MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice

Purpose Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2‐CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Metho...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 70; no. 6; pp. 1707 - 1717
Main Authors: Szulc, Kamila U., Nieman, Brian J., Houston, Edward J., Bartelle, Benjamin B., Lerch, Jason P., Joyner, Alexandra L., Turnbull, Daniel H.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-12-2013
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2‐CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three‐dimensional manganese‐enhanced MRI at 100‐µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation‐based morphometry and volumetric analysis of manganese‐enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2‐CKO mice. Ex vivo micro‐MRI was performed after perfusion‐fixation with supplemented gadolinium for higher resolution (50‐µm) analysis. Results In vivo manganese‐enhanced MRI and deformation‐based morphometry correctly identified known cerebellar defects in Gbx2‐CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo‐cerebellum, both validated using histology. Ex vivo micro‐MRI revealed subtle phenotypes in both the vestibulo‐cerebellum and the vestibulo‐cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three‐dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707–1717, 2013. © 2013 Wiley Periodicals, Inc.
AbstractList PURPOSEOur aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. METHODSIn vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. RESULTSIn vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. CONCLUSIONThese results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases.
Purpose Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. Results In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707-1717, 2013. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Purpose Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three-dimensional manganese-enhanced MRI at 100- mu m isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50- mu m) analysis. Results In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707-1717, 2013. [copy 2013 Wiley Periodicals, Inc.
Purpose Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2‐CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three‐dimensional manganese‐enhanced MRI at 100‐µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation‐based morphometry and volumetric analysis of manganese‐enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2‐CKO mice. Ex vivo micro‐MRI was performed after perfusion‐fixation with supplemented gadolinium for higher resolution (50‐µm) analysis. Results In vivo manganese‐enhanced MRI and deformation‐based morphometry correctly identified known cerebellar defects in Gbx2‐CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo‐cerebellum, both validated using histology. Ex vivo micro‐MRI revealed subtle phenotypes in both the vestibulo‐cerebellum and the vestibulo‐cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three‐dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707–1717, 2013. © 2013 Wiley Periodicals, Inc.
Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases.
Author Lerch, Jason P.
Turnbull, Daniel H.
Joyner, Alexandra L.
Nieman, Brian J.
Houston, Edward J.
Bartelle, Benjamin B.
Szulc, Kamila U.
AuthorAffiliation 5 Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
6 Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
2 Biomedical Imaging, New York, NY, USA
3 Molecular Biophysics Graduate Programs, New York, NY, USA
1 Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine
4 Departments of Radiology and Pathology, New York University School of Medicine, New York, NY, USA
AuthorAffiliation_xml – name: 6 Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
– name: 1 Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine
– name: 2 Biomedical Imaging, New York, NY, USA
– name: 4 Departments of Radiology and Pathology, New York University School of Medicine, New York, NY, USA
– name: 3 Molecular Biophysics Graduate Programs, New York, NY, USA
– name: 5 Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
Author_xml – sequence: 1
  givenname: Kamila U.
  surname: Szulc
  fullname: Szulc, Kamila U.
  organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
– sequence: 2
  givenname: Brian J.
  surname: Nieman
  fullname: Nieman, Brian J.
  organization: Mouse Imaging Centre, Hospital for Sick Children, Ontario, Toronto, Canada
– sequence: 3
  givenname: Edward J.
  surname: Houston
  fullname: Houston, Edward J.
  organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
– sequence: 4
  givenname: Benjamin B.
  surname: Bartelle
  fullname: Bartelle, Benjamin B.
  organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
– sequence: 5
  givenname: Jason P.
  surname: Lerch
  fullname: Lerch, Jason P.
  organization: Mouse Imaging Centre, Hospital for Sick Children, Ontario, Toronto, Canada
– sequence: 6
  givenname: Alexandra L.
  surname: Joyner
  fullname: Joyner, Alexandra L.
  organization: Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
– sequence: 7
  givenname: Daniel H.
  surname: Turnbull
  fullname: Turnbull, Daniel H.
