MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice
Purpose Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2‐CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Metho...
Saved in:
Published in: | Magnetic resonance in medicine Vol. 70; no. 6; pp. 1707 - 1717 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-12-2013
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2‐CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes.
Methods
In vivo three‐dimensional manganese‐enhanced MRI at 100‐µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation‐based morphometry and volumetric analysis of manganese‐enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2‐CKO mice. Ex vivo micro‐MRI was performed after perfusion‐fixation with supplemented gadolinium for higher resolution (50‐µm) analysis.
Results
In vivo manganese‐enhanced MRI and deformation‐based morphometry correctly identified known cerebellar defects in Gbx2‐CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo‐cerebellum, both validated using histology. Ex vivo micro‐MRI revealed subtle phenotypes in both the vestibulo‐cerebellum and the vestibulo‐cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region.
Conclusion
These results show the potential of three‐dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707–1717, 2013. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | PURPOSEOur aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. METHODSIn vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. RESULTSIn vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. CONCLUSIONThese results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Purpose Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. Results In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707-1717, 2013. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Purpose Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three-dimensional manganese-enhanced MRI at 100- mu m isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50- mu m) analysis. Results In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707-1717, 2013. [copy 2013 Wiley Periodicals, Inc. Purpose Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2‐CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. Methods In vivo three‐dimensional manganese‐enhanced MRI at 100‐µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation‐based morphometry and volumetric analysis of manganese‐enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2‐CKO mice. Ex vivo micro‐MRI was performed after perfusion‐fixation with supplemented gadolinium for higher resolution (50‐µm) analysis. Results In vivo manganese‐enhanced MRI and deformation‐based morphometry correctly identified known cerebellar defects in Gbx2‐CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo‐cerebellum, both validated using histology. Ex vivo micro‐MRI revealed subtle phenotypes in both the vestibulo‐cerebellum and the vestibulo‐cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. Conclusion These results show the potential of three‐dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. Magn Reson Med 70:1707–1717, 2013. © 2013 Wiley Periodicals, Inc. Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases. |
Author | Lerch, Jason P. Turnbull, Daniel H. Joyner, Alexandra L. Nieman, Brian J. Houston, Edward J. Bartelle, Benjamin B. Szulc, Kamila U. |
AuthorAffiliation | 5 Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada 6 Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA 2 Biomedical Imaging, New York, NY, USA 3 Molecular Biophysics Graduate Programs, New York, NY, USA 1 Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine 4 Departments of Radiology and Pathology, New York University School of Medicine, New York, NY, USA |
AuthorAffiliation_xml | – name: 6 Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA – name: 1 Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine – name: 2 Biomedical Imaging, New York, NY, USA – name: 4 Departments of Radiology and Pathology, New York University School of Medicine, New York, NY, USA – name: 3 Molecular Biophysics Graduate Programs, New York, NY, USA – name: 5 Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada |
Author_xml | – sequence: 1 givenname: Kamila U. surname: Szulc fullname: Szulc, Kamila U. organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA – sequence: 2 givenname: Brian J. surname: Nieman fullname: Nieman, Brian J. organization: Mouse Imaging Centre, Hospital for Sick Children, Ontario, Toronto, Canada – sequence: 3 givenname: Edward J. surname: Houston fullname: Houston, Edward J. organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA – sequence: 4 givenname: Benjamin B. surname: Bartelle fullname: Bartelle, Benjamin B. organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA – sequence: 5 givenname: Jason P. surname: Lerch fullname: Lerch, Jason P. organization: Mouse Imaging Centre, Hospital for Sick Children, Ontario, Toronto, Canada – sequence: 6 givenname: Alexandra L. surname: Joyner fullname: Joyner, Alexandra L. organization: Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA – sequence: 7 givenname: Daniel H. surname: Turnbull fullname: Turnbull, Daniel H. email: daniel.turnbull@med.nyu.edu organization: Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23400959$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFBS-AIrGBRVrbseNkg1RVMFR0yqgCdWk59g11J4mDnQydt8ch7QiQkFj577vH955zhA461wFCLwk-IRjT09a3J5TxUjxBC8IpTSkv2QFaYMFwmpGSHaKjEO4wxmUp2DN0SDMW97xcILO6vkhUp5pdsCFxdaLBQwVNo3y8NskWwmCrcToa2ELj-ha6QTVJfwudG3Y9hMR2ybK6p4l2nbGDdVEt2XROb9w4JK3V8Bw9rVUT4MXDeoy-fnj_5fxjevl5eXF-dplqXmCRUgyK0ryujTZcGaoMN4ZgrSioioEq6lxwJWoKoGmOWSVqzRSAMLlhlEB2jN7Nuv1YtWB07NSrRvbetsrvpFNW_vnS2Vv5zW1llnPByyIKvHkQ8O77GEeXrQ16cqMDNwZJWF5knDBa_gfKJ7NjPBF9_Rd650YfXZopknNWTH-_nSntXQge6n3fBMspZhljlr9ijuyr3wfdk4-5RuB0Bn7YBnb_VpKr69WjZDpX2DDA_b5C-Y3MRSa4vLlayvX6Zn3FPxHJs59Z2cWh |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2015_05_029 crossref_primary_10_1016_j_neuroimage_2023_120198 crossref_primary_10_1038_s41565_018_0092_4 crossref_primary_10_1101_gad_307330_117 crossref_primary_10_1089_omi_2023_0056 crossref_primary_10_1111_epi_14759 crossref_primary_10_1016_j_neo_2014_10_001 crossref_primary_10_1016_j_neuroimage_2014_04_043 crossref_primary_10_3389_fninf_2014_00067 crossref_primary_10_1007_s11307_016_1006_1 crossref_primary_10_1007_s12311_015_0724_2 crossref_primary_10_1016_j_neuroimage_2020_117271 |
Cites_doi | 10.1007/s12311-011-0254-5 10.1002/nbm.1146 10.1016/j.cell.2006.12.018 10.1038/nrn2851 10.1016/j.neuroimage.2008.04.252 10.1097/00004728-199403000-00005 10.1016/j.neuroimage.2010.03.038 10.1007/s12311-008-0017-0 10.1242/dev.128.2.181 10.1242/dev.124.15.2923 10.1002/aur.215 10.1016/S0070-2153(05)69005-9 10.1016/S0169-328X(00)00194-7 10.1016/j.conb.2008.05.010 10.3389/fpsyt.2012.00037 10.1002/mrm.21609 10.1002/hbm.20408 10.1016/j.gde.2011.08.009 10.1002/nbm.932 10.1146/annurev.neuro.24.1.869 10.1016/S0896-6273(04)00802-5 10.1016/j.neuroimage.2008.10.016 10.1146/annurev.cellbio.23.090506.123237 10.1080/14734220601184821 10.1007/s12311-010-0169-6 10.1016/S0896-6273(02)00935-2 10.1016/j.neuroimage.2007.08.033 10.1385/BTER:111:1:199 10.1016/j.neuroimage.2005.04.017 10.1007/978-1-61737-992-5_17 10.1111/j.2517-6161.1995.tb02031.x 10.1152/physiolgenomics.00217.2005 10.1109/42.668698 10.1093/cercor/bhh165 10.1016/j.neuroimage.2007.05.046 10.1016/S0076-6879(10)76021-3 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 7QO 7TK 5PM |
DOI | 10.1002/mrm.24597 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1717 |
ExternalDocumentID | 3128926231 10_1002_mrm_24597 23400959 MRM24597 ark_67375_WNG_PPWPN5K1_5 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: RO1 N5038461 – fundername: NINDS NIH HHS grantid: R01 NS038461 – fundername: NCRR NIH HHS grantid: S10 RR021179 – fundername: PHS HHS grantid: R01 N5038461 – fundername: NCI NIH HHS grantid: P30 CA016087 – fundername: National Center for Research Resources : NCRR grantid: S10 RR021179 || RR – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS038461 || NS – fundername: National Cancer Institute : NCI grantid: P30 CA016087 || CA |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT G8K CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 7QO 7TK 5PM |
ID | FETCH-LOGICAL-c5807-20ea226ffdcd5ad2ad5dd10ca2eab4ea8f675a7f2eec2604b7fc4aee7d6d421e3 |
IEDL.DBID | 33P |
ISSN | 0740-3194 |
IngestDate | Tue Sep 17 21:24:33 EDT 2024 Sat Aug 17 01:12:38 EDT 2024 Sat Aug 17 02:49:26 EDT 2024 Thu Oct 10 22:50:25 EDT 2024 Thu Nov 21 21:18:07 EST 2024 Sat Sep 28 07:53:24 EDT 2024 Sat Aug 24 00:54:21 EDT 2024 Wed Oct 30 09:55:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | brain development mid-hindbrain manganese-enhanced MRI (MEMRI) cerebellum gastrulation brain homeobox 2 gene (Gbx2) vestibulo-cochlear organ |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5807-20ea226ffdcd5ad2ad5dd10ca2eab4ea8f675a7f2eec2604b7fc4aee7d6d421e3 |
Notes | ArticleID:MRM24597 istex:D618F4B1E889CD4BBFEE16F15547DC0C71BB45D0 ark:/67375/WNG-PPWPN5K1-5 NIH - No. RO1 N5038461 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24597 |
PMID | 23400959 |
PQID | 1459165488 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3657598 proquest_miscellaneous_1468351429 proquest_miscellaneous_1459974002 proquest_journals_1459165488 crossref_primary_10_1002_mrm_24597 pubmed_primary_23400959 wiley_primary_10_1002_mrm_24597_MRM24597 istex_primary_ark_67375_WNG_PPWPN5K1_5 |
PublicationCentury | 2000 |
PublicationDate | December 2013 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Fatemi SH, Reutiman TJ, Folsom TD, Sidwell RW. The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum 2008;7:279-294. Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol 2008;18:12-19. Kovacevic N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, Henkelman RM, Chen XJ. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 2005;15:639-645. Lerch JP, Sled JG, Henkelman RM. MRI phenotyping of genetically altered mice. Methods Mol Biol 2011;711:349-361. Deans AE, Wadghiri YZ, Berrios-Otero CA, Turnbull DH. Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system. Magn Reson Med 2008;59:1320-1328. Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genomics 2006;24:154-162. Ali AA, Dale AM, Badea A, Johnson GA. Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain. Neuroimage 2005;27:425-435. Gowen E, Miall RC. The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum 2007;6:268-279. Maheswaran S, Barjat H, Bate ST, Aljabar P, Hill DL, Tilling L, Upton N, James MF, Hajnal JV, Rueckert D. Analysis of serial magnetic resonance images of mouse brains using image registration. Neuroimage 2009;44:692-700. Lau JC, Lerch JP, Sled JG, Henkelman RM, Evans AC, Bedell BJ. Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer's disease. Neuroimage 2008;42:19-27. Badea A, Ali-Sharief AA, Johnson GA. Morphometric analysis of the C57BL/6J mouse brain. Neuroimage 2007;37:683-693. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010;11:490-502. Li JY, Lao Z, Joyner AL. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 2002;36:31-43. Collins FS, Rossant J, Wurst W. A mouse for all reasons. Cell 2007;128:9-13. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994;18:192-205. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87-97. Nieman BJ, Wong MD, Henkelman RM. Genes into geometry: imaging for mouse development in 3D. Curr Opin Genet Dev 2011;21:638-646. Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 2007;23:549-577. Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M. Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 2006;111:199-215. Ellegood J, Henkelman RM, Lerch JP. Neuroanatomical assessment of the integrin beta3 mouse model related to autism and the serotonin system using high resolution MRI. Front Psychiatry 2012;3:37. Zervas M, Blaess S, Joyner AL. Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr Top Dev Biol 2005;69:101-138. Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 1997;124:2923-2934. Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled JG, Henkelman RM. Mouse behavioral mutants have neuroimaging abnormalities. Hum Brain Mapp 2007;28:567-575. Nieman BJ, Turnbull DH. Ultrasound and magnetic resonance microimaging of mouse development. Methods Enzymol 2010;476:379-400. Wilson SL, Kalinovsky A, Orvis GD, Joyner AL. Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types. Cerebellum 2011;10:356-372. Turnbull DH, Mori S. MRI in mouse developmental biology. NMR Biomed 2007;20:265-274. Liu A, Joyner AL. EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 2001;128:181-191. Liu A, Joyner AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 2001;24:869-896. Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010;53:1023-1029. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 2005;45:27-40. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 1995;57:289-300. Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Henkelman RM. Automated deformation analysis in the YAC128 Huntington disease mouse model. Neuroimage 2008;39:32-39. Sajan SA, Waimey KE, Millen KJ. Novel approaches to studying the genetic basis of cerebellar development. Cerebellum 2010;9:272-283. Paxinos G, Franklin KBG. The mouse brain in stereotaxic coordinates. San Diego: Elsevier Academic Press; 2001. Wadghiri YZ, Blind JA, Duan X, Moreno C, Yu X, Joyner AL, Turnbull DH. Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development. NMR Biomed 2004;17:613-619. Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism. Autism Res 2011;4:368-376. 2010; 11 2009; 44 2002; 36 2010; 53 2007; 128 2011; 711 2008; 18 1995; 57 2008; 39 2008; 59 2008; 7 2011; 10 2011; 4 2005; 27 2001; 24 2005; 45 2006; 111 2001; 128 2007; 37 2005; 69 1997; 124 2007; 28 1998; 17 2012; 3 2001 2006; 24 2004; 17 2010; 476 2007; 6 2011; 21 1994; 18 2008; 42 2007; 20 2005; 15 2007; 23 2010; 9 20559336 - Nat Rev Neurosci. 2010 Jul;11(7):490-502 17437292 - Hum Brain Mapp. 2007 Jun;28(6):567-75 21882360 - Autism Res. 2011 Oct;4(5):368-76 21279611 - Methods Mol Biol. 2011;711:349-61 17218247 - Cell. 2007 Jan 12;128(1):9-13 20387026 - Cerebellum. 2010 Sep;9(3):272-83 17942324 - Neuroimage. 2008 Jan 1;39(1):32-9 16943606 - Biol Trace Elem Res. 2006 Summer;111(1-3):199-215 20691877 - Methods Enzymol. 2010;476:379-400 18418686 - Cerebellum. 2008;7(3):279-94 22557981 - Front Psychiatry. 2012 Apr 26;3:37 17506688 - Annu Rev Cell Dev Biol. 2007;23:549-77 21431469 - Cerebellum. 2011 Sep;10(3):356-72 11520921 - Annu Rev Neurosci. 2001;24:869-96 21907568 - Curr Opin Genet Dev. 2011 Oct;21(5):638-46 18513948 - Curr Opin Neurobiol. 2008 Feb;18(1):12-9 17451170 - NMR Biomed. 2007 May;20(3):265-74 15761950 - NMR Biomed. 2004 Dec;17(8):613-9 17786823 - Cerebellum. 2007;6(3):268-79 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 18547819 - Neuroimage. 2008 Aug 1;42(1):19-27 11124114 - Development. 2001 Jan;128(2):181-91 18506798 - Magn Reson Med. 2008 Jun;59(6):1320-8 20304074 - Neuroimage. 2010 Nov 15;53(3):1023-9 16410543 - Physiol Genomics. 2006 Jan 12;24(2):154-62 15908233 - Neuroimage. 2005 Aug 15;27(2):425-35 15342433 - Cereb Cortex. 2005 May;15(5):639-45 9247335 - Development. 1997 Aug;124(15):2923-34 12367504 - Neuron. 2002 Sep 26;36(1):31-43 16243598 - Curr Top Dev Biol. 2005;69:101-38 17627846 - Neuroimage. 2007 Sep 1;37(3):683-93 19015039 - Neuroimage. 2009 Feb 1;44(3):692-700 15629700 - Neuron. 2005 Jan 6;45(1):27-40 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 20 start-page: 265 year: 2007 end-page: 274 article-title: MRI in mouse developmental biology publication-title: NMR Biomed – volume: 24 start-page: 154 year: 2006 end-page: 162 article-title: Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography publication-title: Physiol Genomics – volume: 128 start-page: 9 year: 2007 end-page: 13 article-title: A mouse for all reasons publication-title: Cell – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc B Methodol – volume: 59 start-page: 1320 year: 2008 end-page: 1328 article-title: Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system publication-title: Magn Reson Med – volume: 37 start-page: 683 year: 2007 end-page: 693 article-title: Morphometric analysis of the C57BL/6J mouse brain publication-title: Neuroimage – year: 2001 – volume: 21 start-page: 638 year: 2011 end-page: 646 article-title: Genes into geometry: imaging for mouse development in 3D publication-title: Curr Opin Genet Dev – volume: 10 start-page: 356 year: 2011 end-page: 372 article-title: Spatially restricted and developmentally dynamic expression of engrailed genes in multiple cerebellar cell types publication-title: Cerebellum – volume: 45 start-page: 27 year: 2005 end-page: 40 article-title: Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping publication-title: Neuron – volume: 476 start-page: 379 year: 2010 end-page: 400 article-title: Ultrasound and magnetic resonance microimaging of mouse development publication-title: Methods Enzymol – volume: 111 start-page: 199 year: 2006 end-page: 215 article-title: Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese publication-title: Biol Trace Elem Res – volume: 18 start-page: 192 year: 1994 end-page: 205 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J Comput Assist Tomogr – volume: 69 start-page: 101 year: 2005 end-page: 138 article-title: Classical embryological studies and modern genetic analysis of midbrain and cerebellum development publication-title: Curr Top Dev Biol – volume: 6 start-page: 268 year: 2007 end-page: 279 article-title: The cerebellum and motor dysfunction in neuropsychiatric disorders publication-title: Cerebellum – volume: 9 start-page: 272 year: 2010 end-page: 283 article-title: Novel approaches to studying the genetic basis of cerebellar development publication-title: Cerebellum – volume: 18 start-page: 12 year: 2008 end-page: 19 article-title: Cerebellar development and disease publication-title: Curr Opin Neurobiol – volume: 17 start-page: 613 year: 2004 end-page: 619 article-title: Manganese‐enhanced magnetic resonance imaging (MEMRI) of mouse brain development publication-title: NMR Biomed – volume: 124 start-page: 2923 year: 1997 end-page: 2934 article-title: Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function publication-title: Development – volume: 23 start-page: 549 year: 2007 end-page: 577 article-title: Morphology, molecular codes, and circuitry produce the three‐dimensional complexity of the cerebellum publication-title: Annu Rev Cell Dev Biol – volume: 28 start-page: 567 year: 2007 end-page: 575 article-title: Mouse behavioral mutants have neuroimaging abnormalities publication-title: Hum Brain Mapp – volume: 44 start-page: 692 year: 2009 end-page: 700 article-title: Analysis of serial magnetic resonance images of mouse brains using image registration publication-title: Neuroimage – volume: 3 start-page: 37 year: 2012 article-title: Neuroanatomical assessment of the integrin beta3 mouse model related to autism and the serotonin system using high resolution MRI publication-title: Front Psychiatry – volume: 711 start-page: 349 year: 2011 end-page: 361 article-title: MRI phenotyping of genetically altered mice publication-title: Methods Mol Biol – volume: 39 start-page: 32 year: 2008 end-page: 39 article-title: Automated deformation analysis in the YAC128 Huntington disease mouse model publication-title: Neuroimage – volume: 15 start-page: 639 year: 2005 end-page: 645 article-title: A three‐dimensional MRI atlas of the mouse brain with estimates of the average and variability publication-title: Cereb Cortex – volume: 42 start-page: 19 year: 2008 end-page: 27 article-title: Longitudinal neuroanatomical changes determined by deformation‐based morphometry in a mouse model of Alzheimer's disease publication-title: Neuroimage – volume: 7 start-page: 279 year: 2008 end-page: 294 article-title: The role of cerebellar genes in pathology of autism and schizophrenia publication-title: Cerebellum – volume: 4 start-page: 368 year: 2011 end-page: 376 article-title: Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism publication-title: Autism Res – volume: 36 start-page: 31 year: 2002 end-page: 43 article-title: Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer publication-title: Neuron – volume: 27 start-page: 425 year: 2005 end-page: 435 article-title: Automated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain publication-title: Neuroimage – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 53 start-page: 1023 year: 2010 end-page: 1029 article-title: Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging publication-title: Neuroimage – volume: 24 start-page: 869 year: 2001 end-page: 896 article-title: Early anterior/posterior patterning of the midbrain and cerebellum publication-title: Annu Rev Neurosci – volume: 11 start-page: 490 year: 2010 end-page: 502 article-title: Behavioural phenotyping assays for mouse models of autism publication-title: Nat Rev Neurosci – volume: 128 start-page: 181 year: 2001 end-page: 191 article-title: EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region publication-title: Development – ident: e_1_2_6_25_1 doi: 10.1007/s12311-011-0254-5 – ident: e_1_2_6_5_1 doi: 10.1002/nbm.1146 – ident: e_1_2_6_2_1 doi: 10.1016/j.cell.2006.12.018 – ident: e_1_2_6_4_1 doi: 10.1038/nrn2851 – ident: e_1_2_6_31_1 doi: 10.1016/j.neuroimage.2008.04.252 – ident: e_1_2_6_19_1 doi: 10.1097/00004728-199403000-00005 – ident: e_1_2_6_32_1 doi: 10.1016/j.neuroimage.2010.03.038 – ident: e_1_2_6_14_1 doi: 10.1007/s12311-008-0017-0 – ident: e_1_2_6_9_1 doi: 10.1242/dev.128.2.181 – ident: e_1_2_6_16_1 doi: 10.1242/dev.124.15.2923 – ident: e_1_2_6_33_1 doi: 10.1002/aur.215 – ident: e_1_2_6_12_1 doi: 10.1016/S0070-2153(05)69005-9 – ident: e_1_2_6_24_1 doi: 10.1016/S0169-328X(00)00194-7 – ident: e_1_2_6_15_1 doi: 10.1016/j.conb.2008.05.010 – ident: e_1_2_6_34_1 doi: 10.3389/fpsyt.2012.00037 – ident: e_1_2_6_26_1 doi: 10.1002/mrm.21609 – ident: e_1_2_6_29_1 doi: 10.1002/hbm.20408 – ident: e_1_2_6_7_1 doi: 10.1016/j.gde.2011.08.009 – ident: e_1_2_6_18_1 doi: 10.1002/nbm.932 – ident: e_1_2_6_8_1 doi: 10.1146/annurev.neuro.24.1.869 – ident: e_1_2_6_10_1 doi: 10.1016/S0896-6273(04)00802-5 – ident: e_1_2_6_37_1 doi: 10.1016/j.neuroimage.2008.10.016 – ident: e_1_2_6_11_1 doi: 10.1146/annurev.cellbio.23.090506.123237 – ident: e_1_2_6_13_1 doi: 10.1080/14734220601184821 – ident: e_1_2_6_3_1 doi: 10.1007/s12311-010-0169-6 – ident: e_1_2_6_17_1 doi: 10.1016/S0896-6273(02)00935-2 – ident: e_1_2_6_30_1 doi: 10.1016/j.neuroimage.2007.08.033 – ident: e_1_2_6_27_1 doi: 10.1385/BTER:111:1:199 – ident: e_1_2_6_35_1 doi: 10.1016/j.neuroimage.2005.04.017 – ident: e_1_2_6_22_1 doi: 10.1007/978-1-61737-992-5_17 – ident: e_1_2_6_23_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_6_28_1 doi: 10.1152/physiolgenomics.00217.2005 – ident: e_1_2_6_20_1 doi: 10.1109/42.668698 – ident: e_1_2_6_21_1 doi: 10.1093/cercor/bhh165 – ident: e_1_2_6_36_1 doi: 10.1016/j.neuroimage.2007.05.046 – ident: e_1_2_6_6_1 doi: 10.1016/S0076-6879(10)76021-3 |
SSID | ssj0009974 |
Score | 2.2291453 |
Snippet | Purpose
Our aim in this study was to apply three‐dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout... Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO)... Purpose Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout... PURPOSEOur aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1707 |
SubjectTerms | Animal models Animals Animals, Newborn brain development cerebellum Cerebellum - abnormalities Cerebellum - growth & development Cerebellum - pathology Cerebellum - physiopathology Developmental Disabilities - genetics Developmental Disabilities - pathology Developmental Disabilities - physiopathology gastrulation brain homeobox 2 gene (Gbx2) Homeodomain Proteins - genetics Magnetic Resonance Imaging - methods manganese-enhanced MRI (MEMRI) Mice Mice, Knockout mid-hindbrain Nervous System Malformations - genetics Nervous System Malformations - pathology Nervous System Malformations - physiopathology Phenotype Reproducibility of Results Sensitivity and Specificity Vestibule, Labyrinth - abnormalities Vestibule, Labyrinth - growth & development Vestibule, Labyrinth - pathology vestibulo-cochlear organ |
Title | MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice |
URI | https://api.istex.fr/ark:/67375/WNG-PPWPN5K1-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24597 https://www.ncbi.nlm.nih.gov/pubmed/23400959 https://www.proquest.com/docview/1459165488 https://search.proquest.com/docview/1459974002 https://search.proquest.com/docview/1468351429 https://pubmed.ncbi.nlm.nih.gov/PMC3657598 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BEYgXCuUKFGQQQryk3TjOOlafKuiB0K5WBVTeovERsao2QUlX6s9n7GSzXXEIibcknsSO5_CMPf4M8KZMdJaikLHhVsXCJhgrxQ3dGi3SXCge0D5PP8vpt_zDkYfJOVjthenwIYYJN68ZwV57BUfd7q9BQxfNYo8L8ofJ_lKUELZvpLM14K7qEJil8HZGiRWq0IjvD29ujEW3fLde_c7R_DVf8rofGwai4-3_-oX7cK_3P9lhJzAP4IarduDOpF9h34HbISXUtA_BTs4-MuwxS1hdMuMa55cpsKHHlgV8Du2zWJldZx7Rt33WWO2ndls2r9iJvuKMgm4772Yd2UVFJrheXrIF2ahH8PX46Mv707g_kyE2WT6SpFQOiX1laY3N0HK0mbXJyCB3qIXDvKQIBGXJnTMUKgktSyPQOWnHVvDEpY9hq6or9xQYWQIxRuKPQhRZmqkEUefa491YVY7KCF6vuFP86KA3ig5kmRfUc0XouQjeBr4NFNhc-Fw1mRXn05NiNjufTbNPSZFFsLtibNGraUtxD9U6pqAtj-DVUEwK5ldNsHL1sqMhWaJa_0Yzzv2WCK4ieNLJytAgnooA_xyB3JCigcADfG-WVPPvAeg79atiitr2LkjRn3uhmJxNwsWzfyd9Dne5P9ojpObswtZls3Qv4GZrly-DJv0EXKIihg |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RVhwvHAVKoIBBCPESunGcwxIvCNpu1Wa1KkXlzZrYjrqqNkG7Xak_n7GTzbLiEBJvSTyJHc_hGXv8GeBNFZVJjCILNTcyFCbCUEqu6VaXIs6F5B7tc_glG33LP-87mJwPy70wLT5EP-HmNMPba6fgbkJ6b4UaOp1N33NBDvEGbImUBNFt4IjHK8hd2WIwZ8JZGimWuEIDvte_ujYabbmOvf6dq_lrxuTPnqwfig7u_d9P3Ie7nQvKPrYy8wBu2HobbhXdIvs23PRZoXr-EExxesSwgy1hTcW0nVm3UoEzemyYh-goXSIrM6vkI_q2Sxxr3OzunE1qdlhec0Zxt5m0E4_ssiYr3Cyu2JTM1CP4erB_9mkYdscyhDrJBxnplUXiYFUZbRI0HE1iTDTQyC2WwmJeURCCWcWt1RQtiTKrtEBrM5MawSMbP4bNuqntE2BkDESKxCCJKJI4kRFimZcO8sbIalAF8HrJHvW9Rd9QLc4yV9RzyvdcAG8943oKnF26dLUsUeejQzUen49HyXGkkgB2l5xVnabOKfShWlOK2_IAXvXFpGNu4QRr2yxaGhImqvVvNGnudkVwGcBOKyx9g3gsPAJ0ANmaGPUEDuN7vaSeXHis79gtjElq2zsvRn_uBVWcFv7i6b-TvoTbw7PiRJ0cjY6fwR3uTvrwmTq7sHk1W9jnsDE3ixderX4AkfMmrg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xTUy8DBgfCwwwCCFewhrHqWPxhNi6TaNVNEDjzXL8IaqpyZSu0v58zk6aUvEhJN6S-BI7vg_f2eefAV67pMxSxXisqRExM4mKhaAab3XJ0pwJGtA-Tz7zybf88MjD5Lxf7oVp8SH6CTevGcFeewW_Mu5gBRo6a2bvKEN_eAO2GLrhHjg_TYsV4q5oIZg584ZGsCWs0IAe9K-uDUZbvl9vfudp_pow-bMjG0ai0d3_-od7sNM5oORDKzH34ZatdmF73C2x78LtkBOq5w_AjM9PiepAS0jtiLaN9esUqsHHhgSAjtKnsRKzSj3Cb_u0sdrP7c7JtCLH5Q0lGHWbaTvtSC4rtMH14prM0Eg9hK-joy8fT-LuUIZYZ_mAo1ZZhfxzzmiTKUOVyYxJBlpRq0pmVe4wBFHcUWs1xkqs5E4zZS03Q8NoYtNHsFnVld0DgqaADRXyRyjFsjQTiVJlXnrAGyPcwEXwaskdedVib8gWZZlK7DkZei6CN4FvPYVqLn2yGs_kxeRYFsVFMcnOEplFsL9krOz0dI6BD9Y6xKgtj-BlX4wa5pdNVGXrRUuDsoS1_o1mmPs9EVRE8LiVlb5BNGUB_zkCviZFPYFH-F4vqabfA9J36pfFBLbtbZCiP_eCHJ-Pw8WTfyd9AdvF4Uh-Op2cPYU71B_zEdJ09mHzulnYZ7AxN4vnQal-AOihJVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+analysis+of+cerebellar+and+vestibular+developmental+phenotypes+in+Gbx2+conditional+knockout+mice&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Szulc%2C+Kamila+U.&rft.au=Nieman%2C+Brian+J.&rft.au=Houston%2C+Edward+J.&rft.au=Bartelle%2C+Benjamin+B.&rft.date=2013-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=70&rft.issue=6&rft.spage=1707&rft.epage=1717&rft_id=info:doi/10.1002%2Fmrm.24597&rft.externalDBID=10.1002%252Fmrm.24597&rft.externalDocID=MRM24597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |