha
Author_xml – sequence: 1
  givenname: Sung Hyun
  surname: Park
  fullname: Park, Sung Hyun
  organization: University of Minnesota
– sequence: 2
  givenname: Ruitao
  orcidid: 0000-0002-6716-7046
  surname: Su
  fullname: Su, Ruitao
  organization: University of Minnesota
– sequence: 3
  givenname: Jaewoo
  surname: Jeong
  fullname: Jeong, Jaewoo
  organization: University of Minnesota
– sequence: 4
  givenname: Shuang‐Zhuang
  surname: Guo
  fullname: Guo, Shuang‐Zhuang
  organization: University of Minnesota
– sequence: 5
  givenname: Kaiyan
  surname: Qiu
  fullname: Qiu, Kaiyan
  organization: University of Minnesota
– sequence: 6
  givenname: Daeha
  surname: Joung
  fullname: Joung, Daeha
  organization: University of Minnesota
– sequence: 7
  givenname: Fanben
  surname: Meng
  fullname: Meng, Fanben
  organization: University of Minnesota
– sequence: 8
  givenname: Michael C.
  surname: McAlpine
  fullname: McAlpine, Michael C.
  email: mcalpine@umn.edu
  organization: University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30151842$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PIzEQQK0TCAJHeyUKoqHZMGOvHbtBiviWOJHiqC3HO4FFu2uwN6D8e4wC4Y7mKsua5yfP22EbXeiIsV8IIwTgx65q3YgDahBGww82QMmxKMHIDTYAI2RhVKm32U5KjwBgFKgtti0AJeqSD9iBOBtOY931VA2noVm2FIfTh9CHinryfYjpJ9ucuybR3se5y-4uzv-cXhU3t5fXp5Obwks9hgJLqRSWxI0wjma8mtEcx5q8dOh5STNNTnOfr6LMc4UG5ZhLgEp7UN6JXXay8j4tZi1Vnro-usY-xbp1cWmDq-2_k65-sPfhxSqjtUSRBUcfghieF5R629bJU9O4jsIiWZ6jSC40qIwefkMfwyJ2eT3LEUutpFEyU6MV5WNIKdJ8_RkE-17fvte36_r5wf7fK6zxz9wZMCvgtW5o-R-dnZz9nnzJ3wD8AZGj
CitedBy_id crossref_primary_10_1002_adma_202104390
crossref_primary_10_1021_acsami_3c04121
crossref_primary_10_1002_smll_202202639
crossref_primary_10_1002_adma_201903182
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1360_SSV_2021_0084
crossref_primary_10_1016_j_pmatsci_2022_101020
crossref_primary_10_1088_1361_665X_aca370
crossref_primary_10_1021_acs_chemrev_1c00639
crossref_primary_10_1002_jbm_a_36979
crossref_primary_10_1142_S0217984924503007
crossref_primary_10_1002_adom_202000370
crossref_primary_10_1021_acsami_1c24235
crossref_primary_10_1002_adom_202102163
crossref_primary_10_1021_acsanm_9b01763
crossref_primary_10_1126_sciadv_abl8798
crossref_primary_10_3390_micro4020016
crossref_primary_10_1016_j_compstruct_2024_118038
crossref_primary_10_1073_pnas_2204852119
crossref_primary_10_1088_2058_8585_abf986
crossref_primary_10_1016_j_mattod_2023_06_019
crossref_primary_10_1002_admt_202201026
crossref_primary_10_1016_j_addma_2022_103094
crossref_primary_10_1021_acsanm_3c01814
crossref_primary_10_1038_s41596_022_00792_6
crossref_primary_10_1007_s12274_022_5053_4
crossref_primary_10_3390_met12111874
crossref_primary_10_1515_epoly_2021_0061
crossref_primary_10_1002_adfm_202211548
crossref_primary_10_3390_ma14164521
crossref_primary_10_1002_admt_202200827
crossref_primary_10_1021_acs_jpclett_1c03090
crossref_primary_10_1042_EBC20200131
crossref_primary_10_1016_j_cej_2020_124503
crossref_primary_10_1002_macp_201900474
crossref_primary_10_1002_adsr_202300013
crossref_primary_10_1002_aisy_202100071
crossref_primary_10_1126_sciadv_aba5575
crossref_primary_10_1002_sstr_202200159
crossref_primary_10_1002_adfm_201906237
crossref_primary_10_1021_acsnano_2c08731
crossref_primary_10_1007_s11709_021_0794_9
crossref_primary_10_1039_D0TC01112F
crossref_primary_10_1016_j_bios_2019_111966
crossref_primary_10_1016_j_dsp_2021_103145