  email: daniel.turnbull@med.nyu.edu
  organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23400959$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFBS-AIrGBRVrbseNkg1RVMFR0yqgCdWk59g11J4mDnQydt8ch7QiQkFj577vH955zhA461wFCLwk-IRjT09a3J5TxUjxBC8IpTSkv2QFaYMFwmpGSHaKjEO4wxmUp2DN0SDMW97xcILO6vkhUp5pdsCFxdaLBQwVNo3y8NskWwmCrcToa2ELj-ha6QTVJfwudG3Y9hMR2ybK6p4l2nbGDdVEt2XROb9w4JK3V8Bw9rVUT4MXDeoy-fnj_5fxjevl5eXF-dplqXmCRUgyK0ryujTZcGaoMN4ZgrSioioEq6lxwJWoKoGmOWSVqzRSAMLlhlEB2jN7Nuv1YtWB07NSrRvbetsrvpFNW_vnS2Vv5zW1llnPByyIKvHkQ8O77GEeXrQ16cqMDNwZJWF5knDBa_gfKJ7NjPBF9_Rd650YfXZopknNWTH-_nSntXQge6n3fBMspZhljlr9ijuyr3wfdk4-5RuB0Bn7YBnb_VpKr69WjZDpX2DDA_b5C-Y3MRSa4vLlayvX6Zn3FPxHJs59Z2cWh
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_neuroimage_2015_05_029
crossref_primary_10_1016_j_neuroimage_2023_120198
crossref_primary_10_1038_s41565_018_0092_4
crossref_primary_10_1101_gad_307330_117
crossref_primary_10_1089_omi_2023_0056
crossref_primary_10_1111_epi_14759
crossref_primary_10_1016_j_neo_2014_10_001
crossref_primary_10_1016_j_neuroimage_2014_04_043
crossref_primary_10_3389_fninf_2014_00067
crossref_primary_10_1007_s11307_016_1006_1
crossref_primary_10_1007_s12311_015_0724_2
crossref_primary_10_1016_j_neuroimage_2020_117271
Cites_doi 10.1007/s12311-011-0254-5
10.1002/nbm.1146
10.1016/j.cell.2006.12.018
10.1038/nrn2851
10.1016/j.neuroimage.2008.04.252
10.1097/00004728-199403000-00005
10.1016/j.neuroimage.2010.03.038
10.1007/s12311-008-0017-0
10.1242/dev.128.2.181
10.1242/dev.124.15.2923
10.1002/aur.215
10.1016/S0070-2153(05)69005-9
10.1016/S0169-328X(00)00194-7
10.1016/j.conb.2008.05.010
10.3389/fpsyt.2012.00037
10.1002/mrm.21609
10.1002/hbm.20408
10.1016/j.gde.2011.08.009
10.1002/nbm.932
10.1146/annurev.neuro.24.1.869
10.1016/S0896-6273(04)00802-5
10.1016/j.neuroimage.2008.10.016
10.1146/annurev.cellbio.23.090506.123237
10.1080/14734220601184821
10.1007/s12311-010-0169-6
10.1016/S0896-6273(02)00935-2
10.1016/j.neuroimage.2007.08.033
10.1385/BTER:111:1:199
10.1016/j.neuroimage.2005.04.017
10.1007/978-1-61737-992-5_17
10.1111/j.2517-6161.1995.tb02031.x
10.1152/physiolgenomics.00217.2005
10.1109/42.668698
10.1093/cercor/bhh165
10.1016/j.neuroimage.2007.05.046
10.1016/S0076-6879(10)76021-3
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
7QO
7TK
5PM
DOI 10.1002/mrm.24597
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1717
ExternalDocumentID 3128926231
10_1002_mrm_24597
23400959
MRM24597
ark_67375_WNG_PPWPN5K1_5
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: RO1 N5038461
– fundername: NINDS NIH HHS
  grantid: R01 NS038461
– fundername: NCRR NIH HHS
  grantid: S10 RR021179
– fundername: PHS HHS
  grantid: R01 N5038461
– fundername: NCI NIH HHS
  grantid: P30 CA016087
– fundername: National Center for Research Resources : NCRR
  grantid: S10 RR021179 || RR
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS038461 || NS
– fundername: National Cancer Institute : NCI
  grantid: P30 CA016087 || CA
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
G8K
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
7QO
7TK
5PM
ID FETCH-LOGICAL-c5807-20ea226ffdcd5ad2ad5dd10ca2eab4ea8f675a7f2eec2604b7fc4aee7d6d421e3
IEDL.DBID 33P
ISSN 0740-3194
IngestDate Tue Sep 17 21:24:33 EDT 2024
Sat Aug 17 01:12:38 EDT 2024
Sat Aug 17 02:49:26 EDT 2024
Thu Oct 10 22:50:25 EDT 2024
Thu Nov 21 21:18:07 EST 2024
Sat Sep 28 07:53:24 EDT 2024
Sat Aug 24 00:54:21 EDT 2024
Wed Oct 30 09:55:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords brain development
mid-hindbrain
manganese-enhanced MRI (MEMRI)
cerebellum
gastrulation brain homeobox 2 gene (Gbx2)
vestibulo-cochlear organ
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5807-20ea226ffdcd5ad2ad5dd10ca2eab4ea8f675a7f2eec2604b7fc4aee7d6d421e3
Notes ArticleID:MRM24597
istex:D618F4B1E889CD4BBFEE16F15547DC0C71BB45D0
ark:/67375/WNG-PPWPN5K1-5
NIH - No. RO1 N5038461
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24597
PMID 23400959
PQID 1459165488
PQPubID 1016391
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3657598
proquest_miscellaneous_1468351429
proquest_miscellaneous_1459974002
proquest_journals_1459165488
crossref_primary_10_1002_mrm_24597
pubmed_primary_23400959
wiley_primary_10_1002_mrm_24597_MRM24597
istex_primary_ark_67375_WNG_PPWPN5K1_5
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Fatemi SH, Reutiman TJ, Folsom TD, Sidwell RW. The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum 2008;7:279-294.
Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol 2008;18:12-19.
Kovacevic N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, Henkelman RM, Chen XJ. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 2005;15:639-645.
Lerch JP, Sled JG, Henkelman RM. MRI phenotyping of genetically altered mice. Methods Mol Biol 2011;711:349-361.
Deans AE, Wadghiri YZ, Berrios-Otero CA, Turnbull DH. Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system. Magn Reson Med 2008;59:1320-1328.
Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genomics 2006;24:154-162.
Ali AA, Dale AM, Badea A, Johnson GA. Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain. Neuroimage 2005;27:425-435.
Gowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum 2007;6:268-279.
Maheswaran S, Barjat H, Bate ST, Aljabar P, Hill DL, Tilling L, Upton N, James MF, Hajnal JV, Rueckert D. Analysis of serial magnetic resonance images of mouse brains using image registration. Neuroimage 2009;44:692-700.
Lau JC, Lerch JP, Sled JG, Henkelman RM, Evans AC, Bedell BJ. Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer's disease. Neuroimage 2008;42:19-27.
Badea A, Ali-Sharief AA, Johnson GA. Morphometric analysis of the C57BL/6J mouse brain. Neuroimage 2007;37:683-693.
Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010;11:490-502.
Li JY, Lao Z, Joyner AL. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 2002;36:31-43.
Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell 2007;128:9-13.
Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994;18:192-205.
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87-97.
Nieman BJ, Wong MD, Henkelman RM. Genes into geometry: imaging for mouse development in 3D. Curr Opin Genet Dev 2011;21:638-646.
Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 2007;23:549-577.
Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M. Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 2006;111:199-215.
Ellegood J, Henkelman RM, Lerch JP. Neuroanatomical assessment of the integrin beta3 mouse model related to autism and the serotonin system using high resolution MRI. Front Psychiatry 2012;3:37.
Zervas M, Blaess S, Joyner AL. Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr Top Dev Biol 2005;69:101-138.
Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 1997;124:2923-2934.
Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled JG, Henkelman RM. Mouse behavioral mutants have neuroimaging abnormalities. Hum Brain Mapp 2007;28:567-575.
Nieman BJ, Turnbull DH. Ultrasound and magnetic resonance microimaging of mouse development. Methods Enzymol 2010;476:379-400.
Wilson SL, Kalinovsky A, Orvis GD, Joyner AL. Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types. Cerebellum 2011;10:356-372.
Turnbull DH, Mori S. MRI in mouse developmental biology. NMR Biomed 2007;20:265-274.
Liu A, Joyner AL. EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 2001;128:181-191.
Liu A, Joyner AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 2001;24:869-896.
Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010;53:1023-1029.
Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 2005;45:27-40.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 1995;57:289-300.
Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Henkelman RM. Automated deformation analysis in the YAC128 Huntington disease mouse model. Neuroimage 2008;39:32-39.
Sajan SA, Waimey KE, Millen KJ. Novel approaches to studying the genetic basis of cerebellar development. Cerebellum 2010;9:272-283.
Paxinos G, Franklin KBG. The mouse brain in stereotaxic coordinates. San Diego: Elsevier Academic Press; 2001.
Wadghiri YZ, Blind JA, Duan X, Moreno C, Yu X, Joyner AL, Turnbull DH. Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development. NMR Biomed 2004;17:613-619.
Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism. Autism Res 2011;4:368-376.
2010; 11
2009; 44
2002; 36
2010; 53
2007; 128
2011; 711
2008; 18
1995; 57
2008; 39
2008; 59
2008; 7
2011; 10
2011; 4
2005; 27
2001; 24
2005; 45
2006; 111
2001; 128
2007; 37
2005; 69
1997; 124
2007; 28
1998; 17
2012; 3
2001
2006; 24
2004; 17
2010; 476
2007; 6
2011; 21
1994; 18
2008; 42
2007; 20
2005; 15
2007; 23
2010; 9
20559336 - Nat Rev Neurosci. 2010 Jul;11(7):490-502
17437292 - Hum Brain Mapp. 2007 Jun;28(6):567-75
21882360 - Autism Res. 2011 Oct;4(5):368-76
21279611 - Methods Mol Biol. 2011;711:349-61
17218247 - Cell. 2007 Jan 12;128(1):9-13
20387026 - Cerebellum. 2010 Sep;9(3):272-83
17942324 - Neuroimage. 2008 Jan 1;39(1):32-9
16943606 - Biol Trace Elem Res. 2006 Summer;111(1-3):199-215
20691877 - Methods Enzymol. 2010;476:379-400
18418686 - Cerebellum. 2008;7(3):279-94
22557981 - Front Psychiatry. 2012 Apr 26;3:37
17506688 - Annu Rev Cell Dev Biol. 2007;23:549-77
21431469 - Cerebellum. 2011 Sep;10(3):356-72
11520921 - Annu Rev Neurosci. 2001;24:869-96
21907568 - Curr Opin Genet Dev. 2011 Oct;21(5):638-46
18513948 - Curr Opin Neurobiol. 2008 Feb;18(1):12-9
17451170 - NMR Biomed. 2007 May;20(3):265-74
15761950 - NMR Biomed. 2004 Dec;17(8):613-9
17786823 - Cerebellum. 2007;6(3):268-79
9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
18547819 - Neuroimage. 2008 Aug 1;42(1):19-27
11124114 - Development. 2001 Jan;128(2):181-91
18506798 - Magn Reson Med. 2008 Jun;59(6):1320-8
20304074 - Neuroimage. 2010 Nov 15;53(3):1023-9
16410543 - Physiol Genomics. 2006 Jan 12;24(2):154-62
15908233 - Neuroimage. 2005 Aug 15;27(2):425-35
15342433 - Cereb Cortex. 2005 May;15(5):639-45
9247335 - Development. 1997 Aug;124(15):2923-34
12367504 - Neuron. 2002 Sep 26;36(1):31-43
16243598 - Curr Top Dev Biol. 2005;69:101-38
17627846 - Neuroimage. 2007 Sep 1;37(3):683-93
19015039 - Neuroimage. 2009 Feb 1;44(3):692-700
15629700 - Neuron. 2005 Jan 6;45(1):27-40
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 20
  start-page: 265
  year: 2007
  end-page: 274
  article-title: MRI in mouse developmental biology
  publication-title: NMR Biomed
– volume: 24
  start-page: 154
  year: 2006
  end-page: 162
  article-title: Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography
  publication-title: Physiol Genomics
– volume: 128
  start-page: 9
  year: 2007
  end-page: 13
  article-title: A mouse for all reasons
  publication-title: Cell
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B Methodol
– volume: 59
  start-page: 1320
  year: 2008
  end-page: 1328
  article-title: Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system
  publication-title: Magn Reson Med
– volume: 37
  start-page: 683
  year: 2007
  end-page: 693
  article-title: Morphometric analysis of the C57BL/6J mouse brain
  publication-title: Neuroimage
– year: 2001
– volume: 21
  start-page: 638
  year: 2011
  end-page: 646
  article-title: Genes into geometry: imaging for mouse development in 3D
  publication-title: Curr Opin Genet Dev
– volume: 10
  start-page: 356
  year: 2011
  end-page: 372
  article-title: Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types
  publication-title: Cerebellum
– volume: 45
  start-page: 27
  year: 2005
  end-page: 40
  article-title: Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping
  publication-title: Neuron
– volume: 476
  start-page: 379
  year: 2010
  end-page: 400
  article-title: Ultrasound and magnetic resonance microimaging of mouse development
  publication-title: Methods Enzymol
– volume: 111
  start-page: 199
  year: 2006
  end-page: 215
  article-title: Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese
  publication-title: Biol Trace Elem Res
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– volume: 69
  start-page: 101
  year: 2005
  end-page: 138
  article-title: Classical embryological studies and modern genetic analysis of midbrain and cerebellum development
  publication-title: Curr Top Dev Biol
– volume: 6
  start-page: 268
  year: 2007
  end-page: 279
  article-title: The cerebellum and motor dysfunction in neuropsychiatric disorders
  publication-title: Cerebellum
– volume: 9
  start-page: 272
  year: 2010
  end-page: 283
  article-title: Novel approaches to studying the genetic basis of cerebellar development
  publication-title: Cerebellum
– volume: 18
  start-page: 12
  year: 2008
  end-page: 19
  article-title: Cerebellar development and disease
  publication-title: Curr Opin Neurobiol
– volume: 17
  start-page: 613
  year: 2004
  end-page: 619
  article-title: Manganese‐enhanced magnetic resonance imaging (MEMRI) of mouse brain development
  publication-title: NMR Biomed
– volume: 124
  start-page: 2923
  year: 1997
  end-page: 2934
  article-title: Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function
  publication-title: Development
– volume: 23
  start-page: 549
  year: 2007
  end-page: 577
  article-title: Morphology, molecular codes, and circuitry produce the three‐dimensional complexity of the cerebellum
  publication-title: Annu Rev Cell Dev Biol
– volume: 28
  start-page: 567
  year: 2007
  end-page: 575
  article-title: Mouse behavioral mutants have neuroimaging abnormalities
  publication-title: Hum Brain Mapp
– volume: 44
  start-page: 692
  year: 2009
  end-page: 700
  article-title: Analysis of serial magnetic resonance images of mouse brains using image registration
  publication-title: Neuroimage
– volume: 3
  start-page: 37
  year: 2012
  article-title: Neuroanatomical assessment of the integrin beta3 mouse model related to autism and the serotonin system using high resolution MRI
  publication-title: Front Psychiatry
– volume: 711
  start-page: 349
  year: 2011
  end-page: 361
  article-title: MRI phenotyping of genetically altered mice
  publication-title: Methods Mol Biol
– volume: 39
  start-page: 32
  year: 2008
  end-page: 39
  article-title: Automated deformation analysis in the YAC128 Huntington disease mouse model
  publication-title: Neuroimage
– volume: 15
  start-page: 639
  year: 2005
  end-page: 645
  article-title: A three‐dimensional MRI atlas of the mouse brain with estimates of the average and variability
  publication-title: Cereb Cortex
– volume: 42
  start-page: 19
  year: 2008
  end-page: 27
  article-title: Longitudinal neuroanatomical changes determined by deformation‐based morphometry in a mouse model of Alzheimer's disease
  publication-title: Neuroimage
– volume: 7
  start-page: 279
  year: 2008
  end-page: 294
  article-title: The role of cerebellar genes in pathology of autism and schizophrenia
  publication-title: Cerebellum
– volume: 4
  start-page: 368
  year: 2011
  end-page: 376
  article-title: Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism
  publication-title: Autism Res
– volume: 36
  start-page: 31
  year: 2002
  end-page: 43
  article-title: Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer
  publication-title: Neuron
– volume: 27
  start-page: 425
  year: 2005
  end-page: 435
  article-title: Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain
  publication-title: Neuroimage
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 53
  start-page: 1023
  year: 2010
  end-page: 1029
  article-title: Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging
  publication-title: Neuroimage
– volume: 24
  start-page: 869
  year: 2001
  end-page: 896
  article-title: Early anterior/posterior patterning of the midbrain and cerebellum
  publication-title: Annu Rev Neurosci
– volume: 11
  start-page: 490
  year: 2010
  end-page: 502
  article-title: Behavioural phenotyping assays for mouse models of autism
  publication-title: Nat Rev Neurosci
– volume: 128
  start-page: 181
  year: 2001
  end-page: 191
  article-title: EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region
  publication-title: Development
– ident: e_1_2_6_25_1
  doi: 10.1007/s12311-011-0254-5
– ident: e_1_2_6_5_1
  doi: 10.1002/nbm.1146
– ident: e_1_2_6_2_1
  doi: 10.1016/j.cell.2006.12.018
– ident: e_1_2_6_4_1
  doi: 10.1038/nrn2851
– ident: e_1_2_6_31_1
  doi: 10.1016/j.neuroimage.2008.04.252
– ident: e_1_2_6_19_1
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_6_32_1
  doi: 10.1016/j.neuroimage.2010.03.038
– ident: e_1_2_6_14_1
  doi: 10.1007/s12311-008-0017-0
– ident: e_1_2_6_9_1
  doi: 10.1242/dev.128.2.181
– ident: e_1_2_6_16_1
  doi: 10.1242/dev.124.15.2923
– ident: e_1_2_6_33_1
  doi: 10.1002/aur.215
– ident: e_1_2_6_12_1
  doi: 10.1016/S0070-2153(05)69005-9
– ident: e_1_2_6_24_1
  doi: 10.1016/S0169-328X(00)00194-7
– ident: e_1_2_6_15_1
  doi: 10.1016/j.conb.2008.05.010
– ident: e_1_2_6_34_1
  doi: 10.3389/fpsyt.2012.00037
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.21609
– ident: e_1_2_6_29_1
  doi: 10.1002/hbm.20408
– ident: e_1_2_6_7_1
  doi: 10.1016/j.gde.2011.08.009
– ident: e_1_2_6_18_1
  doi: 10.1002/nbm.932
– ident: e_1_2_6_8_1
  doi: 10.1146/annurev.neuro.24.1.869
– ident: e_1_2_6_10_1
  doi: 10.1016/S0896-6273(04)00802-5
– ident: e_1_2_6_37_1
  doi: 10.1016/j.neuroimage.2008.10.016
– ident: e_1_2_6_11_1
  doi: 10.1146/annurev.cellbio.23.090506.123237
– ident: e_1_2_6_13_1
  doi: 10.1080/14734220601184821
– ident: e_1_2_6_3_1
  doi: 10.1007/s12311-010-0169-6
– ident: e_1_2_6_17_1
  doi: 10.1016/S0896-6273(02)00935-2
– ident: e_1_2_6_30_1
  doi: 10.1016/j.neuroimage.2007.08.033
– ident: e_1_2_6_27_1
  doi: 10.1385/BTER:111:1:199
– ident: e_1_2_6_35_1
  doi: 10.1016/j.neuroimage.2005.04.017
– ident: e_1_2_6_22_1
  doi: 10.1007/978-1-61737-992-5_17
– ident: e_1_2_6_23_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_6_28_1
  doi: 10.1152/physiolgenomics.00217.2005
– ident: e_1_2_6_20_1
  doi: 10.1109/42.668698
– ident: e_1_2_6_21_1
  doi: 10.1093/cercor/bhh165
– ident: e_1_2_6_36_1
  doi: 10.1016/j.neuroimage.2007.05.046
– ident: e_1_2_6_6_1
  doi: 10.1016/S0076-6879(10)76021-3
SSID ssj0009974
Score 2.2291453
Snippet Purpose Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout...
Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO)...
Purpose Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout...
PURPOSEOur aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1707
SubjectTerms Animal models
Animals
Animals, Newborn
brain development
cerebellum
Cerebellum - abnormalities
Cerebellum - growth & development
Cerebellum - pathology
Cerebellum - physiopathology
Developmental Disabilities - genetics
Developmental Disabilities - pathology
Developmental Disabilities - physiopathology
gastrulation brain homeobox 2 gene (Gbx2)
Homeodomain Proteins - genetics
Magnetic Resonance Imaging - methods
manganese-enhanced MRI (MEMRI)
Mice
Mice, Knockout
mid-hindbrain
Nervous System Malformations - genetics
Nervous System Malformations - pathology
Nervous System Malformations - physiopathology
Phenotype
Reproducibility of Results
Sensitivity and Specificity
Vestibule, Labyrinth - abnormalities
Vestibule, Labyrinth - growth & development
Vestibule, Labyrinth - pathology
vestibulo-cochlear organ
Title MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice
URI https://api.istex.fr/ark:/67375/WNG-PPWPN5K1-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24597
https://www.ncbi.nlm.nih.gov/pubmed/23400959
https://www.proquest.com/docview/1459165488
https://search.proquest.com/docview/1459974002
https://search.proquest.com/docview/1468351429
https://pubmed.ncbi.nlm.nih.gov/PMC3657598
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BEYgXCuUKFGQQQryk3TjOOlafKuiB0K5WBVTeovERsao2QUlX6s9n7GSzXXEIibcknsSO5_CMPf4M8KZMdJaikLHhVsXCJhgrxQ3dGi3SXCge0D5PP8vpt_zDkYfJOVjthenwIYYJN68ZwV57BUfd7q9BQxfNYo8L8ofJ_lKUELZvpLM14K7qEJil8HZGiRWq0IjvD29ujEW3fLde_c7R_DVf8rofGwai4-3_-oX7cK_3P9lhJzAP4IarduDOpF9h34HbISXUtA_BTs4-MuwxS1hdMuMa55cpsKHHlgV8Du2zWJldZx7Rt33WWO2ndls2r9iJvuKMgm4772Yd2UVFJrheXrIF2ahH8PX46Mv707g_kyE2WT6SpFQOiX1laY3N0HK0mbXJyCB3qIXDvKQIBGXJnTMUKgktSyPQOWnHVvDEpY9hq6or9xQYWQIxRuKPQhRZmqkEUefa491YVY7KCF6vuFP86KA3ig5kmRfUc0XouQjeBr4NFNhc-Fw1mRXn05NiNjufTbNPSZFFsLtibNGraUtxD9U6pqAtj-DVUEwK5ldNsHL1sqMhWaJa_0Yzzv2WCK4ieNLJytAgnooA_xyB3JCigcADfG-WVPPvAeg79atiitr2LkjRn3uhmJxNwsWzfyd9Dne5P9ojpObswtZls3Qv4GZrly-DJv0EXKIihg
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RVhwvHAVKoIBBCPESunGcwxIvCNpu1Wa1KkXlzZrYjrqqNkG7Xak_n7GTzbLiEBJvSTyJHc_hGXv8GeBNFZVJjCILNTcyFCbCUEqu6VaXIs6F5B7tc_glG33LP-87mJwPy70wLT5EP-HmNMPba6fgbkJ6b4UaOp1N33NBDvEGbImUBNFt4IjHK8hd2WIwZ8JZGimWuEIDvte_ujYabbmOvf6dq_lrxuTPnqwfig7u_d9P3Ie7nQvKPrYy8wBu2HobbhXdIvs23PRZoXr-EExxesSwgy1hTcW0nVm3UoEzemyYh-goXSIrM6vkI_q2Sxxr3OzunE1qdlhec0Zxt5m0E4_ssiYr3Cyu2JTM1CP4erB_9mkYdscyhDrJBxnplUXiYFUZbRI0HE1iTDTQyC2WwmJeURCCWcWt1RQtiTKrtEBrM5MawSMbP4bNuqntE2BkDESKxCCJKJI4kRFimZcO8sbIalAF8HrJHvW9Rd9QLc4yV9RzyvdcAG8943oKnF26dLUsUeejQzUen49HyXGkkgB2l5xVnabOKfShWlOK2_IAXvXFpGNu4QRr2yxaGhImqvVvNGnudkVwGcBOKyx9g3gsPAJ0ANmaGPUEDuN7vaSeXHis79gtjElq2zsvRn_uBVWcFv7i6b-TvoTbw7PiRJ0cjY6fwR3uTvrwmTq7sHk1W9jnsDE3ixderX4AkfMmrg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xTUy8DBgfCwwwCCFewhrHqWPxhNi6TaNVNEDjzXL8IaqpyZSu0v58zk6aUvEhJN6S-BI7vg_f2eefAV67pMxSxXisqRExM4mKhaAab3XJ0pwJGtA-Tz7zybf88MjD5Lxf7oVp8SH6CTevGcFeewW_Mu5gBRo6a2bvKEN_eAO2GLrhHjg_TYsV4q5oIZg584ZGsCWs0IAe9K-uDUZbvl9vfudp_pow-bMjG0ai0d3_-od7sNM5oORDKzH34ZatdmF73C2x78LtkBOq5w_AjM9PiepAS0jtiLaN9esUqsHHhgSAjtKnsRKzSj3Cb_u0sdrP7c7JtCLH5Q0lGHWbaTvtSC4rtMH14prM0Eg9hK-joy8fT-LuUIZYZ_mAo1ZZhfxzzmiTKUOVyYxJBlpRq0pmVe4wBFHcUWs1xkqs5E4zZS03Q8NoYtNHsFnVld0DgqaADRXyRyjFsjQTiVJlXnrAGyPcwEXwaskdedVib8gWZZlK7DkZei6CN4FvPYVqLn2yGs_kxeRYFsVFMcnOEplFsL9krOz0dI6BD9Y6xKgtj-BlX4wa5pdNVGXrRUuDsoS1_o1mmPs9EVRE8LiVlb5BNGUB_zkCviZFPYFH-F4vqabfA9J36pfFBLbtbZCiP_eCHJ-Pw8WTfyd9AdvF4Uh-Op2cPYU71B_zEdJ09mHzulnYZ7AxN4vnQal-AOihJVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+analysis+of+cerebellar+and+vestibular+developmental+phenotypes+in+Gbx2+conditional+knockout+mice&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Szulc%2C+Kamila+U.&rft.au=Nieman%2C+Brian+J.&rft.au=Houston%2C+Edward+J.&rft.au=Bartelle%2C+Benjamin+B.&rft.date=2013-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=70&rft.issue=6&rft.spage=1707&rft.epage=1717&rft_id=info:doi/10.1002%2Fmrm.24597&rft.externalDBID=10.1002%252Fmrm.24597&rft.externalDocID=MRM24597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon