Nonlinearity in Genetic Decoding: Homologous DNA Replicase Genes Use Alternatives of Transcriptional Slippage or Translational Frameshifting

The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ . E. coli and T. thermophilus have evolved very different mechanisms for setting the approx...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 97; no. 4; pp. 1683 - 1688
Main Authors: Larsen, Bente, Wills, Norma M., Nelson, Chad, Atkins, John F., Gesteland, Raymond F.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences of the United States of America 15-02-2000
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ . E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ . Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈ 50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ , but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ . In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields τ . The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternative reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
AbstractList The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. Gamma is two-thirds the size of tau and shares virtually all its amino acid sequence with tau.
The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. gamma is two-thirds the size of tau and shares virtually all its amino acid sequence with tau. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between tau and gamma. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller gamma protein. In E. coli, approximately 50% of initiating ribosomes translate the dnaX mRNA conventionally to give tau, but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce gamma. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields tau. The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the gamma protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli , ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli , ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ . E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ . Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈ 50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ , but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ . In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields τ . The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternative reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.
Author Larsen, Bente
Nelson, Chad
Wills, Norma M.
Gesteland, Raymond F.
Atkins, John F.
AuthorAffiliation Department of Human Genetics, University of Utah, 15 N 2030 East Building 533, Room 7410, Salt Lake City, UT 84112-5330
AuthorAffiliation_xml – name: Department of Human Genetics, University of Utah, 15 N 2030 East Building 533, Room 7410, Salt Lake City, UT 84112-5330
Author_xml – sequence: 1
  givenname: Bente
  surname: Larsen
  fullname: Larsen, Bente
– sequence: 2
  givenname: Norma M.
  surname: Wills
  fullname: Wills, Norma M.
– sequence: 3
  givenname: Chad
  surname: Nelson
  fullname: Nelson, Chad
– sequence: 4
  givenname: John F.
  surname: Atkins
  fullname: Atkins, John F.
– sequence: 5
  givenname: Raymond F.
  surname: Gesteland
  fullname: Gesteland, Raymond F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10677518$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFKxcEijhwS7DzYceIy6qlLVJVJGjPluOdbL1y7GA7Ff0P_Gi8ZCkLBzjZ8vu8M-OZOUIH1llA6DnBBcGsejtaGQrOirogtK0eoQXBnOS05vgALTAuWd7WZX2IjkLYYIx50-In6JBgylhD2gX6fuWs0Rak1_E-0zY7BwtRq-wUlFtpu36XXbjBGbd2U8hOr5bZZxiNVjLATzRkN-m2NBG8lVHfpQfXZ9de2qC8HqN2Vprsi9HjKNeQOT9rRu6UMy8HCLe6jynXU_S4lybAs915jG7OPlyfXOSXn84_niwvc9W0JOaUQr9SmHPaKKAVh5WS0JW4owwTkH1ZyrJv2pL1FeWcqZ53bcdIB6uWEVrX1TF6P8cdp25IbrDRSyNGrwfp74WTWvypWH0r1u5OlKmxNNnf7OzefZ0gRDHooMAYaSF1STDMMWtp81-QsJq2pOIJfP0XuHFTaqgJosSkauoa4wQVM6S8C8FD_1AwwWK7DGK7DIIzUYvtMiTDq_1v7uHz9Pfq2xp_yQ8BRD-ZNNhvMYEv_wUm_cWsb0J0_neikjQVrX4AMBbWkg
CitedBy_id crossref_primary_10_1093_nar_gkm003
crossref_primary_10_1074_jbc_M110198200
crossref_primary_10_1128_MMBR_00001_08
crossref_primary_10_1016_S0378_1119_02_00423_7
crossref_primary_10_1093_nar_gkac302
crossref_primary_10_1371_journal_pgen_1003595
crossref_primary_10_1093_nar_gku203
crossref_primary_10_1073_pnas_1418384112
crossref_primary_10_1016_j_mib_2011_01_012
crossref_primary_10_1093_nar_gkt274
crossref_primary_10_1073_pnas_0403755101
crossref_primary_10_1111_age_13189
crossref_primary_10_1046_j_1365_2958_2003_03645_x
crossref_primary_10_1074_jbc_M112_390054
crossref_primary_10_1515_BC_2001_082
crossref_primary_10_1074_jbc_M112_429506
crossref_primary_10_1371_journal_pone_0051598
crossref_primary_10_1073_pnas_1311302110
crossref_primary_10_1093_genetics_158_2_779
crossref_primary_10_1007_s00203_006_0130_8
crossref_primary_10_1073_pnas_0800468105
crossref_primary_10_1074_jbc_M112_429464
crossref_primary_10_1093_nar_gkx689
crossref_primary_10_1093_plcell_koab050
crossref_primary_10_1093_nar_gkv269
crossref_primary_10_1038_nrg3963
crossref_primary_10_1093_nar_gkv1510
crossref_primary_10_1093_ve_veab028
crossref_primary_10_1074_jbc_M413595200
crossref_primary_10_1261_rna_84406
crossref_primary_10_1186_s12934_018_1034_4
crossref_primary_10_1146_annurev_biochem_061208_091655
crossref_primary_10_1074_jbc_M003565200
crossref_primary_10_1016_j_jmb_2003_12_043
crossref_primary_10_1371_journal_pgen_1004869
crossref_primary_10_1038_emboj_2008_170
crossref_primary_10_1093_nar_gkv839
crossref_primary_10_1073_pnas_0806554105
crossref_primary_10_1016_j_tig_2006_01_005
crossref_primary_10_14348_molcells_2019_0108
crossref_primary_10_1093_nar_gkw441
crossref_primary_10_1093_nar_gkx690
crossref_primary_10_1128_MCB_23_6_2192_2201_2003
crossref_primary_10_1016_S0960_9822_00_00816_2
crossref_primary_10_1074_jbc_M110833200
crossref_primary_10_1128_JB_188_3_1196_1198_2006
crossref_primary_10_1186_s13068_018_1304_8
crossref_primary_10_1111_j_1365_2958_2004_04530_x
crossref_primary_10_1074_jbc_M103719200
crossref_primary_10_1093_nar_gkp788
crossref_primary_10_1016_j_molcel_2010_01_013
crossref_primary_10_3390_ijms19020371
crossref_primary_10_1128_MMBR_00010_08
crossref_primary_10_1007_s00203_004_0712_2
crossref_primary_10_1128_JB_183_1_221_228_2001
crossref_primary_10_15252_embr_201540509
crossref_primary_10_1128_JB_187_12_4023_4032_2005
crossref_primary_10_1016_S1097_2765_04_00031_0
crossref_primary_10_1155_2015_837842
crossref_primary_10_1093_nar_gkw530
crossref_primary_10_1128_jb_00437_22
crossref_primary_10_1080_19420862_2015_1116658
crossref_primary_10_1111_j_1365_2958_2006_05456_x
crossref_primary_10_1111_j_1365_2958_2007_05595_x
crossref_primary_10_1093_molbev_msr155
crossref_primary_10_3390_v13122499
Cites_doi 10.1074/jbc.272.22.14127
10.1101/gad.6.3.511
10.1016/S0378-1119(97)00191-1
10.1016/S0092-8674(00)80163-4
10.1016/S0092-8674(00)80180-4
10.1016/S0021-9258(18)34974-3
10.1006/jmbi.1997.1238
10.1099/00207713-24-1-102
10.1073/pnas.87.7.2516
10.1016/S0092-8674(00)81039-9
10.1074/jbc.272.43.27131
10.1128/jb.166.1.338-340.1986
10.1111/j.1365-2958.1993.tb01140.x
10.1073/pnas.87.10.3713
10.1093/emboj/18.3.771
10.1006/viro.1995.0052
10.1128/JB.180.5.1232-1240.1998
10.1038/4333
10.1128/jb.179.3.982-986.1997
10.1073/pnas.89.23.11431
10.1128/JVI.73.1.343-351.1999
10.1002/(SICI)1097-0231(19960115)10:1<29::AID-RCM430>3.0.CO;2-#
10.1002/(SICI)1096-8628(19980226)76:1<101::AID-AJMG19>3.0.CO;2-P
10.1093/nar/18.12.3529
10.1146/annurev.biochem.66.1.117
10.1128/jb.176.22.6842-6851.1994
10.1073/pnas.48.1.81
10.1006/jmbi.1997.1162
10.1038/ng0997-79
10.1128/jb.103.2.527-528.1970
10.1016/S0021-9258(18)55067-5
10.1146/annurev.bi.64.070195.001131
10.1093/nar/18.7.1725
10.1016/S0092-8674(00)81515-9
ContentType Journal Article
Copyright Copyright 1993-2000 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 15, 2000
Copyright © 2000, The National Academy of Sciences 2000
Copyright_xml – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 15, 2000
– notice: Copyright © 2000, The National Academy of Sciences 2000
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.97.4.1683
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic


Genetics Abstracts

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1688
ExternalDocumentID 51140072
10_1073_pnas_97_4_1683
10677518
97_4_1683
121536
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c581t-66efdc09965ce639edcaeb20b6701eaf22a2f5827f36997cf9b8b71bed8716443
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:45:24 EDT 2024
Fri Oct 25 22:14:53 EDT 2024
Fri Oct 25 11:56:28 EDT 2024
Thu Oct 10 15:57:48 EDT 2024
Fri Nov 22 00:35:00 EST 2024
Sat Sep 28 08:38:37 EDT 2024
Wed Nov 11 00:29:17 EST 2020
Thu May 30 08:51:42 EDT 2019
Fri Feb 02 07:06:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-66efdc09965ce639edcaeb20b6701eaf22a2f5827f36997cf9b8b71bed8716443
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Communicated by Michael J. Chamberlin, University of California, Berkeley, CA
These authors contributed equally to this work.
To whom reprints requests should be addressed. E-mail: nwills@genetics.utah.edu.
Present address: Bakteriologiska enheten, Smittskyddsinstitutet, S-171 82 Solna, Sweden.
OpenAccessLink https://doi.org/10.1073/pnas.97.4.1683
PMID 10677518
PQID 201354400
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_97_4_1683
pnas_primary_97_4_1683_fulltext
proquest_miscellaneous_17468139
proquest_journals_201354400
crossref_primary_10_1073_pnas_97_4_1683
jstor_primary_121536
proquest_miscellaneous_70907865
pubmed_primary_10677518
pubmedcentral_primary_oai_pubmedcentral_nih_gov_26496
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 20000215
2000-02-15
2000-Feb-15
PublicationDateYYYYMMDD 2000-02-15
PublicationDate_xml – month: 2
  year: 2000
  text: 20000215
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2000
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Publisher_xml – name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
– name: National Academy of Sciences
– name: The National Academy of Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
Snedecor B (e_1_3_2_28_2) 1983
e_1_3_2_29_2
e_1_3_2_20_2
Nelson C (e_1_3_2_24_2) 1998; 178
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
Kolakofsky D (e_1_3_2_34_2) 1998
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
Sambrook J (e_1_3_2_21_2) 1989
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_32_2
  doi: 10.1074/jbc.272.22.14127
– ident: e_1_3_2_4_2
  doi: 10.1101/gad.6.3.511
– ident: e_1_3_2_18_2
  doi: 10.1016/S0378-1119(97)00191-1
– ident: e_1_3_2_10_2
  doi: 10.1016/S0092-8674(00)80163-4
– ident: e_1_3_2_29_2
  doi: 10.1016/S0092-8674(00)80180-4
– ident: e_1_3_2_7_2
  doi: 10.1016/S0021-9258(18)34974-3
– ident: e_1_3_2_15_2
  doi: 10.1006/jmbi.1997.1238
– ident: e_1_3_2_19_2
  doi: 10.1099/00207713-24-1-102
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.87.7.2516
– ident: e_1_3_2_9_2
  doi: 10.1016/S0092-8674(00)81039-9
– ident: e_1_3_2_14_2
  doi: 10.1074/jbc.272.43.27131
– ident: e_1_3_2_17_2
  doi: 10.1128/jb.166.1.338-340.1986
– volume: 178
  start-page: S26
  year: 1998
  ident: e_1_3_2_24_2
  publication-title: Am J Obstet Gynecol
  contributor:
    fullname: Nelson C
– ident: e_1_3_2_27_2
  doi: 10.1111/j.1365-2958.1993.tb01140.x
– ident: e_1_3_2_1_2
  doi: 10.1073/pnas.87.10.3713
– ident: e_1_3_2_11_2
  doi: 10.1093/emboj/18.3.771
– ident: e_1_3_2_36_2
  doi: 10.1006/viro.1995.0052
– ident: e_1_3_2_13_2
  doi: 10.1128/JB.180.5.1232-1240.1998
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: e_1_3_2_21_2
  contributor:
    fullname: Sambrook J
– ident: e_1_3_2_23_2
  doi: 10.1038/4333
– ident: e_1_3_2_33_2
  doi: 10.1128/jb.179.3.982-986.1997
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.89.23.11431
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.73.1.343-351.1999
– ident: e_1_3_2_22_2
  doi: 10.1002/(SICI)1097-0231(19960115)10:1<29::AID-RCM430>3.0.CO;2-#
– ident: e_1_3_2_37_2
  doi: 10.1002/(SICI)1096-8628(19980226)76:1<101::AID-AJMG19>3.0.CO;2-P
– ident: e_1_3_2_16_2
  doi: 10.1093/nar/18.12.3529
– ident: e_1_3_2_26_2
  doi: 10.1146/annurev.biochem.66.1.117
– start-page: 413
  volume-title: Modification and Editing of RNA
  year: 1998
  ident: e_1_3_2_34_2
  contributor:
    fullname: Kolakofsky D
– ident: e_1_3_2_5_2
  doi: 10.1128/jb.176.22.6842-6851.1994
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.48.1.81
– start-page: 356
  volume-title: Proceedings of the Fourth International Symposium on Genetics of Industrial Microorganisms
  year: 1983
  ident: e_1_3_2_28_2
  contributor:
    fullname: Snedecor B
– ident: e_1_3_2_6_2
  doi: 10.1006/jmbi.1997.1162
– ident: e_1_3_2_38_2
  doi: 10.1038/ng0997-79
– ident: e_1_3_2_20_2
  doi: 10.1128/jb.103.2.527-528.1970
– ident: e_1_3_2_8_2
  doi: 10.1016/S0021-9258(18)55067-5
– ident: e_1_3_2_12_2
  doi: 10.1146/annurev.bi.64.070195.001131
– ident: e_1_3_2_3_2
  doi: 10.1093/nar/18.7.1725
– ident: e_1_3_2_30_2
  doi: 10.1016/S0092-8674(00)81515-9
SSID ssj0009580
Score 1.9512683
Snippet The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and...
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and...
The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. gamma is two-thirds the size...
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and...
The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. Gamma is two-thirds the size...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1683
SubjectTerms Average linear density
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Sciences
Cloning, Molecular
Codon, Terminator - genetics
Complementary DNA
Deoxyribonucleic acid
DNA
DNA Polymerase III - genetics
DNA Polymerase III - metabolism
DNA replicase
dnaX gene
Escherichia coli
Escherichia coli - enzymology
Gene Expression Regulation
Genes
Genetics
Genomics
Mass Spectrometry
Mass spectroscopy
Messenger RNA
Molecules
Polymerase chain reaction
Protein Biosynthesis - genetics
Proteins
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
Ribosomes - metabolism
RNA
RNA, Bacterial - genetics
RNA, Messenger - metabolism
Sequence Analysis
Thermus thermophilus
Thermus thermophilus - enzymology
Transcription, Genetic - genetics
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: JSTOR Health & General Sciences
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfoTlyAMQZhfFgCCTikq-NvbhVdmTj0UiZxs5zE0SqVpFpW_or90XvPSaBFReIW5b1Eid-Hf7affybkPe52LJksUy-YT4UNMvVKmJSX4EG6yAyT8RDbpV78MLMLpMl5N-yFwbLKWBcYV_EBIOXrcI4MCFyNyMjE2Pu2_LrDq2u6XSYZJFuRiYGXUfPzTe3bsdVjMWbK8L1-pys9RD5T0DmELf8ukdzpc-aP_-trn5BHPaSk084HjsmDUD8lx33QtvRjzyz96YTcLTpiDI8n1tFVTVEET9EZDEKxE_tML5ufmA6bbUtniykFfI6zem2Iqi29gqvpup9E_AU3morG7m5IPvAhy_Vqg2mKNjedbN1PONI5VoK116sKa62fkav5xfcvl2l_HENaSMNuU6VCVRaAKJUsAgAbaBwP4_JJrvSEBV9lmc8qaTJdcWWtLiqbm1yzPJRxUCb4KTmqmzq8IFQHZqwpFNfBgo8EeIUpcs6Z8iHkXiTkw2Ast-lYN1xcLdfcocmc1U44NGtCTqIB_qjF1k_IadQb7u7ovz0scFVfbJOQs8EdXB_PrQOYxKWAfIfPD1IIRFxd8XUAozgY2ikDePrfGnpiAZApmZDnnXPt_JvSuP6VELnndr8VkAR8X1KvriMZOABaq14eboUz8rBjDshSJl-Ro9ubbXhNRm25fROj6B4PqB0T
  priority: 102
  providerName: JSTOR
Title Nonlinearity in Genetic Decoding: Homologous DNA Replicase Genes Use Alternatives of Transcriptional Slippage or Translational Frameshifting
URI https://www.jstor.org/stable/121536
http://www.pnas.org/content/97/4/1683.abstract
https://www.ncbi.nlm.nih.gov/pubmed/10677518
https://www.proquest.com/docview/201354400
https://search.proquest.com/docview/17468139
https://search.proquest.com/docview/70907865
https://pubmed.ncbi.nlm.nih.gov/PMC26496
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6RnrggSim4hbAHJOBgJ-t9c6v6UBEiQgIkbqu1vVYjNXYUJ_-CH83s2i4pKhduVnZs2ZrXN9nZbwDehtOOFRVV6jh1KTdepE5ynbIKLUiVuaYiDrH9phY_9cVloMlh41mY2LRfFsusuV1lzfIm9lauV-Vs7BObff1yjkncyNkEJogMxwL9jmdX96dOcgy-POcjT6Nis3XjusyojGdU6jg_J7CniTDuYy8l9V2JgeoUxR-CnX93T-6lo6un8GTAkeSsf99DeOSbZ3A4eGpH3g900h-O4NeiZ8NwYUwdWTYETSacXCQVVp4hc30k1-0qxMB215GLxRnZ-Lip3fko2pEdXsVd9SayhHekrck25Lgx4uCLIFxdh9hE2k2_djv8y0jq0P7V3Szr0GD9HH5cXX4_v06HGQxpKTTdplL6uioRRkpRekQz-NkOi_F5IdWcelfnuctroXNVM2mMKmtT6ELRwlexEuPsGA6atvEvgShPtdGlZMobNAyPj9BlwRiVzvvC8QTejWqw655qw8YtcsVsUIY1ynIbdJfAUdTSHzEELkwmcBzlxl_35N88vGDrocMmgdNR0XZw4s4iNmKCY5AL94-r6H1hS8U1HpVisZ6TGkH0vyXU3CAKkyKBF73Z7H1bb34JiHsGdScQmL_vr6BDRAbw6AAn_3nfKTzu-QTylIpXcLDd7PxrmHTVboo1xafP09gXO43DN6bRu34DyeMqUQ
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6x8QAvwBgbYcAsgQQ8pKvj37xVdFURoy_bJN4sJ3G0SiWtlpW_gj-as5NAi4rEW-Q7R4nvfP5snz8DvA2nHUsqytRx6lJuvEid5DplJXqQKjJNRbzE9lLNvunxeaDJedOfhQlplTEvMO7iI0DKF_4sMCAwuQf3hR4y1ebtbTDr6vacSYbhlme8Z2ZU7GxVu2Zg1IAPqNRsa-Rpkw8Doynq7EKXfydJbow6k8f_9b1P4FEHKsmo9YIDuOfrp3DQdduGvO-4pT8cws9ZS43hwp11ZF6TIMJaZIzT0DCMfSTT5fcQEJfrhoxnI4IIPazrNT6qNuQan0aLbhnxBxYsKxIHvD784IdcLuarEKjI8raVLbolRzIJuWDNzbwK2dbP4HpyfvVpmnYXMqSF0PQuldJXZYGYUorCI7TBxnE4Mx_mUg2pd1WWuawSOlMVk8aoojK5zhXNfRmnZZwdwX69rP1zIMpTbXQhmfIGvcTjK3SRM0al8z53PIF3vbHsquXdsHG_XDEbTGaNstwGsyZwGA3wRy22fgJHUa8v3dA_3S2wVZduk8BJ7w6269GNRaDEBMeIF-r3UuyKYX_F1R6NYnFyJzUi6n9rqKFBSCZFAsetc238m1RhBywBseV2vxUCDfi2pJ7fRDpwhLRGvtjdCqfwYHr19cJefJ59OYGHLY9AllLxEvbvbtf-Few15fp17FG_AEMQIHY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6xISFeBmNshAHzA9LgIW0d_-atoquGQBXSmMSb5SSOVqmk1bLur-CP5uwk0KIi8RblLlHiO5-_s8-fAd6G3Y4lFWXqOHUpN16kTnKdshI9SBWZpiIeYnulZt_15CLQ5Jz3e2FCWWWsC4yr-AiQ8oUfrspqGFgQmNyDhwJzGt0eDbDBrqvbvSYZhlye8Z6dUbHhqnbNwKgBH1Cp2dbo0xYgBlZT1NmFMP8ulNwYeaZP_vubn8JBBy7JuPWGQ3jg62dw2HXfhrzrOKbfH8HPWUuR4cLZdWRekyDCp8gE09EwnH0gl8sfITAu1w2ZzMYEkXqY32t8VG3INV6NF9104j3eWFYkDnx9GMIPuVrMVyFgkeVtK1t0U49kGmrCmpt5Faqun8P19OLbx8u0O5ghLYSmd6mUvioLxJZSFB4hDjaQwwx9lEs1ot5VWeayCu2kKiaNUUVlcp0rmvsypmecHcN-vaz9CyDKU210IZnyBr3F4yt0kTNGpfM-dzyB895gdtXyb9i4bq6YDWazRllug2kTOIpG-KMWWz-B46jX393QP9stsFVXdpPAae8StuvZjUXAxATHyBee76XYJcM6i6s9GsVikic1Iut_a6iRQWgmRQInrYNt_JtUYSUsAbHler8VAh34tqSe30RacIS2Rr7c3Qpn8OjrZGq_fJp9PoXHLZ1AllLxCvbvbtf-New15fpN7FS_AEaGIu8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity+in+Genetic+Decoding%3A+Homologous+DNA+Replicase+Genes+Use+Alternatives+of+Transcriptional+Slippage+or+Translational+Frameshifting&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Larsen%2C+Bente&rft.au=Wills%2C+Norma+M.&rft.au=Nelson%2C+Chad&rft.au=Atkins%2C+John+F.&rft.date=2000-02-15&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=97&rft.issue=4&rft.spage=1683&rft.epage=1688&rft_id=info:doi/10.1073%2Fpnas.97.4.1683&rft.externalDocID=121536
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F4.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F4.cover.gif