crossref_primary_10_1016_j_jmrt_2022_01_159
crossref_primary_10_3390_jmmp6010004
crossref_primary_10_1021_acssensors_9b02544
crossref_primary_10_1016_j_apmt_2022_101509
crossref_primary_10_14775_ksmpe_2024_23_05_084
crossref_primary_10_1089_3dp_2022_0386
crossref_primary_10_1002_adma_201904073
crossref_primary_10_1002_adsr_202200066
crossref_primary_10_1126_sciadv_adg5152
crossref_primary_10_1002_adfm_201907549
crossref_primary_10_1038_s41598_020_75556_x
crossref_primary_10_1088_1361_6528_abf3ee
crossref_primary_10_1126_sciadv_abm6922
crossref_primary_10_1002_inf2_12010
crossref_primary_10_1016_j_jsamd_2023_100565
crossref_primary_10_1021_acsmaterialsau_2c00026
crossref_primary_10_1002_adfm_201907384
crossref_primary_10_1515_nanoph_2020_0161
crossref_primary_10_1002_adma_202004456
crossref_primary_10_1002_smll_201907691
crossref_primary_10_15388_Amed_2021_28_1_7
crossref_primary_10_1021_acsnano_0c04075
crossref_primary_10_1002_advs_202201275
crossref_primary_10_1002_adfm_202213312
crossref_primary_10_1021_acsapm_1c00252
crossref_primary_10_1126_sciadv_abc9846
crossref_primary_10_1002_adma_201808138
crossref_primary_10_1002_admt_202200492
crossref_primary_10_1063_10_0006866
crossref_primary_10_1021_acs_chemrev_1c00303
crossref_primary_10_1016_j_ijpharm_2022_122094
crossref_primary_10_1002_admt_202100144
crossref_primary_10_1021_acsapm_1c00889
crossref_primary_10_1038_s41578_020_00235_2
crossref_primary_10_1021_acsmaterialslett_0c00176
crossref_primary_10_1002_adma_202002541
crossref_primary_10_1016_j_synthmet_2019_116137
crossref_primary_10_1016_j_rineng_2023_101318
crossref_primary_10_1038_s41528_022_00134_2
crossref_primary_10_1039_D2CC05281D
crossref_primary_10_1002_admt_201900592
crossref_primary_10_1016_j_progpolymsci_2023_101711
crossref_primary_10_1039_D1NA00659B
crossref_primary_10_1016_j_addma_2021_102199
crossref_primary_10_1016_j_matpr_2023_07_239
crossref_primary_10_1002_advs_201901603
crossref_primary_10_1002_advs_202001379
crossref_primary_10_1016_j_coche_2020_03_004
crossref_primary_10_1002_adfm_202100136
crossref_primary_10_1515_nanoph_2019_0483
crossref_primary_10_1002_adma_201907280
crossref_primary_10_1038_s41467_022_30427_z
crossref_primary_10_3390_polym14214635
crossref_primary_10_1088_2631_7990_ab0fa5
crossref_primary_10_1002_aisy_202100167
crossref_primary_10_1002_adfm_201906040
crossref_primary_10_1016_j_sna_2024_115267
crossref_primary_10_1016_j_survophthal_2022_01_004
crossref_primary_10_1002_adom_202400059
Cites_doi 10.1039/b607016g
10.1002/adma.201605198
10.1021/acsami.6b04235
10.1007/BF02403106
10.1021/nl5033292
10.1002/adma.201400334
10.1038/s41467-017-01926-1
10.1021/nl4007744
10.1038/nmat1500
10.1146/annurev-anchem-061417-125935
10.1038/ncomms6745
10.1002/adma.201003734
10.1021/ma900817t
10.1021/nl2001692
10.1002/adma.201703817
10.1126/science.270.5243.1789
10.1038/376498a0
10.1038/nature12083
10.1039/C7NR00250E
10.1002/anie.200703642
10.1063/1.120332
10.1088/1361-6528/aa57ae
10.1002/adma.201301036
10.1016/S1369-7021(06)71446-8
10.1002/adma.201701218
10.1016/j.orgel.2010.07.023
10.1063/1.114370
10.1038/natrevmats.2017.19
10.1016/j.elecom.2014.01.013
10.1021/acsami.8b03824
10.1038/s41467-017-01824-6
10.1038/srep09949
10.1364/OE.25.013010
10.1063/1.359792
10.1016/j.orgel.2011.06.021
10.1002/smll.201603217
10.1002/adfm.200902247
10.1002/adfm.201404559
10.1126/science.1176706
10.1002/adma.201706383
10.1002/adfm.200400073
10.1002/admt.201700235
10.1038/nphoton.2012.11
10.1002/adom.201600466
10.1126/sciadv.aat2390
10.1209/0295-5075/84/58002
10.1002/adfm.201707311
10.1038/nphoton.2013.188
10.1021/acs.nanolett.5b04965
10.1002/adma.201707495
10.1016/j.eml.2018.02.002
10.1002/adma.201502267
10.1108/13552541211212113
10.1016/j.orgel.2013.06.018
10.1021/acsami.6b07612
10.1016/j.orgel.2013.09.036
10.1016/j.orgel.2008.01.007
10.1002/adma.201004426
10.1002/admt.201600257
10.1063/1.2359579
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.201803980
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201803980
30151842
ADMA201803980
Genre article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 1DP2EB020537
– fundername: National Science Foundation
  funderid: ECCS‐1542202
– fundername: NIBIB NIH HHS
  grantid: DP2 EB020537
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
NPM
.Y3
31~
6TJ
8WZ
A6W
AAMNL
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c5870-1456614e2939aeb2dbef178ec5a1c24eb8ea82cc5a34aeb6191572500d8c06ca3
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Tue Sep 17 21:14:09 EDT 2024
Fri Aug 16 10:04:06 EDT 2024
Tue Nov 19 04:40:10 EST 2024
Thu Nov 21 21:08:55 EST 2024
Sat Nov 02 12:25:21 EDT 2024
Sat Aug 24 00:49:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords photodetectors
3D printing functional materials
optical sensors
3D printing
photonic devices
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5870-1456614e2939aeb2dbef178ec5a1c24eb8ea82cc5a34aeb6191572500d8c06ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6716-7046
OpenAccessLink https://europepmc.org/articles/pmc6988513?pdf=render
PMID 30151842
PQID 2114865965
PQPubID 2045203
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988513
proquest_miscellaneous_2095523806
proquest_journals_2114865965
crossref_primary_10_1002_adma_201803980
pubmed_primary_30151842
wiley_primary_10_1002_adma_201803980_ADMA201803980
PublicationCentury 2000
PublicationDate 20180828
PublicationDateYYYYMMDD 2018-08-28
PublicationDate_xml – month: 8
  year: 2018
  text: 20180828
  day: 28
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2017; 8
2013; 25
2017; 2
2009; 42
1995; 78
2008; 9
2014; 26
2011; 11
2012; 18
2011; 12
1995; 376
2013; 7
2017; 9
2010; 20
2018; 3
2014; 5
2013; 14
2018; 4
2013; 13
1995; 67
2014; 14
2018; 30
2011; 23
1984; 19
2009; 325
2018; 28
2015; 5
2017; 25
2017; 28
2006; 9
2006; 8
2017; 29
2014; 41
2016; 16
2018; 21
1995; 270
2016; 4
2015; 25
2015; 27
1997; 71
2006; 89
2017; 13
2013; 497
2008; 47
2005; 4
2005; 15
2012; 6
2018; 11
2008; 84
2018; 10
2016; 8
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 9
  start-page: 8580
  year: 2017
  publication-title: Nanoscale
– volume: 13
  start-page: 1603217
  year: 2017
  publication-title: Small
– volume: 28
  start-page: 1707311
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: eaat2390
  year: 2018
  publication-title: Sci. Adv.
– volume: 497
  start-page: 95
  year: 2013
  publication-title: Nature
– volume: 25
  start-page: 13010
  year: 2017
  publication-title: Opt. Express
– volume: 8
  start-page: 23212
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 2484
  year: 2013
  publication-title: Org. Electron.
– volume: 78
  start-page: 4510
  year: 1995
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 1782
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1703817
  year: 2017
  publication-title: Adv. Mater.
– volume: 42
  start-page: 7396
  year: 2009
  publication-title: Macromolecules
– volume: 8
  start-page: 1664
  year: 2017
  publication-title: Nat. Commun.
– volume: 28
  start-page: 095204
  year: 2017
  publication-title: Nanotechnology
– volume: 11
  start-page: 1779
  year: 2010
  publication-title: Org. Electron.
– volume: 26
  start-page: 6307
  year: 2014
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3206
  year: 2013
  publication-title: Org. Electron.
– volume: 25
  start-page: 2237
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 6496
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 369
  year: 2008
  publication-title: Org. Electron.
– volume: 84
  start-page: 58002
  year: 2008
  publication-title: EPL
– volume: 14
  start-page: 7017
  year: 2014
  publication-title: Nano Lett.
– volume: 41
  start-page: 20
  year: 2014
  publication-title: Electrochem. Commun.
– volume: 18
  start-page: 129
  year: 2012
  publication-title: Rapid Prototyping J.
– volume: 2
  start-page: 17019
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 29
  start-page: 1605198
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 38
  year: 2006
  publication-title: Mater. Today
– volume: 29
  start-page: 1701218
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 12369
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 12937
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 1
  year: 2018
  publication-title: Extreme Mech. Lett.
– volume: 11
  start-page: 287
  year: 2018
  publication-title: Annu. Rev. Anal. Chem.
– volume: 30
  start-page: 1706383
  year: 2018
  publication-title: Adv. Mater.
– volume: 325
  start-page: 1665
  year: 2009
  publication-title: Science
– volume: 13
  start-page: 2634
  year: 2013
  publication-title: Nano Lett.
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 7
  start-page: 811
  year: 2013
  publication-title: Nat. Photonics
– volume: 47
  start-page: 142
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 9949
  year: 2015
  publication-title: Sci. Rep.
– volume: 30
  start-page: 1707495
  year: 2018
  publication-title: Adv. Mater.
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 4
  start-page: 1915
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 23
  start-page: 1771
  year: 2011
  publication-title: Adv. Mater.
– volume: 23
  start-page: 1335
  year: 2011
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1952
  year: 2011
  publication-title: Nano Lett.
– volume: 89
  start-page: 143517
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 1669
  year: 2011
  publication-title: Org. Electron.
– volume: 20
  start-page: 1458
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 5745
  year: 2014
  publication-title: Nat. Commun.
– volume: 376
  start-page: 498
  year: 1995
  publication-title: Nature
– volume: 25
  start-page: 4539
  year: 2013
  publication-title: Adv. Mater.
– volume: 15
  start-page: 290
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 864
  year: 2005
  publication-title: Nat. Mater.
– volume: 16
  start-page: 3448
  year: 2016
  publication-title: Nano Lett.
– volume: 8
  start-page: 3904
  year: 2006
  publication-title: Phys. Chem. Chem. Phys.
– volume: 71
  start-page: 3344
  year: 1997
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 1
  year: 1984
  publication-title: J. Mater. Sci.
– volume: 67
  start-page: 1899
  year: 1995
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 1600257
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 3
  start-page: 1700235
  year: 2018
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_5_53_1
  doi: 10.1039/b607016g
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201605198
– ident: e_1_2_5_20_1
  doi: 10.1021/acsami.6b04235
– ident: e_1_2_5_42_1
  doi: 10.1007/BF02403106
– ident: e_1_2_5_23_1
  doi: 10.1021/nl5033292
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.201400334
– ident: e_1_2_5_26_1
  doi: 10.1038/s41467-017-01926-1
– ident: e_1_2_5_10_1
  doi: 10.1021/nl4007744
– ident: e_1_2_5_41_1
  doi: 10.1038/nmat1500
– ident: e_1_2_5_12_1
  doi: 10.1146/annurev-anchem-061417-125935
– ident: e_1_2_5_60_1
  doi: 10.1038/ncomms6745
– ident: e_1_2_5_7_1
  doi: 10.1002/adma.201003734
– ident: e_1_2_5_49_1
  doi: 10.1021/ma900817t
– ident: e_1_2_5_35_1
  doi: 10.1021/nl2001692
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201703817
– ident: e_1_2_5_37_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_5_39_1
  doi: 10.1038/376498a0
– ident: e_1_2_5_24_1
  doi: 10.1038/nature12083
– ident: e_1_2_5_58_1
  doi: 10.1039/C7NR00250E
– ident: e_1_2_5_31_1
  doi: 10.1002/anie.200703642
– ident: e_1_2_5_43_1
  doi: 10.1063/1.120332
– ident: e_1_2_5_57_1
  doi: 10.1088/1361-6528/aa57ae
– ident: e_1_2_5_2_1
  doi: 10.1002/adma.201301036
– ident: e_1_2_5_44_1
  doi: 10.1016/S1369-7021(06)71446-8
– ident: e_1_2_5_14_1
  doi: 10.1002/adma.201701218
– ident: e_1_2_5_33_1
  doi: 10.1016/j.orgel.2010.07.023
– ident: e_1_2_5_28_1
  doi: 10.1063/1.114370
– ident: e_1_2_5_22_1
  doi: 10.1038/natrevmats.2017.19
– ident: e_1_2_5_5_1
  doi: 10.1016/j.elecom.2014.01.013
– ident: e_1_2_5_56_1
  doi: 10.1021/acsami.8b03824
– ident: e_1_2_5_27_1
  doi: 10.1038/s41467-017-01824-6
– ident: e_1_2_5_48_1
  doi: 10.1038/srep09949
– ident: e_1_2_5_25_1
  doi: 10.1364/OE.25.013010
– ident: e_1_2_5_38_1
  doi: 10.1063/1.359792
– ident: e_1_2_5_54_1
  doi: 10.1016/j.orgel.2011.06.021
– ident: e_1_2_5_19_1
  doi: 10.1002/smll.201603217
– ident: e_1_2_5_45_1
  doi: 10.1002/adfm.200902247
– ident: e_1_2_5_21_1
  doi: 10.1002/adfm.201404559
– ident: e_1_2_5_52_1
  doi: 10.1126/science.1176706
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.201706383
– ident: e_1_2_5_29_1
  doi: 10.1002/adfm.200400073
– ident: e_1_2_5_11_1
  doi: 10.1002/admt.201700235
– ident: e_1_2_5_40_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_5_17_1
  doi: 10.1002/adom.201600466
– ident: e_1_2_5_18_1
  doi: 10.1126/sciadv.aat2390
– ident: e_1_2_5_32_1
  doi: 10.1209/0295-5075/84/58002
– ident: e_1_2_5_59_1
  doi: 10.1002/adfm.201707311
– ident: e_1_2_5_51_1
  doi: 10.1038/nphoton.2013.188
– ident: e_1_2_5_6_1
  doi: 10.1021/acs.nanolett.5b04965
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.201707495
– ident: e_1_2_5_8_1
  doi: 10.1016/j.eml.2018.02.002
– ident: e_1_2_5_47_1
  doi: 10.1002/adma.201502267
– ident: e_1_2_5_1_1
  doi: 10.1108/13552541211212113
– ident: e_1_2_5_55_1
  doi: 10.1016/j.orgel.2013.06.018
– ident: e_1_2_5_36_1
  doi: 10.1021/acsami.6b07612
– ident: e_1_2_5_46_1
  doi: 10.1016/j.orgel.2013.09.036
– ident: e_1_2_5_50_1
  doi: 10.1016/j.orgel.2008.01.007
– ident: e_1_2_5_34_1
  doi: 10.1002/adma.201004426
– ident: e_1_2_5_4_1
  doi: 10.1002/admt.201600257
– ident: e_1_2_5_30_1
  doi: 10.1063/1.2359579
SSID ssj0009606
Score 2.6163538
Snippet Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various...
Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light-emitting diodes using various...
Extrusion-based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light emitting diodes using various...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e1803980
SubjectTerms 3-D printers
3D printing
3D printing functional materials
Cleanrooms
Diodes
Electronic devices
Electronic materials
Extrusion
Field of view
Inks
optical sensors
Optoelectronic devices
Organic light emitting diodes
photodetectors
Photometers
photonic devices
Polymers
Quantum efficiency
Substrates
Three dimensional printing
Title 3D Printed Polymer Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803980
https://www.ncbi.nlm.nih.gov/pubmed/30151842
https://www.proquest.com/docview/2114865965
https://search.proquest.com/docview/2095523806
https://pubmed.ncbi.nlm.nih.gov/PMC6988513
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL2oK134flRH6YDgqtgmaZouB8fBjTKggruSlyhoK9OZhX_vTTpTp7gQdFFoSELzurnnJM0JwDnyM2VTQSOln0nEDDeRjC2JiCKMK8aUbq5OuM_unsTw2snktKf4G32IdsHNWYafr52BS1VffouGSuN1gxIR01w40o5UwZ_hoONv1V3uL9d0m31RzplYqDbG5LKbveuVfkDNn39MLiNZ74pGW_-vxDZszmFoOGjGzQ6s2HIXNpbECfegT4fheOLkJEw4rt4-3-0kHL9U08rYqV_qr_fhcXT9cHUTzS9UiHSKdhkliJbQHVt08blESm2UfU4yYXUqE02YVcJKQTQGKcN45FZJmiFGio3QMdeSHsBaWZX2CEKlM24yi-CRW5YkmaJ5zDJJZKLwoTqAi0WDFh-NbkbRKCSTwlW6aCsdQG_R3sXcfuqCOJrG05ynAfTbaBz5bjtDlraaYRqnnoeII-YBHDbd034Kp60UuSsJIOt0XJvAqWp3Y8rXF6-uzXOBKJQGQHzH_VL6YjC8HbSh479kOoF19-4Wqonowdp0MrOnsFqb2ZkfzV8ALvMc
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58HNSD70d9dkHwVGyTNE2Pi-uy4ioLruCt5CUK2so-Dv57J-1u3cWDIB56SCehTTLT-WbSfAE4x_hM2VjQQOlnEjDDTSBDSwKiCOOKMaWroxMekvsn0bp2NDnN6V6Yih-iTrg5yyi_187AXUL68ps1VJqSOCgSIU0FRu3LjKM2ul0ctPfNu8vL4zXdcl-QonzK2xiSy_n2837pB9j8-c_kLJYtnVF74x-6sQnrEyTqNyvV2YIFm2_D2gw_4Q40aMvvDRyjhPF7xdvnux34vZdiVBg7KrP9w114bF_3rzrB5EyFQMdomkGEgAk9skUvn0qMqo2yz1EirI5lpAmzSlgpiMYiZSjH8CqKE4RJoRE65FrSPVjKi9wegK90wk1iET9yy6IoUTQNWSKJjBReVHtwMR3R7KOizsgqkmSSuU5ndac9OJ4OeDYxoWFGXKTG45THHjRqMSq_W9GQuS3GWMcR6CHoCLkH-9X81I_CL1eM4SvxIJmbubqCI9ael-SvLyXBNk8FAlHqASln7pe3z5qtu2ZdOvxLozNY6fTvuln35v72CFbdfZe3JuIYlkaDsT2BxaEZn5aq_QVpHvdE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8QwFMcfLiB6cF_qWkHwVGyTNE2Pg-OgqENBBW8l26Cgrcxy8Nv70s7UGTwIeughTUKb5SX_l7S_AJyhf6ZsLGigdI8EzHATyNCSgCjCuGJM6frohIek-yzaVw6T0_zFX_MhmgU3ZxnVeO0M_MP0Lr6hodJU3KBIhDQV6LQvMtTijp5PafaN3eXV6Zputy9IORMTbGNILmbzz05LP7Tmz08mp6VsNRd11v5finVYHetQv1V3nA2Ys8UmrEzRCbfglLb9rO94EsbPyrfPd9v3s5dyWBo7rNb6B9vw1Ll6vLwOxicqBDpGwwwilEs4H1uc41OJPrVRthclwupYRpowq4SVgmgMUobx6FxFcYIiKTRCh1xLugMLRVnYPfCVTrhJLKpHblkUJYqmIUskkZHCi2oPzicVmn_U4Iy8RiST3BU6bwrtweGkvvOxAQ1y4vw0Hqc89uC0icau7_YzZGHLEaZx-DyUHCH3YLdunuZROG7F6LwSD5KZhmsSOKz2bEzx-lLhtXkqUIZSD0jVcL-8fd5q37ea0P5fMp3AUtbu5Hc33dsDWHa33aI1EYewMOyP7BHMD8zouOrYX2Uy9eo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printed+Polymer+Photodetectors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Park%2C+Sung+Hyun&rft.au=Su%2C+Ruitao&rft.au=Jeong%2C+Jaewoo&rft.au=Guo%2C+Shuang%E2%80%90Zhuang&rft.date=2018-08-28&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201803980&rft.externalDBID=10.1002%252Fadma.201803980&rft.externalDocID=ADMA201803980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon