Singular inverse Wishart distribution and its application to portfolio theory

The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is sm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis Vol. 143; pp. 314 - 326
Main Authors: Bodnar, Taras, Mazur, Stepan, Podgórski, Krzysztof
Format: Journal Article
Language:English
Published: New York Elsevier Inc 01-01-2016
Taylor & Francis LLC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are independent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean–variance portfolio weights as well as to derive its characteristic function and the moments of higher order. The results are illustrated using actual stock returns and a discussion of practical relevance of the model is presented.
AbstractList The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are independent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean-variance portfolio weights as well as to derive its characteristic function and the moments of higher order. The results are illustrated using actual stock returns and a discussion of practical relevance of the model is presented.
The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are independent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean-variance portfolio weights as well as to derive its characteristic function and the moments of higher order. The results are illustrated using actual stock returns and a discussion of practical relevance of the model is presented. 
The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this problem, the distribution of the linear transformation of the inverse is needed. We obtain this distribution in the case when the sample size is smaller than the dimension, the underlying covariance matrix is singular, and the vectors of returns are independent and normally distributed. For the result, the distribution of the inverse of covariance estimate is needed and it is derived and referred to as the singular inverse Wishart distribution. We use these results to provide an explicit stochastic representation of an estimate of the mean-variance portfolio weights as well as to derive its characteristic function and the moments of higher order. The results are illustrated using actual stock returns and a discussion of practical relevance of the model is presented. [web URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002353]
Author Bodnar, Taras
Podgórski, Krzysztof
Mazur, Stepan
Author_xml – sequence: 1
  givenname: Taras
  surname: Bodnar
  fullname: Bodnar, Taras
  organization: Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden
– sequence: 2
  givenname: Stepan
  surname: Mazur
  fullname: Mazur, Stepan
  organization: Department of Statistics, Lund University, Tycho Brahe 1, SE-22007 Lund, Sweden
– sequence: 3
  givenname: Krzysztof
  orcidid: 0000-0003-0043-1532
  surname: Podgórski
  fullname: Podgórski, Krzysztof
  email: Krzysztof.Podgorski@stat.lu.se
  organization: Department of Statistics, Lund University, Tycho Brahe 1, SE-22007 Lund, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-54837$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-126185$$DView record from Swedish Publication Index
https://lup.lub.lu.se/record/8228299$$DView record from Swedish Publication Index
BookMark eNqNkUtv1TAQhS1UJG4Lf4BVJLYk2Ikd2xKbqjyli1jw3I3sZNw6SuNgOxf13-Pbi9iBWIxGGn9zND7nnJwtYUFCnjLaMMr6F1Mz3R5M01ImGqob2rIHZMeoFrVseXdGdpRyWbdCf39EzlOaKGVMSL4jHz755XqbTaz8csCYsPrm042JuRp9ytHbLfuwVGYZK59TZdZ19oO5n-VQrSFmF2YfqnyDId49Jg-dmRM--d0vyJc3rz9fvav3H9--v7rc14NQLNeOjVYMjhvX055b2TPJB9eZToxCDVYrq1sUnKHkqlNcdGjKA5M9akuxZd0F2Z90009cNwtr9Lcm3kEwHuZtLWVLQUJw0nWWaQ5aWAXcUQVa9gJG2yumOI7C0iL3_K9yr_zXSwjxGtIGrO2ZEv-Hh7iBKOfLgj874WsMPzZMGaawxaX4A-XfSmjBtS5Ue6KGGFKK6P7IMgrHjGGCY8ZwzBioBnrvw8vTEhazDx4jpMHjMuDoIw4ZxuD_tf4LQ0CyXw
CODEN JMVAAI
CitedBy_id crossref_primary_10_2139_ssrn_3238643
crossref_primary_10_1007_s10182_016_0282_z
crossref_primary_10_1007_s10614_023_10491_3
crossref_primary_10_1007_s10614_021_10157_y
crossref_primary_10_1016_j_jmva_2019_104544
crossref_primary_10_15559_22_VMSTA212
crossref_primary_10_3390_sym13060959
crossref_primary_10_1007_s42521_021_00040_8
crossref_primary_10_1007_s00362_018_1059_0
crossref_primary_10_1287_moor_2021_0068
crossref_primary_10_1007_s10614_023_10404_4
crossref_primary_10_1109_TSP_2019_2929964
crossref_primary_10_1080_02331888_2023_2174117
crossref_primary_10_3390_jrfm12010048
crossref_primary_10_1016_j_crma_2016_03_011
crossref_primary_10_1080_07350015_2021_2004897
crossref_primary_10_1080_02331888_2021_1951730
crossref_primary_10_1090_tpms_1197
crossref_primary_10_1007_s10114_024_2549_8
crossref_primary_10_1090_tpms_1193
crossref_primary_10_1007_s10614_019_09943_6
crossref_primary_10_1080_01605682_2023_2249935
crossref_primary_10_1088_1361_6560_acb8fc
crossref_primary_10_1080_00949655_2023_2294101
crossref_primary_10_1080_03610926_2020_1723634
crossref_primary_10_1080_02664763_2020_1736523
crossref_primary_10_1007_s00184_018_0663_2
crossref_primary_10_1016_j_ejor_2023_01_037
crossref_primary_10_1017_S0266466623000221
crossref_primary_10_1080_00949655_2021_1909587
crossref_primary_10_1016_j_ecosta_2018_08_003
crossref_primary_10_1007_s42081_021_00139_7
crossref_primary_10_1002_wics_1556
crossref_primary_10_1016_j_jmva_2016_02_012
crossref_primary_10_1016_j_jspi_2018_11_003
Cites_doi 10.1214/aoms/1177706112
10.1524/stnd.2008.0918
10.1007/s00184-007-0126-7
10.1214/aos/1065705118
10.1007/s00184-013-0432-1
10.1524/strm.2012.1118
10.1016/j.jmva.2008.02.024
10.1198/073500102288618487
10.1016/j.jbankfin.2006.01.002
10.1137/1008107
10.1006/jmva.1997.1689
10.1016/j.jeconom.2005.06.022
10.1016/j.jmva.2013.07.007
10.1016/j.amc.2012.11.049
10.1090/tpms/962
10.14490/jjss.37.53
10.1017/S0022109000004129
10.1016/j.jfineco.2003.05.003
10.1080/13518470802423478
10.1524/strm.2011.1080
10.1214/07-AOS522
10.1214/aoms/1177728789
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright Taylor & Francis Group Jan 2016
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright Taylor & Francis Group Jan 2016
DBID AAYXX
CITATION
JQ2
ADTPV
AOWAS
D91
DG7
D95
DOI 10.1016/j.jmva.2015.09.021
DatabaseName CrossRef
ProQuest Computer Science Collection
SwePub
SwePub Articles
SWEPUB Örebro universitet
SWEPUB Stockholms universitet
SWEPUB Lunds universitet
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList



ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7243
EndPage 326
ExternalDocumentID oai_lup_lub_lu_se_f7f3b194_95b8_4f08_9765_db68184ed5b0
oai_DiVA_org_su_126185
oai_DiVA_org_oru_54837
3894135741
10_1016_j_jmva_2015_09_021
S0047259X15002353
Genre Feature
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEFU
ABFNM
ABIVO
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UHS
WUQ
XFK
XOL
XPP
YHZ
ZGI
ZMT
ZU3
~G-
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
JQ2
ADTPV
AOWAS
D91
DG7
D95
ID FETCH-LOGICAL-c581t-f1db5cf4af6064b76174cf3a35d58cb98b92e541e74838453ead58176e9b0e213
ISSN 0047-259X
1095-7243
IngestDate Tue Oct 01 22:41:44 EDT 2024
Tue Oct 01 22:43:59 EDT 2024
Tue Oct 01 22:45:54 EDT 2024
Thu Oct 10 20:38:56 EDT 2024
Thu Sep 26 16:15:15 EDT 2024
Fri Feb 23 02:27:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mean–variance portfolio
91G10
Moore–Penrose inverse
Sample estimate of precision matrix
62H10
Singular Wishart distribution
62H12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581t-f1db5cf4af6064b76174cf3a35d58cb98b92e541e74838453ead58176e9b0e213
ORCID 0000-0003-0043-1532
OpenAccessLink https://doi.org/10.1016/j.jmva.2015.09.021
PQID 1748595499
PQPubID 27957
PageCount 13
ParticipantIDs swepub_primary_oai_lup_lub_lu_se_f7f3b194_95b8_4f08_9765_db68184ed5b0
swepub_primary_oai_DiVA_org_su_126185
swepub_primary_oai_DiVA_org_oru_54837
proquest_journals_1748595499
crossref_primary_10_1016_j_jmva_2015_09_021
elsevier_sciencedirect_doi_10_1016_j_jmva_2015_09_021
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
20160101
2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of multivariate analysis
PublicationYear 2016
Publisher Elsevier Inc
Taylor & Francis LLC
Publisher_xml – name: Elsevier Inc
– name: Taylor & Francis LLC
References Bodnar, Mazur, Okhrin (br000015) 2014; 91
Greville (br000090) 1966; 8
Kan, Zhou (br000100) 2007; 42
Pappas, Kiriakopoulos, Kaimakamis (br000130) 2010; 5
Bodnar, Okhrin (br000020) 2008; 99
Fama (br000080) 1976
Boullion, Odell (br000060) 1971
Giamouridis, Vrontos (br000085) 2007; 31
Srivastava (br000140) 2007; 37
Bodnar, Schmid, Zabolotskyy (br000055) 2013; 76
Muirhead (br000115) 1982
Drton, Massam, Olkin (br000070) 2008; 36
Khatri (br000105) 1959; 30
Engle (br000075) 2002; 20
Bodnar, Schmid, Zabolotskyy (br000050) 2012; 29
Markowitz (br000110) 1952; 7
Gupta, Nagar (br000095) 2000
Bodnar, Schmid (br000045) 2011; 28
Andrews, Askey, Roy (br000005) 2000
Díaz-García, Gutiérrez-Jáimez, Mardia (br000065) 1997; 63
Bodnar, Okhrin (br000025) 2013; 219
Bodnar, Mazur, Okhrin (br000010) 2013; 122
Bodnar, Schmid (br000035) 2008; 26
Bodnar, Schmid (br000030) 2008; 67
Okhrin, Schmid (br000120) 2006; 134
Srivastava (br000135) 2003; 31
Tu, Zhou (br000145) 2004; 72
Bodnar, Schmid (br000040) 2009; 15
Olkin, Roy (br000125) 1954; 25
Bodnar (10.1016/j.jmva.2015.09.021_br000050) 2012; 29
Bodnar (10.1016/j.jmva.2015.09.021_br000035) 2008; 26
Tu (10.1016/j.jmva.2015.09.021_br000145) 2004; 72
Andrews (10.1016/j.jmva.2015.09.021_br000005) 2000
Bodnar (10.1016/j.jmva.2015.09.021_br000045) 2011; 28
Bodnar (10.1016/j.jmva.2015.09.021_br000040) 2009; 15
Fama (10.1016/j.jmva.2015.09.021_br000080) 1976
Engle (10.1016/j.jmva.2015.09.021_br000075) 2002; 20
Srivastava (10.1016/j.jmva.2015.09.021_br000140) 2007; 37
Drton (10.1016/j.jmva.2015.09.021_br000070) 2008; 36
Greville (10.1016/j.jmva.2015.09.021_br000090) 1966; 8
Giamouridis (10.1016/j.jmva.2015.09.021_br000085) 2007; 31
Okhrin (10.1016/j.jmva.2015.09.021_br000120) 2006; 134
Kan (10.1016/j.jmva.2015.09.021_br000100) 2007; 42
Khatri (10.1016/j.jmva.2015.09.021_br000105) 1959; 30
Bodnar (10.1016/j.jmva.2015.09.021_br000020) 2008; 99
Gupta (10.1016/j.jmva.2015.09.021_br000095) 2000
Bodnar (10.1016/j.jmva.2015.09.021_br000030) 2008; 67
Bodnar (10.1016/j.jmva.2015.09.021_br000025) 2013; 219
Markowitz (10.1016/j.jmva.2015.09.021_br000110) 1952; 7
Bodnar (10.1016/j.jmva.2015.09.021_br000055) 2013; 76
Olkin (10.1016/j.jmva.2015.09.021_br000125) 1954; 25
Bodnar (10.1016/j.jmva.2015.09.021_br000015) 2014; 91
Bodnar (10.1016/j.jmva.2015.09.021_br000010) 2013; 122
Muirhead (10.1016/j.jmva.2015.09.021_br000115) 1982
Srivastava (10.1016/j.jmva.2015.09.021_br000135) 2003; 31
Díaz-García (10.1016/j.jmva.2015.09.021_br000065) 1997; 63
Boullion (10.1016/j.jmva.2015.09.021_br000060) 1971
Pappas (10.1016/j.jmva.2015.09.021_br000130) 2010; 5
References_xml – year: 1976
  ident: br000080
  article-title: Foundations of Finance
  contributor:
    fullname: Fama
– volume: 36
  start-page: 2261
  year: 2008
  end-page: 2283
  ident: br000070
  article-title: Moments of minors of Wishart matrices
  publication-title: Ann. Statist.
  contributor:
    fullname: Olkin
– volume: 8
  start-page: 518
  year: 1966
  end-page: 521
  ident: br000090
  article-title: Note on the generalized inverse of a product matrix
  publication-title: SIAM Rev.
  contributor:
    fullname: Greville
– volume: 31
  start-page: 199
  year: 2007
  end-page: 217
  ident: br000085
  article-title: Hedge fund portfolio construction: A comparison of static and dynamic approaches
  publication-title: J. Bank. Finance
  contributor:
    fullname: Vrontos
– volume: 7
  start-page: 77
  year: 1952
  end-page: 91
  ident: br000110
  article-title: Portfolio selection
  publication-title: J. Finance
  contributor:
    fullname: Markowitz
– volume: 25
  start-page: 329
  year: 1954
  end-page: 339
  ident: br000125
  article-title: On multivariate distribution theory
  publication-title: Ann. Math. Stat.
  contributor:
    fullname: Roy
– volume: 30
  start-page: 1258
  year: 1959
  end-page: 1262
  ident: br000105
  article-title: On the mutual independence of certain statistics
  publication-title: Ann. Math. Stat.
  contributor:
    fullname: Khatri
– year: 2000
  ident: br000095
  article-title: Matrix Variate Distributions
  contributor:
    fullname: Nagar
– year: 2000
  ident: br000005
  article-title: Special Functions
  contributor:
    fullname: Roy
– volume: 31
  start-page: 1537
  year: 2003
  end-page: 1560
  ident: br000135
  article-title: Singular wishart and multivariate beta distributions
  publication-title: Ann. Statist.
  contributor:
    fullname: Srivastava
– volume: 219
  start-page: 5440
  year: 2013
  end-page: 5448
  ident: br000025
  article-title: Boundaries of the risk aversion coefficient: Should we invest in the global minimum variance portfolio?
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Okhrin
– volume: 72
  start-page: 385
  year: 2004
  end-page: 421
  ident: br000145
  article-title: Data-generating process uncertainty: what difference does it make in portfolio decisions?
  publication-title: J. Financial Econ.
  contributor:
    fullname: Zhou
– volume: 99
  start-page: 2389
  year: 2008
  end-page: 2405
  ident: br000020
  article-title: Properties of the singular, inverse and generalized inverse partitioned Wishart distributions
  publication-title: J. Multivariate Anal.
  contributor:
    fullname: Okhrin
– volume: 29
  start-page: 281
  year: 2012
  end-page: 314
  ident: br000050
  article-title: Minimum var and minimum cvar optimal portfolios: estimators, confidence regions, and tests
  publication-title: Stat. Risk Model.
  contributor:
    fullname: Zabolotskyy
– volume: 134
  start-page: 235
  year: 2006
  end-page: 256
  ident: br000120
  article-title: Distributional properties of portfolio weights
  publication-title: J. Econometrics
  contributor:
    fullname: Schmid
– volume: 37
  start-page: 53
  year: 2007
  end-page: 86
  ident: br000140
  article-title: Multivariate theory for analyzing high dimensional data
  publication-title: J. Japan Statist. Soc.
  contributor:
    fullname: Srivastava
– volume: 63
  start-page: 73
  year: 1997
  end-page: 87
  ident: br000065
  article-title: Wishart and pseudo-Wishart distributions and some applications to shape theory
  publication-title: J. Multivariate Anal.
  contributor:
    fullname: Mardia
– volume: 26
  start-page: 179
  year: 2008
  end-page: 201
  ident: br000035
  article-title: Estimation of optimal portfolio compositions for gaussian returns
  publication-title: Statist. Decisions
  contributor:
    fullname: Schmid
– volume: 67
  start-page: 127
  year: 2008
  end-page: 143
  ident: br000030
  article-title: A test for the weights of the global minimum variance portfolio in an elliptical model
  publication-title: Metrika
  contributor:
    fullname: Schmid
– volume: 42
  start-page: 621
  year: 2007
  end-page: 656
  ident: br000100
  article-title: Optimal portfolio choice with parameter uncertainty
  publication-title: J. Financial Quant. Anal.
  contributor:
    fullname: Zhou
– volume: 122
  start-page: 70
  year: 2013
  end-page: 81
  ident: br000010
  article-title: On exact and approximate distributions of the product of the Wishart matrix and normal vector
  publication-title: J. Multivariate Anal.
  contributor:
    fullname: Okhrin
– volume: 76
  start-page: 1105
  year: 2013
  end-page: 1134
  ident: br000055
  article-title: Asymptotic behavior of the estimated weights and characteristics of the minimum var and the minimum cvar optimal portfolios for dependent data
  publication-title: Metrika
  contributor:
    fullname: Zabolotskyy
– year: 1982
  ident: br000115
  article-title: Aspects of Multivariate Statistical Theory
  contributor:
    fullname: Muirhead
– volume: 28
  start-page: 319
  year: 2011
  end-page: 342
  ident: br000045
  article-title: On the exact distribution of the estimated expected utility portfolio weights: Theory and applications
  publication-title: Stat. Risk Model.
  contributor:
    fullname: Schmid
– volume: 15
  start-page: 317
  year: 2009
  end-page: 335
  ident: br000040
  article-title: Econometrical analysis of the sample efficient frontier
  publication-title: Eur. J. Finance
  contributor:
    fullname: Schmid
– volume: 91
  start-page: 1
  year: 2014
  end-page: 15
  ident: br000015
  article-title: Distribution of the product of singular Wishart Matrix and normal vector
  publication-title: Theory Probab. Math. Statist.
  contributor:
    fullname: Okhrin
– volume: 5
  start-page: 2305
  year: 2010
  end-page: 2318
  ident: br000130
  article-title: Optimal portfolio selection with singular covariance matrix
  publication-title: Int. Math. Forum
  contributor:
    fullname: Kaimakamis
– year: 1971
  ident: br000060
  article-title: Generalized Inverse Matrices
  contributor:
    fullname: Odell
– volume: 20
  start-page: 339
  year: 2002
  end-page: 350
  ident: br000075
  article-title: Dynamic conditional correlation: A simple class of multivariate GARCH models
  publication-title: J. Bus. Econom. Statist.
  contributor:
    fullname: Engle
– volume: 30
  start-page: 1258
  year: 1959
  ident: 10.1016/j.jmva.2015.09.021_br000105
  article-title: On the mutual independence of certain statistics
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177706112
  contributor:
    fullname: Khatri
– volume: 26
  start-page: 179
  year: 2008
  ident: 10.1016/j.jmva.2015.09.021_br000035
  article-title: Estimation of optimal portfolio compositions for gaussian returns
  publication-title: Statist. Decisions
  doi: 10.1524/stnd.2008.0918
  contributor:
    fullname: Bodnar
– volume: 67
  start-page: 127
  issue: 2
  year: 2008
  ident: 10.1016/j.jmva.2015.09.021_br000030
  article-title: A test for the weights of the global minimum variance portfolio in an elliptical model
  publication-title: Metrika
  doi: 10.1007/s00184-007-0126-7
  contributor:
    fullname: Bodnar
– volume: 5
  start-page: 2305
  issue: 47
  year: 2010
  ident: 10.1016/j.jmva.2015.09.021_br000130
  article-title: Optimal portfolio selection with singular covariance matrix
  publication-title: Int. Math. Forum
  contributor:
    fullname: Pappas
– volume: 31
  start-page: 1537
  year: 2003
  ident: 10.1016/j.jmva.2015.09.021_br000135
  article-title: Singular wishart and multivariate beta distributions
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1065705118
  contributor:
    fullname: Srivastava
– volume: 76
  start-page: 1105
  year: 2013
  ident: 10.1016/j.jmva.2015.09.021_br000055
  article-title: Asymptotic behavior of the estimated weights and characteristics of the minimum var and the minimum cvar optimal portfolios for dependent data
  publication-title: Metrika
  doi: 10.1007/s00184-013-0432-1
  contributor:
    fullname: Bodnar
– volume: 29
  start-page: 281
  year: 2012
  ident: 10.1016/j.jmva.2015.09.021_br000050
  article-title: Minimum var and minimum cvar optimal portfolios: estimators, confidence regions, and tests
  publication-title: Stat. Risk Model.
  doi: 10.1524/strm.2012.1118
  contributor:
    fullname: Bodnar
– volume: 99
  start-page: 2389
  year: 2008
  ident: 10.1016/j.jmva.2015.09.021_br000020
  article-title: Properties of the singular, inverse and generalized inverse partitioned Wishart distributions
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2008.02.024
  contributor:
    fullname: Bodnar
– year: 1982
  ident: 10.1016/j.jmva.2015.09.021_br000115
  contributor:
    fullname: Muirhead
– volume: 20
  start-page: 339
  year: 2002
  ident: 10.1016/j.jmva.2015.09.021_br000075
  article-title: Dynamic conditional correlation: A simple class of multivariate GARCH models
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1198/073500102288618487
  contributor:
    fullname: Engle
– volume: 31
  start-page: 199
  issue: 1
  year: 2007
  ident: 10.1016/j.jmva.2015.09.021_br000085
  article-title: Hedge fund portfolio construction: A comparison of static and dynamic approaches
  publication-title: J. Bank. Finance
  doi: 10.1016/j.jbankfin.2006.01.002
  contributor:
    fullname: Giamouridis
– volume: 8
  start-page: 518
  issue: 4
  year: 1966
  ident: 10.1016/j.jmva.2015.09.021_br000090
  article-title: Note on the generalized inverse of a product matrix
  publication-title: SIAM Rev.
  doi: 10.1137/1008107
  contributor:
    fullname: Greville
– volume: 63
  start-page: 73
  year: 1997
  ident: 10.1016/j.jmva.2015.09.021_br000065
  article-title: Wishart and pseudo-Wishart distributions and some applications to shape theory
  publication-title: J. Multivariate Anal.
  doi: 10.1006/jmva.1997.1689
  contributor:
    fullname: Díaz-García
– volume: 134
  start-page: 235
  year: 2006
  ident: 10.1016/j.jmva.2015.09.021_br000120
  article-title: Distributional properties of portfolio weights
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2005.06.022
  contributor:
    fullname: Okhrin
– volume: 122
  start-page: 70
  year: 2013
  ident: 10.1016/j.jmva.2015.09.021_br000010
  article-title: On exact and approximate distributions of the product of the Wishart matrix and normal vector
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.07.007
  contributor:
    fullname: Bodnar
– year: 2000
  ident: 10.1016/j.jmva.2015.09.021_br000005
  contributor:
    fullname: Andrews
– volume: 219
  start-page: 5440
  year: 2013
  ident: 10.1016/j.jmva.2015.09.021_br000025
  article-title: Boundaries of the risk aversion coefficient: Should we invest in the global minimum variance portfolio?
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.11.049
  contributor:
    fullname: Bodnar
– year: 2000
  ident: 10.1016/j.jmva.2015.09.021_br000095
  contributor:
    fullname: Gupta
– volume: 91
  start-page: 1
  year: 2014
  ident: 10.1016/j.jmva.2015.09.021_br000015
  article-title: Distribution of the product of singular Wishart Matrix and normal vector
  publication-title: Theory Probab. Math. Statist.
  doi: 10.1090/tpms/962
  contributor:
    fullname: Bodnar
– year: 1971
  ident: 10.1016/j.jmva.2015.09.021_br000060
  contributor:
    fullname: Boullion
– volume: 37
  start-page: 53
  issue: 1
  year: 2007
  ident: 10.1016/j.jmva.2015.09.021_br000140
  article-title: Multivariate theory for analyzing high dimensional data
  publication-title: J. Japan Statist. Soc.
  doi: 10.14490/jjss.37.53
  contributor:
    fullname: Srivastava
– volume: 42
  start-page: 621
  year: 2007
  ident: 10.1016/j.jmva.2015.09.021_br000100
  article-title: Optimal portfolio choice with parameter uncertainty
  publication-title: J. Financial Quant. Anal.
  doi: 10.1017/S0022109000004129
  contributor:
    fullname: Kan
– volume: 72
  start-page: 385
  year: 2004
  ident: 10.1016/j.jmva.2015.09.021_br000145
  article-title: Data-generating process uncertainty: what difference does it make in portfolio decisions?
  publication-title: J. Financial Econ.
  doi: 10.1016/j.jfineco.2003.05.003
  contributor:
    fullname: Tu
– volume: 15
  start-page: 317
  year: 2009
  ident: 10.1016/j.jmva.2015.09.021_br000040
  article-title: Econometrical analysis of the sample efficient frontier
  publication-title: Eur. J. Finance
  doi: 10.1080/13518470802423478
  contributor:
    fullname: Bodnar
– volume: 28
  start-page: 319
  year: 2011
  ident: 10.1016/j.jmva.2015.09.021_br000045
  article-title: On the exact distribution of the estimated expected utility portfolio weights: Theory and applications
  publication-title: Stat. Risk Model.
  doi: 10.1524/strm.2011.1080
  contributor:
    fullname: Bodnar
– year: 1976
  ident: 10.1016/j.jmva.2015.09.021_br000080
  contributor:
    fullname: Fama
– volume: 7
  start-page: 77
  year: 1952
  ident: 10.1016/j.jmva.2015.09.021_br000110
  article-title: Portfolio selection
  publication-title: J. Finance
  contributor:
    fullname: Markowitz
– volume: 36
  start-page: 2261
  year: 2008
  ident: 10.1016/j.jmva.2015.09.021_br000070
  article-title: Moments of minors of Wishart matrices
  publication-title: Ann. Statist.
  doi: 10.1214/07-AOS522
  contributor:
    fullname: Drton
– volume: 25
  start-page: 329
  year: 1954
  ident: 10.1016/j.jmva.2015.09.021_br000125
  article-title: On multivariate distribution theory
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728789
  contributor:
    fullname: Olkin
SSID ssj0011574
Score 2.3422866
Snippet The inverse of the standard estimate of covariance matrix is frequently used in the portfolio theory to estimate the optimal portfolio weights. For this...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 314
SubjectTerms Inverse problems
Matematik
matematisk statistik
Mathematical Statistics
Mathematics
Mean-variance portfolio
Moore-Penrose inverse
Natural Sciences
Naturvetenskap
Portfolio performance
Probability distribution
Probability Theory and Statistics
Rates of return
Sample estimate of precision matrix
Sannolikhetsteori och statistik
Singular Wishart distribution
Stochastic models
Studies
Title Singular inverse Wishart distribution and its application to portfolio theory
URI https://dx.doi.org/10.1016/j.jmva.2015.09.021
https://www.proquest.com/docview/1748595499
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-54837
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-126185
https://lup.lub.lu.se/record/8228299
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZYd4ED4qcoDOQDnFBQUtuJcywsaICKkFbQblYc29uqkUxJM2n96_ccO1mAAuPAwVFlOYn73mfnPb_nzwi95DNqaetkkEeGgIMSkkCGtAhYQXL4nCWpKex6x8Fh8vmI72c068-7B69_qPuvmoY60LXdOfsP2h4eChXwG3QOV9A6XG-k90P4FrnU0tJmXGgY980JtLOhmOF0qyFkMIpfWyvUGuOmOjut3AbHH0K-I9O1y0K8AC8bDFV4lKM1GRz7SpUua3uZ1_lQvcg3bd3nlV1D8kuljm2w_i2p_Qnan-rNZbNZV2a8IOF2SvbTa0f70J2Nez29UjKaIInbMvrLxO3WEFZvVt8vLBtUxDr2Wbd5egsh9v7pt7mo6mMorWCWFX8H7c5grplN0O78Q3b0cQglRcxTcfu-deHv1J7hS4nfReUS_n5-9e8slbEnMmaX7SyS5T101-sDzx0G7qNbunyA7iwGHt7mIVr0aMAeDdijAY_RgAENGNCAR2jA6woPaMAODY_Q1_fZ8t1B4A_QCArGo3VgIiVZYWhuwE2lMgFrlRaG5IQpxguZcpnONKORTkCCnDIC0wrcmMQ6laGeReQxmpRVqZ8gLGNm0oSn0nJJc1XIPM7zWPFQpVGhQzVFr3thiXPHkyL6BMKVsKIVVrQiTAWIdopYL0_hLT1nwQnAwx_v2-uFL_yYawT8KUvSB677FL1yChm6sB0rf2nXWH71GAzZKcq2tDtrz6FIKKLRwiSGgFCoSJnkgpqQC7DwmVAyBluYasVk-PSG_XqGbtsB5Vb49tBkXbf6OdppVPvCo_oKo0yzQw
link.rule.ids 230,315,782,786,887,4028,27932,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+inverse+Wishart+distribution+and+its+application+to+portfolio+theory&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Bodnar%2C+Taras&rft.au=Mazur%2C+Stepan&rft.au=Podg%C3%B3rski%2C+Krzysztof&rft.date=2016&rft.issn=0047-259X&rft.volume=143&rft.spage=314&rft_id=info:doi/10.1016%2Fj.jmva.2015.09.021&rft.externalDocID=oai_DiVA_org_oru_54837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon