Nonlinearity in Genetic Decoding: Homologous DNA Replicase Genes Use Alternatives of Transcriptional Slippage or Translational Frameshifting
The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ . E. coli and T. thermophilus have evolved very different mechanisms for setting the approx...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 97; no. 4; pp. 1683 - 1688 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences of the United States of America
15-02-2000
National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ . E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ . Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈ 50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ , but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ . In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields τ . The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternative reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression. |
---|---|
AbstractList | The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. Gamma is two-thirds the size of tau and shares virtually all its amino acid sequence with tau. The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. gamma is two-thirds the size of tau and shares virtually all its amino acid sequence with tau. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between tau and gamma. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller gamma protein. In E. coli, approximately 50% of initiating ribosomes translate the dnaX mRNA conventionally to give tau, but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce gamma. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields tau. The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the gamma protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression. The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli , ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression. The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli , ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression. The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ . E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ . Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈ 50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ , but the other 50% shift into the -1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ . In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/- multiples of three As) yields τ . The rest of the population of mRNAs (containing nine +/- nonmultiples of three As) puts ribosomes into the alternative reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression. |
Author | Larsen, Bente Nelson, Chad Wills, Norma M. Gesteland, Raymond F. Atkins, John F. |
AuthorAffiliation | Department of Human Genetics, University of Utah, 15 N 2030 East Building 533, Room 7410, Salt Lake City, UT 84112-5330 |
AuthorAffiliation_xml | – name: Department of Human Genetics, University of Utah, 15 N 2030 East Building 533, Room 7410, Salt Lake City, UT 84112-5330 |
Author_xml | – sequence: 1 givenname: Bente surname: Larsen fullname: Larsen, Bente – sequence: 2 givenname: Norma M. surname: Wills fullname: Wills, Norma M. – sequence: 3 givenname: Chad surname: Nelson fullname: Nelson, Chad – sequence: 4 givenname: John F. surname: Atkins fullname: Atkins, John F. – sequence: 5 givenname: Raymond F. surname: Gesteland fullname: Gesteland, Raymond F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10677518$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFKxcEijhwS7DzYceIy6qlLVJVJGjPluOdbL1y7GA7Ff0P_Gi8ZCkLBzjZ8vu8M-OZOUIH1llA6DnBBcGsejtaGQrOirogtK0eoQXBnOS05vgALTAuWd7WZX2IjkLYYIx50-In6JBgylhD2gX6fuWs0Rak1_E-0zY7BwtRq-wUlFtpu36XXbjBGbd2U8hOr5bZZxiNVjLATzRkN-m2NBG8lVHfpQfXZ9de2qC8HqN2Vprsi9HjKNeQOT9rRu6UMy8HCLe6jynXU_S4lybAs915jG7OPlyfXOSXn84_niwvc9W0JOaUQr9SmHPaKKAVh5WS0JW4owwTkH1ZyrJv2pL1FeWcqZ53bcdIB6uWEVrX1TF6P8cdp25IbrDRSyNGrwfp74WTWvypWH0r1u5OlKmxNNnf7OzefZ0gRDHooMAYaSF1STDMMWtp81-QsJq2pOIJfP0XuHFTaqgJosSkauoa4wQVM6S8C8FD_1AwwWK7DGK7DIIzUYvtMiTDq_1v7uHz9Pfq2xp_yQ8BRD-ZNNhvMYEv_wUm_cWsb0J0_neikjQVrX4AMBbWkg |
CitedBy_id | crossref_primary_10_1093_nar_gkm003 crossref_primary_10_1074_jbc_M110198200 crossref_primary_10_1128_MMBR_00001_08 crossref_primary_10_1016_S0378_1119_02_00423_7 crossref_primary_10_1093_nar_gkac302 crossref_primary_10_1371_journal_pgen_1003595 crossref_primary_10_1093_nar_gku203 crossref_primary_10_1073_pnas_1418384112 crossref_primary_10_1016_j_mib_2011_01_012 crossref_primary_10_1093_nar_gkt274 crossref_primary_10_1073_pnas_0403755101 crossref_primary_10_1111_age_13189 crossref_primary_10_1046_j_1365_2958_2003_03645_x crossref_primary_10_1074_jbc_M112_390054 crossref_primary_10_1515_BC_2001_082 crossref_primary_10_1074_jbc_M112_429506 crossref_primary_10_1371_journal_pone_0051598 crossref_primary_10_1073_pnas_1311302110 crossref_primary_10_1093_genetics_158_2_779 crossref_primary_10_1007_s00203_006_0130_8 crossref_primary_10_1073_pnas_0800468105 crossref_primary_10_1074_jbc_M112_429464 crossref_primary_10_1093_nar_gkx689 crossref_primary_10_1093_plcell_koab050 crossref_primary_10_1093_nar_gkv269 crossref_primary_10_1038_nrg3963 crossref_primary_10_1093_nar_gkv1510 crossref_primary_10_1093_ve_veab028 crossref_primary_10_1074_jbc_M413595200 crossref_primary_10_1261_rna_84406 crossref_primary_10_1186_s12934_018_1034_4 crossref_primary_10_1146_annurev_biochem_061208_091655 crossref_primary_10_1074_jbc_M003565200 crossref_primary_10_1016_j_jmb_2003_12_043 crossref_primary_10_1371_journal_pgen_1004869 crossref_primary_10_1038_emboj_2008_170 crossref_primary_10_1093_nar_gkv839 crossref_primary_10_1073_pnas_0806554105 crossref_primary_10_1016_j_tig_2006_01_005 crossref_primary_10_14348_molcells_2019_0108 crossref_primary_10_1093_nar_gkw441 crossref_primary_10_1093_nar_gkx690 crossref_primary_10_1128_MCB_23_6_2192_2201_2003 crossref_primary_10_1016_S0960_9822_00_00816_2 crossref_primary_10_1074_jbc_M110833200 crossref_primary_10_1128_JB_188_3_1196_1198_2006 crossref_primary_10_1186_s13068_018_1304_8 crossref_primary_10_1111_j_1365_2958_2004_04530_x crossref_primary_10_1074_jbc_M103719200 crossref_primary_10_1093_nar_gkp788 crossref_primary_10_1016_j_molcel_2010_01_013 crossref_primary_10_3390_ijms19020371 crossref_primary_10_1128_MMBR_00010_08 crossref_primary_10_1007_s00203_004_0712_2 crossref_primary_10_1128_JB_183_1_221_228_2001 crossref_primary_10_15252_embr_201540509 crossref_primary_10_1128_JB_187_12_4023_4032_2005 crossref_primary_10_1016_S1097_2765_04_00031_0 crossref_primary_10_1155_2015_837842 crossref_primary_10_1093_nar_gkw530 crossref_primary_10_1128_jb_00437_22 crossref_primary_10_1080_19420862_2015_1116658 crossref_primary_10_1111_j_1365_2958_2006_05456_x crossref_primary_10_1111_j_1365_2958_2007_05595_x crossref_primary_10_1093_molbev_msr155 crossref_primary_10_3390_v13122499 |
Cites_doi | 10.1074/jbc.272.22.14127 10.1101/gad.6.3.511 10.1016/S0378-1119(97)00191-1 10.1016/S0092-8674(00)80163-4 10.1016/S0092-8674(00)80180-4 10.1016/S0021-9258(18)34974-3 10.1006/jmbi.1997.1238 10.1099/00207713-24-1-102 10.1073/pnas.87.7.2516 10.1016/S0092-8674(00)81039-9 10.1074/jbc.272.43.27131 10.1128/jb.166.1.338-340.1986 10.1111/j.1365-2958.1993.tb01140.x 10.1073/pnas.87.10.3713 10.1093/emboj/18.3.771 10.1006/viro.1995.0052 10.1128/JB.180.5.1232-1240.1998 10.1038/4333 10.1128/jb.179.3.982-986.1997 10.1073/pnas.89.23.11431 10.1128/JVI.73.1.343-351.1999 10.1002/(SICI)1097-0231(19960115)10:1<29::AID-RCM430>3.0.CO;2-# 10.1002/(SICI)1096-8628(19980226)76:1<101::AID-AJMG19>3.0.CO;2-P 10.1093/nar/18.12.3529 10.1146/annurev.biochem.66.1.117 10.1128/jb.176.22.6842-6851.1994 10.1073/pnas.48.1.81 10.1006/jmbi.1997.1162 10.1038/ng0997-79 10.1128/jb.103.2.527-528.1970 10.1016/S0021-9258(18)55067-5 10.1146/annurev.bi.64.070195.001131 10.1093/nar/18.7.1725 10.1016/S0092-8674(00)81515-9 |
ContentType | Journal Article |
Copyright | Copyright 1993-2000 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 15, 2000 Copyright © 2000, The National Academy of Sciences 2000 |
Copyright_xml | – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 15, 2000 – notice: Copyright © 2000, The National Academy of Sciences 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.97.4.1683 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1688 |
ExternalDocumentID | 51140072 10_1073_pnas_97_4_1683 10677518 97_4_1683 121536 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c581t-66efdc09965ce639edcaeb20b6701eaf22a2f5827f36997cf9b8b71bed8716443 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:45:24 EDT 2024 Fri Oct 25 22:14:53 EDT 2024 Fri Oct 25 11:56:28 EDT 2024 Thu Oct 10 15:57:48 EDT 2024 Fri Nov 22 00:35:00 EST 2024 Sat Sep 28 08:38:37 EDT 2024 Wed Nov 11 00:29:17 EST 2020 Thu May 30 08:51:42 EDT 2019 Fri Feb 02 07:06:02 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-66efdc09965ce639edcaeb20b6701eaf22a2f5827f36997cf9b8b71bed8716443 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Communicated by Michael J. Chamberlin, University of California, Berkeley, CA These authors contributed equally to this work. To whom reprints requests should be addressed. E-mail: nwills@genetics.utah.edu. Present address: Bakteriologiska enheten, Smittskyddsinstitutet, S-171 82 Solna, Sweden. |
OpenAccessLink | https://doi.org/10.1073/pnas.97.4.1683 |
PMID | 10677518 |
PQID | 201354400 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_97_4_1683 pnas_primary_97_4_1683_fulltext proquest_miscellaneous_17468139 proquest_journals_201354400 crossref_primary_10_1073_pnas_97_4_1683 jstor_primary_121536 proquest_miscellaneous_70907865 pubmed_primary_10677518 pubmedcentral_primary_oai_pubmedcentral_nih_gov_26496 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 20000215 2000-02-15 2000-Feb-15 |
PublicationDateYYYYMMDD | 2000-02-15 |
PublicationDate_xml | – month: 2 year: 2000 text: 20000215 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2000 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences of the United States of America – name: National Acad Sciences – name: National Academy of Sciences – name: The National Academy of Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 Snedecor B (e_1_3_2_28_2) 1983 e_1_3_2_29_2 e_1_3_2_20_2 Nelson C (e_1_3_2_24_2) 1998; 178 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 Kolakofsky D (e_1_3_2_34_2) 1998 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 Sambrook J (e_1_3_2_21_2) 1989 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_32_2 doi: 10.1074/jbc.272.22.14127 – ident: e_1_3_2_4_2 doi: 10.1101/gad.6.3.511 – ident: e_1_3_2_18_2 doi: 10.1016/S0378-1119(97)00191-1 – ident: e_1_3_2_10_2 doi: 10.1016/S0092-8674(00)80163-4 – ident: e_1_3_2_29_2 doi: 10.1016/S0092-8674(00)80180-4 – ident: e_1_3_2_7_2 doi: 10.1016/S0021-9258(18)34974-3 – ident: e_1_3_2_15_2 doi: 10.1006/jmbi.1997.1238 – ident: e_1_3_2_19_2 doi: 10.1099/00207713-24-1-102 – ident: e_1_3_2_2_2 doi: 10.1073/pnas.87.7.2516 – ident: e_1_3_2_9_2 doi: 10.1016/S0092-8674(00)81039-9 – ident: e_1_3_2_14_2 doi: 10.1074/jbc.272.43.27131 – ident: e_1_3_2_17_2 doi: 10.1128/jb.166.1.338-340.1986 – volume: 178 start-page: S26 year: 1998 ident: e_1_3_2_24_2 publication-title: Am J Obstet Gynecol contributor: fullname: Nelson C – ident: e_1_3_2_27_2 doi: 10.1111/j.1365-2958.1993.tb01140.x – ident: e_1_3_2_1_2 doi: 10.1073/pnas.87.10.3713 – ident: e_1_3_2_11_2 doi: 10.1093/emboj/18.3.771 – ident: e_1_3_2_36_2 doi: 10.1006/viro.1995.0052 – ident: e_1_3_2_13_2 doi: 10.1128/JB.180.5.1232-1240.1998 – volume-title: Molecular Cloning: A Laboratory Manual year: 1989 ident: e_1_3_2_21_2 contributor: fullname: Sambrook J – ident: e_1_3_2_23_2 doi: 10.1038/4333 – ident: e_1_3_2_33_2 doi: 10.1128/jb.179.3.982-986.1997 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.89.23.11431 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.73.1.343-351.1999 – ident: e_1_3_2_22_2 doi: 10.1002/(SICI)1097-0231(19960115)10:1<29::AID-RCM430>3.0.CO;2-# – ident: e_1_3_2_37_2 doi: 10.1002/(SICI)1096-8628(19980226)76:1<101::AID-AJMG19>3.0.CO;2-P – ident: e_1_3_2_16_2 doi: 10.1093/nar/18.12.3529 – ident: e_1_3_2_26_2 doi: 10.1146/annurev.biochem.66.1.117 – start-page: 413 volume-title: Modification and Editing of RNA year: 1998 ident: e_1_3_2_34_2 contributor: fullname: Kolakofsky D – ident: e_1_3_2_5_2 doi: 10.1128/jb.176.22.6842-6851.1994 – ident: e_1_3_2_25_2 doi: 10.1073/pnas.48.1.81 – start-page: 356 volume-title: Proceedings of the Fourth International Symposium on Genetics of Industrial Microorganisms year: 1983 ident: e_1_3_2_28_2 contributor: fullname: Snedecor B – ident: e_1_3_2_6_2 doi: 10.1006/jmbi.1997.1162 – ident: e_1_3_2_38_2 doi: 10.1038/ng0997-79 – ident: e_1_3_2_20_2 doi: 10.1128/jb.103.2.527-528.1970 – ident: e_1_3_2_8_2 doi: 10.1016/S0021-9258(18)55067-5 – ident: e_1_3_2_12_2 doi: 10.1146/annurev.bi.64.070195.001131 – ident: e_1_3_2_3_2 doi: 10.1093/nar/18.7.1725 – ident: e_1_3_2_30_2 doi: 10.1016/S0092-8674(00)81515-9 |
SSID | ssj0009580 |
Score | 1.9512683 |
Snippet | The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and... The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and... The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. gamma is two-thirds the size... The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus . γ is two-thirds the size of τ and... The tau and gamma subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. Gamma is two-thirds the size... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1683 |
SubjectTerms | Average linear density Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Sciences Cloning, Molecular Codon, Terminator - genetics Complementary DNA Deoxyribonucleic acid DNA DNA Polymerase III - genetics DNA Polymerase III - metabolism DNA replicase dnaX gene Escherichia coli Escherichia coli - enzymology Gene Expression Regulation Genes Genetics Genomics Mass Spectrometry Mass spectroscopy Messenger RNA Molecules Polymerase chain reaction Protein Biosynthesis - genetics Proteins Reverse Transcriptase Polymerase Chain Reaction Ribonucleic acid Ribosomes - metabolism RNA RNA, Bacterial - genetics RNA, Messenger - metabolism Sequence Analysis Thermus thermophilus Thermus thermophilus - enzymology Transcription, Genetic - genetics |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: JSTOR Health & General Sciences dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfoTlyAMQZhfFgCCTikq-NvbhVdmTj0UiZxs5zE0SqVpFpW_or90XvPSaBFReIW5b1Eid-Hf7affybkPe52LJksUy-YT4UNMvVKmJSX4EG6yAyT8RDbpV78MLMLpMl5N-yFwbLKWBcYV_EBIOXrcI4MCFyNyMjE2Pu2_LrDq2u6XSYZJFuRiYGXUfPzTe3bsdVjMWbK8L1-pys9RD5T0DmELf8ukdzpc-aP_-trn5BHPaSk084HjsmDUD8lx33QtvRjzyz96YTcLTpiDI8n1tFVTVEET9EZDEKxE_tML5ufmA6bbUtniykFfI6zem2Iqi29gqvpup9E_AU3morG7m5IPvAhy_Vqg2mKNjedbN1PONI5VoK116sKa62fkav5xfcvl2l_HENaSMNuU6VCVRaAKJUsAgAbaBwP4_JJrvSEBV9lmc8qaTJdcWWtLiqbm1yzPJRxUCb4KTmqmzq8IFQHZqwpFNfBgo8EeIUpcs6Z8iHkXiTkw2Ast-lYN1xcLdfcocmc1U44NGtCTqIB_qjF1k_IadQb7u7ovz0scFVfbJOQs8EdXB_PrQOYxKWAfIfPD1IIRFxd8XUAozgY2ikDePrfGnpiAZApmZDnnXPt_JvSuP6VELnndr8VkAR8X1KvriMZOABaq14eboUz8rBjDshSJl-Ro9ubbXhNRm25fROj6B4PqB0T priority: 102 providerName: JSTOR |
Title | Nonlinearity in Genetic Decoding: Homologous DNA Replicase Genes Use Alternatives of Transcriptional Slippage or Translational Frameshifting |
URI | https://www.jstor.org/stable/121536 http://www.pnas.org/content/97/4/1683.abstract https://www.ncbi.nlm.nih.gov/pubmed/10677518 https://www.proquest.com/docview/201354400 https://search.proquest.com/docview/17468139 https://search.proquest.com/docview/70907865 https://pubmed.ncbi.nlm.nih.gov/PMC26496 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6RnrggSim4hbAHJOBgJ-t9c6v6UBEiQgIkbqu1vVYjNXYUJ_-CH83s2i4pKhduVnZs2ZrXN9nZbwDehtOOFRVV6jh1KTdepE5ynbIKLUiVuaYiDrH9phY_9cVloMlh41mY2LRfFsusuV1lzfIm9lauV-Vs7BObff1yjkncyNkEJogMxwL9jmdX96dOcgy-POcjT6Nis3XjusyojGdU6jg_J7CniTDuYy8l9V2JgeoUxR-CnX93T-6lo6un8GTAkeSsf99DeOSbZ3A4eGpH3g900h-O4NeiZ8NwYUwdWTYETSacXCQVVp4hc30k1-0qxMB215GLxRnZ-Lip3fko2pEdXsVd9SayhHekrck25Lgx4uCLIFxdh9hE2k2_djv8y0jq0P7V3Szr0GD9HH5cXX4_v06HGQxpKTTdplL6uioRRkpRekQz-NkOi_F5IdWcelfnuctroXNVM2mMKmtT6ELRwlexEuPsGA6atvEvgShPtdGlZMobNAyPj9BlwRiVzvvC8QTejWqw655qw8YtcsVsUIY1ynIbdJfAUdTSHzEELkwmcBzlxl_35N88vGDrocMmgdNR0XZw4s4iNmKCY5AL94-r6H1hS8U1HpVisZ6TGkH0vyXU3CAKkyKBF73Z7H1bb34JiHsGdScQmL_vr6BDRAbw6AAn_3nfKTzu-QTylIpXcLDd7PxrmHTVboo1xafP09gXO43DN6bRu34DyeMqUQ |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6x8QAvwBgbYcAsgQQ8pKvj37xVdFURoy_bJN4sJ3G0SiWtlpW_gj-as5NAi4rEW-Q7R4nvfP5snz8DvA2nHUsqytRx6lJuvEid5DplJXqQKjJNRbzE9lLNvunxeaDJedOfhQlplTEvMO7iI0DKF_4sMCAwuQf3hR4y1ebtbTDr6vacSYbhlme8Z2ZU7GxVu2Zg1IAPqNRsa-Rpkw8Doynq7EKXfydJbow6k8f_9b1P4FEHKsmo9YIDuOfrp3DQdduGvO-4pT8cws9ZS43hwp11ZF6TIMJaZIzT0DCMfSTT5fcQEJfrhoxnI4IIPazrNT6qNuQan0aLbhnxBxYsKxIHvD784IdcLuarEKjI8raVLbolRzIJuWDNzbwK2dbP4HpyfvVpmnYXMqSF0PQuldJXZYGYUorCI7TBxnE4Mx_mUg2pd1WWuawSOlMVk8aoojK5zhXNfRmnZZwdwX69rP1zIMpTbXQhmfIGvcTjK3SRM0al8z53PIF3vbHsquXdsHG_XDEbTGaNstwGsyZwGA3wRy22fgJHUa8v3dA_3S2wVZduk8BJ7w6269GNRaDEBMeIF-r3UuyKYX_F1R6NYnFyJzUi6n9rqKFBSCZFAsetc238m1RhBywBseV2vxUCDfi2pJ7fRDpwhLRGvtjdCqfwYHr19cJefJ59OYGHLY9AllLxEvbvbtf-Few15fp17FG_AEMQIHY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6xISFeBmNshAHzA9LgIW0d_-atoquGQBXSmMSb5SSOVqmk1bLur-CP5uwk0KIi8RblLlHiO5-_s8-fAd6G3Y4lFWXqOHUpN16kTnKdshI9SBWZpiIeYnulZt_15CLQ5Jz3e2FCWWWsC4yr-AiQ8oUfrspqGFgQmNyDhwJzGt0eDbDBrqvbvSYZhlye8Z6dUbHhqnbNwKgBH1Cp2dbo0xYgBlZT1NmFMP8ulNwYeaZP_vubn8JBBy7JuPWGQ3jg62dw2HXfhrzrOKbfH8HPWUuR4cLZdWRekyDCp8gE09EwnH0gl8sfITAu1w2ZzMYEkXqY32t8VG3INV6NF9104j3eWFYkDnx9GMIPuVrMVyFgkeVtK1t0U49kGmrCmpt5Faqun8P19OLbx8u0O5ghLYSmd6mUvioLxJZSFB4hDjaQwwx9lEs1ot5VWeayCu2kKiaNUUVlcp0rmvsypmecHcN-vaz9CyDKU210IZnyBr3F4yt0kTNGpfM-dzyB895gdtXyb9i4bq6YDWazRllug2kTOIpG-KMWWz-B46jX393QP9stsFVXdpPAae8StuvZjUXAxATHyBee76XYJcM6i6s9GsVikic1Iut_a6iRQWgmRQInrYNt_JtUYSUsAbHler8VAh34tqSe30RacIS2Rr7c3Qpn8OjrZGq_fJp9PoXHLZ1AllLxCvbvbtf-New15fpN7FS_AEaGIu8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity+in+Genetic+Decoding%3A+Homologous+DNA+Replicase+Genes+Use+Alternatives+of+Transcriptional+Slippage+or+Translational+Frameshifting&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Larsen%2C+Bente&rft.au=Wills%2C+Norma+M.&rft.au=Nelson%2C+Chad&rft.au=Atkins%2C+John+F.&rft.date=2000-02-15&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=97&rft.issue=4&rft.spage=1683&rft.epage=1688&rft_id=info:doi/10.1073%2Fpnas.97.4.1683&rft.externalDocID=121536 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F4.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F4.cover.gif |