Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk

The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to e...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 7; no. 1; p. 12877
Main Authors: Shumakova, V., Malevich, P., Ališauskas, S., Voronin, A., Zheltikov, A. M., Faccio, D., Kartashov, D., Baltuška, A., Pugžlys, A.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13-09-2016
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. Exploring strong-field laser interaction requires pulses that are both energetic and short. Here, the authors demonstrate a mid-IR soliton-like pulse compression in a mm-long YAG crystal, reaching the multi-millijoule energy range and showing pulse filamentation in atmospheric air.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12877