Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes
Chloride intracellular channel (CLICs) proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Pon...
Saved in:
Published in: | Data in brief Vol. 7; pp. 1038 - 1044 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
01-06-2016
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chloride intracellular channel (CLICs) proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016) [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC) antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER) of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2016.03.061 |