Using tea stalk lignocellulose as an adsorbent for separating decaffeinated tea catechins
Lignocelluloses prepared from woody tea stalk, pine sawdust and sugarcane bagasse were used as adsorbents to isolate decaffeinated catechins from tea extracts and compared with synthetic macroporous resin HPD 600. HPD 600 had the highest adsorption capacity to catechins, followed by tea stalk lignoc...
Saved in:
Published in: | Bioresource technology Vol. 100; no. 2; pp. 622 - 628 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-01-2009
[New York, NY]: Elsevier Ltd Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lignocelluloses prepared from woody tea stalk, pine sawdust and sugarcane bagasse were used as adsorbents to isolate decaffeinated catechins from tea extracts and compared with synthetic macroporous resin HPD 600. HPD 600 had the highest adsorption capacity to catechins, followed by tea stalk lignocellulose while lignocelluloses of pine sawdust and bagasse the least. Tea stalk lignocellulose absorbed preferentially tea catechins and showed a good selectivity. HPD 600 absorbed caffeine and tea catechins simultaneously. The kinetics data of tea stalk lignocellulose showed a good fit with the Langmuir isotherm model. It is considered that tea stalk lignocellulose is an alternative low-cost adsorbent for preparing decaffeinated tea catechins. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.biortech.2008.07.003 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2008.07.003 |