Bayesian analysis of human movement curves

We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to descr...

Full description

Saved in:
Bibliographic Details
Published in:Applied statistics Vol. 56; no. 4; pp. 415 - 428
Main Authors: Alshabani, A. K. S., Dryden, I. L., Litton, C. D., Richardson, J.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-08-2007
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
Series:Journal of the Royal Statistical Society Series C
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing-the Bayesian methodology is easily adapted to cope with this situation.
AbstractList We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing—the Bayesian methodology is easily adapted to cope with this situation.
We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing--the Bayesian methodology is easily adapted to cope with this situation. [PUBLICATION ABSTRACT]
We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing-the Bayesian methodology is easily adapted to cope with this situation. Copyright 2007 Royal Statistical Society.
We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing-the Bayesian methodology is easily adapted to cope with this situation. Reprinted by permission of Blackwell Publishers
Author Litton, C. D.
Richardson, J.
Dryden, I. L.
Alshabani, A. K. S.
Author_xml – sequence: 1
  givenname: A. K. S.
  surname: Alshabani
  fullname: Alshabani, A. K. S.
  organization: University of Sebha, Libya
– sequence: 2
  givenname: I. L.
  surname: Dryden
  fullname: Dryden, I. L.
  organization: University of Nottingham, UK
– sequence: 3
  givenname: C. D.
  surname: Litton
  fullname: Litton, C. D.
  organization: University of Nottingham, UK
– sequence: 4
  givenname: J.
  surname: Richardson
  fullname: Richardson, J.
  organization: Institut National de la Santé et de la Recherche Médicale, U731, Paris, and Université Paris Sud, Paris, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19013272$$DView record in Pascal Francis
http://econpapers.repec.org/article/blajorssc/v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415-428.htm$$DView record in RePEc
BookMark eNqNUE2L1EAQbWQFZ0f_gYcg6EFI7E5_pQ8edHB2lUXFUTwWPU2FTczHbHcyTv69nc0ygicLqqup915R9S7JRdd3SEjCaMZivKkzJpROTaFVllOqM0plIbLTI7I6AxdkRSmXqcmleEIuQ6hpDEbFirx-bycMle0S29lmClVI-jK5HdvYafsjttgNiRv9EcNT8ri0TcBnD3VNfmw_fN9cpzdfrj5u3t2kTmotUk4NM6i5sxJV7OyxKCzjeyeF4LlUnEnhWCmVEGYv0AlUKKJGmti2kvI1ebXMPfj-bsQwQFsFh01jO-zHAFzpnFOtI_HFP8S6H308I0BOmaacGxlJxUJyvg_BYwkHX7XWT8AozA5CDbNRMBsFs4Nw7yCcovTTIvV4QHfW7Rtb9z4EB0fgVqr4TDHvpdxWMUXMw1yZBJEXcDu0cdjLh2VtcLYpve1cFf4uYyjjeTxsTd4uvN9Vg9N_LwvfdrtN_EX980Vfh6H3Z71QudJaRThd4CoMeDrD1v8CpbmW8PPzFZgN-7rVuy1c8z9pJbRe
CODEN APSTAG
CitedBy_id crossref_primary_10_1080_01621459_2020_1724115
crossref_primary_10_1198_016214507000001210
Cites_doi 10.1007/BF00231466
10.1201/9780429258480
10.1016/S0001-6918(98)00024-9
10.1523/JNEUROSCI.20-03-01066.2000
10.1093/biomet/87.3.587
10.1037/0096-1523.23.3.890
10.1037/0096-1523.22.1.42
10.1007/BF00236911
10.1111/1467-9868.00129
10.1111/1467-9868.00283
10.1093/biomet/92.4.801
10.2307/3315251.n
10.1007/BF00204593
10.1007/BF00228983
10.1198/016214503000189
10.1198/106186004X2507
10.1111/j.1467-9868.2004.B5582.x
ContentType Journal Article
Copyright Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd.
2007 INIST-CNRS
2007 Royal Statistical Society
Copyright_xml – notice: Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2007 INIST-CNRS
– notice: 2007 Royal Statistical Society
DBID BSCLL
IQODW
DKI
X2L
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1111/j.1467-9876.2007.00584.x
DatabaseName Istex
Pascal-Francis
RePEc IDEAS
RePEc
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

International Bibliography of the Social Sciences (IBSS)


International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Computer Science
Mathematics
EISSN 1467-9876
EndPage 428
ExternalDocumentID 1323895881
10_1111_j_1467_9876_2007_00584_x
blajorssc_v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415_428_htm
19013272
RSSC584
4626776
ark_67375_WNG_9C1PF7SF_H
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OB
1OC
1OL
29L
2AX
3-9
31~
33P
3R3
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCSF
ABCUV
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYAD
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
OWPYF
P2W
P2X
P4D
PQQKQ
PZZ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TUS
U5U
UAP
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
ZGI
ZL0
ZZTAW
~IA
~WT
0R~
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AIHXQ
EFSUC
OJZSN
IQODW
SAMSI
0R
31
3N
4S
ABDEX
AS
DKI
FSPIC
GA
HZ
IA
IPNFZ
MEWTI
NF
P4A
PQEST
RIG
WRC
WT
X
X2L
XHC
Y3
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5774-30919e73ca5e6577be88a13bc54432563154c1f56449b4ec4e6e4091594c1a503
IEDL.DBID 33P
ISSN 0035-9254
IngestDate Fri Oct 25 05:14:55 EDT 2024
Thu Oct 10 20:38:31 EDT 2024
Fri Nov 22 00:28:42 EST 2024
Wed Aug 18 03:51:56 EDT 2021
Sun Oct 22 16:09:31 EDT 2023
Sat Aug 24 00:58:33 EDT 2024
Fri Feb 02 07:04:36 EST 2024
Wed Oct 30 09:47:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bayes estimation
Human
Data analysis
Correlation
Three-dimensional calculations
Shape
Image processing
Functional data
Metropolis-Hastings algorithm
Covariate
Gibbs sampling
Algorithm
Mean estimation
Statistics
Missing data
Distribution function
Hierarchical model
Markov chain Monte Carlo methods
Application
Procrustes analysis
Posterior distribution
Human movement
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5774-30919e73ca5e6577be88a13bc54432563154c1f56449b4ec4e6e4091594c1a503
Notes ark:/67375/WNG-9C1PF7SF-H
ArticleID:RSSC584
istex:1AC99D7509C1FAA63B767D918EEE9A87D2AAB8C2
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/jrsssc/article-pdf/56/4/415/50007835/jrsssc_56_4_415.pdf
PQID 201703395
PQPubID 32577
PageCount 14
ParticipantIDs proquest_miscellaneous_36723077
proquest_journals_201703395
crossref_primary_10_1111_j_1467_9876_2007_00584_x
repec_primary_blajorssc_v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415_428_htm
pascalfrancis_primary_19013272
wiley_primary_10_1111_j_1467_9876_2007_00584_x_RSSC584
jstor_primary_4626776
istex_primary_ark_67375_WNG_9C1PF7SF_H
PublicationCentury 2000
PublicationDate August 2007
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: August 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationSeriesTitle Journal of the Royal Statistical Society Series C
PublicationTitle Applied statistics
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishers
– name: Blackwell
– name: Royal Statistical Society
– name: Oxford University Press
References Gervini , D. and Gasser , T. ( 2005 ) Nonparametric maximum likelihood estimation of the structural mean of a sample of curves . Biometrika , 92 , 801 - 820 .
Morasso , P. ( 1981 ) Spatial control of arm movements . Exptl Brain Res. , 42 , 223 - 227 .
Ramsay , J. O. and Silverman , B. W. ( 2004 ) Functional Data Analysis , 2nd edn . New York : Springer .
Dryden , I. L. and Mardia , K. V. ( 1998 ) Statistical Shape Analysis . Chichester : Wiley .
de Graaf , J. B. , Sittig , A. C. and Denier van der Gon , J. J. ( 1994 ) Misdirections in slow, goal-directed arm movements are not primarily visually based . Exptl Brain Res. , 99 , 464 - 472 .
Osu , R. , Uno , Y. , Koike , Y. and Kawato , M. ( 1997 ) Possible explanations for trajectory curvature in multijoint arm movements . J. Exptl Psychol. Hum. Percept. Perform. , 23 , 890 - 913 .
Haggard , P. and Richardson , J. ( 1996 ) Spatial patterns in the control of human arm movement . J. Exptl Psychol. Hum. Percept. Perform. , 22 , 42 - 62 .
de Graaf , J. B. , Sittig , A. C. and Denier van der Gon , J. J. ( 1991 ) Misdirections in slow goal-directed arm movements and pointer-setting tasks . Exptl Brain Res. , 84 , 434 - 438 .
Faraway , J. ( 2004 ) Human animation using nonparametric regression . J. Computnl Graph. Statist. , 13 , 537 - 553 .
James , G. M. , Hastie , T. J. and Sugar , C. A. ( 2000 ) Principal component models for sparse functional data . Biometrika , 87 , 587 - 602 .
Alshabani , A. K. S. ( 2005 ) Statistical analysis of human movement functional data . PhD Thesis . University of Nottingham , Nottingham .
Johnston , J. ( 1972 ) Econometric Methods , 2nd edn . Tokyo : McGraw-Hill Kogakusha .
Klein Breteler , M. D. , Meulenbroek , R. G. and Gielen , S. C. ( 1998 ) Geometric features of workspace and joint-space paths of 3d reaching movements . Acta Psychol. , 100 , 37 - 53 .
Kneip , A. , Li , X. , MacGibbon , K. B. and Ramsay , J. O. ( 2000 ) Curve registration by local regression . Can. J. Statist. , 28 , 19 - 29 .
Gelman , A. , Carlin , J. B. , Stern , H. S. and Rubin , D. B. ( 2003 ) Bayesian Data Analysis , 2nd edn . London : Chapman and Hall-CRC .
James , G. M. ( 2007 ) Curve alignment by moments . Technical Report . Marshall School of Business, University of Southern California , Los Angeles .
Gervini , D. and Gasser , T. ( 2004 ) Self-modelling warping functions . J. R. Statist. Soc. B , 66 , 959 - 971 .
Sanger , T. D. ( 2000 ) Human arm movements described by a low-dimensional superposition of principal components . J. Neursci. , 20 , 1066 - 1072 .
James , G. M. and Sugar , C. A. ( 2003 ) Clustering for sparsely sampled functional data . J. Am. Statist. Ass. , 98 , 397 - 408 .
Uno , Y. , Kawato , M. and Suzuki , R. ( 1989 ) Formation and control of optimal trajectory in human multijoint arm movement . Biol. Cybern. , 61 , 89 - 101 .
Ramsay , J. O. and Li , X. ( 1998 ) Curve registration . J. R. Statist. Soc. B , 60 , 351 - 363 .
Rønn , B. B. ( 2001 ) Nonparametric maximum likelihood estimation for shifted curves . J. R. Statist. Soc. B , 63 , 243 - 259 .
Silverman , B. W. ( 1995 ) Incorporating parametric effects into functional principal components analysis . J. R. Statist. Soc. B , 57 , 673 - 689 .
Wang , K. and Gasser , T. ( 1999 ) Synchronizing sample curves nonparametrically . Ann. Statist. , 27 , 439 - 460 .
2004; 66
1989; 61
2000; 28
2000; 87
1995; 57
1999; 27
2004; 13
1991; 84
1997; 23
2000; 20
1998
1994; 99
2007
2005
1972
2005; 92
2004
2003
1998; 60
1998; 100
2003; 98
1981; 42
2001; 63
1996; 22
Osu (2023041910321585900_b17) 1997; 23
Uno (2023041910321585900_b23) 1989; 61
Morasso (2023041910321585900_b16) 1981; 42
James (2023041910321585900_b12) 2003; 98
de Graaf (2023041910321585900_b8) 1994; 99
Haggard (2023041910321585900_b9) 1996; 22
James (2023041910321585900_b11) 2000; 87
Kneip (2023041910321585900_b15) 2000; 28
Gervini (2023041910321585900_b5) 2004; 66
Sanger (2023041910321585900_b21) 2000; 20
Faraway (2023041910321585900_b3) 2004; 13
James (2023041910321585900_b10) 2007
Alshabani (2023041910321585900_b1) 2005
Klein Breteler (2023041910321585900_b14) 1998; 100
Gervini (2023041910321585900_b6) 2005; 92
Ramsay (2023041910321585900_b18) 1998; 60
Silverman (2023041910321585900_b22) 1995; 57
Rønn (2023041910321585900_b20) 2001; 63
Dryden (2023041910321585900_b2) 1998
Wang (2023041910321585900_b24) 1999; 27
de Graaf (2023041910321585900_b7) 1991; 84
Johnston (2023041910321585900_b13) 1972
Gelman (2023041910321585900_b4) 2003
Ramsay (2023041910321585900_b19) 2004
References_xml – volume: 23
  start-page: 890
  year: 1997
  end-page: 913
  article-title: Possible explanations for trajectory curvature in multijoint arm movements
  publication-title: J. Exptl Psychol. Hum. Percept. Perform.
– volume: 92
  start-page: 801
  year: 2005
  end-page: 820
  article-title: Nonparametric maximum likelihood estimation of the structural mean of a sample of curves
  publication-title: Biometrika
– volume: 63
  start-page: 243
  year: 2001
  end-page: 259
  article-title: Nonparametric maximum likelihood estimation for shifted curves
  publication-title: J. R. Statist. Soc. B
– volume: 60
  start-page: 351
  year: 1998
  end-page: 363
  article-title: Curve registration
  publication-title: J. R. Statist. Soc. B
– volume: 100
  start-page: 37
  year: 1998
  end-page: 53
  article-title: Geometric features of workspace and joint‐space paths of 3d reaching movements
  publication-title: Acta Psychol.
– year: 2005
– volume: 87
  start-page: 587
  year: 2000
  end-page: 602
  article-title: Principal component models for sparse functional data
  publication-title: Biometrika
– volume: 57
  start-page: 673
  year: 1995
  end-page: 689
  article-title: Incorporating parametric effects into functional principal components analysis
  publication-title: J. R. Statist. Soc. B
– volume: 28
  start-page: 19
  year: 2000
  end-page: 29
  article-title: Curve registration by local regression
  publication-title: Can. J. Statist.
– year: 2007
– volume: 42
  start-page: 223
  year: 1981
  end-page: 227
  article-title: Spatial control of arm movements
  publication-title: Exptl Brain Res.
– year: 2003
– year: 2004
– volume: 13
  start-page: 537
  year: 2004
  end-page: 553
  article-title: Human animation using nonparametric regression
  publication-title: J. Computnl Graph. Statist.
– volume: 99
  start-page: 464
  year: 1994
  end-page: 472
  article-title: Misdirections in slow, goal‐directed arm movements are not primarily visually based
  publication-title: Exptl Brain Res.
– year: 1972
– volume: 61
  start-page: 89
  year: 1989
  end-page: 101
  article-title: Formation and control of optimal trajectory in human multijoint arm movement
  publication-title: Biol. Cybern.
– volume: 22
  start-page: 42
  year: 1996
  end-page: 62
  article-title: Spatial patterns in the control of human arm movement
  publication-title: J. Exptl Psychol. Hum. Percept. Perform.
– volume: 84
  start-page: 434
  year: 1991
  end-page: 438
  article-title: Misdirections in slow goal‐directed arm movements and pointer‐setting tasks
  publication-title: Exptl Brain Res.
– volume: 98
  start-page: 397
  year: 2003
  end-page: 408
  article-title: Clustering for sparsely sampled functional data
  publication-title: J. Am. Statist. Ass.
– volume: 20
  start-page: 1066
  year: 2000
  end-page: 1072
  article-title: Human arm movements described by a low‐dimensional superposition of principal components
  publication-title: J. Neursci.
– volume: 27
  start-page: 439
  year: 1999
  end-page: 460
  article-title: Synchronizing sample curves nonparametrically
  publication-title: Ann. Statist.
– volume: 66
  start-page: 959
  year: 2004
  end-page: 971
  article-title: Self‐modelling warping functions
  publication-title: J. R. Statist. Soc. B
– year: 1998
– volume-title: Functional Data Analysis
  year: 2004
  ident: 2023041910321585900_b19
  contributor:
    fullname: Ramsay
– volume: 84
  start-page: 434
  year: 1991
  ident: 2023041910321585900_b7
  article-title: Misdirections in slow goal-directed arm movements and pointer-setting tasks
  publication-title: Exptl Brain Res.
  doi: 10.1007/BF00231466
  contributor:
    fullname: de Graaf
– volume-title: Bayesian Data Analysis
  year: 2003
  ident: 2023041910321585900_b4
  doi: 10.1201/9780429258480
  contributor:
    fullname: Gelman
– volume: 100
  start-page: 37
  year: 1998
  ident: 2023041910321585900_b14
  article-title: Geometric features of workspace and joint-space paths of 3d reaching movements
  publication-title: Acta Psychol.
  doi: 10.1016/S0001-6918(98)00024-9
  contributor:
    fullname: Klein Breteler
– volume: 20
  start-page: 1066
  year: 2000
  ident: 2023041910321585900_b21
  article-title: Human arm movements described by a low-dimensional superposition of principal components
  publication-title: J. Neursci.
  doi: 10.1523/JNEUROSCI.20-03-01066.2000
  contributor:
    fullname: Sanger
– volume: 87
  start-page: 587
  year: 2000
  ident: 2023041910321585900_b11
  article-title: Principal component models for sparse functional data
  publication-title: Biometrika
  doi: 10.1093/biomet/87.3.587
  contributor:
    fullname: James
– volume-title: Econometric Methods
  year: 1972
  ident: 2023041910321585900_b13
  contributor:
    fullname: Johnston
– volume: 23
  start-page: 890
  year: 1997
  ident: 2023041910321585900_b17
  article-title: Possible explanations for trajectory curvature in multijoint arm movements
  publication-title: J. Exptl Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.23.3.890
  contributor:
    fullname: Osu
– volume: 22
  start-page: 42
  year: 1996
  ident: 2023041910321585900_b9
  article-title: Spatial patterns in the control of human arm movement
  publication-title: J. Exptl Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.22.1.42
  contributor:
    fullname: Haggard
– volume: 42
  start-page: 223
  year: 1981
  ident: 2023041910321585900_b16
  article-title: Spatial control of arm movements
  publication-title: Exptl Brain Res.
  doi: 10.1007/BF00236911
  contributor:
    fullname: Morasso
– volume: 60
  start-page: 351
  year: 1998
  ident: 2023041910321585900_b18
  article-title: Curve registration
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00129
  contributor:
    fullname: Ramsay
– volume: 63
  start-page: 243
  year: 2001
  ident: 2023041910321585900_b20
  article-title: Nonparametric maximum likelihood estimation for shifted curves
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00283
  contributor:
    fullname: Rønn
– volume-title: Statistical Shape Analysis
  year: 1998
  ident: 2023041910321585900_b2
  contributor:
    fullname: Dryden
– volume-title: Statistical analysis of human movement functional data
  year: 2005
  ident: 2023041910321585900_b1
  contributor:
    fullname: Alshabani
– volume: 92
  start-page: 801
  year: 2005
  ident: 2023041910321585900_b6
  article-title: Nonparametric maximum likelihood estimation of the structural mean of a sample of curves
  publication-title: Biometrika
  doi: 10.1093/biomet/92.4.801
  contributor:
    fullname: Gervini
– volume: 28
  start-page: 19
  year: 2000
  ident: 2023041910321585900_b15
  article-title: Curve registration by local regression
  publication-title: Can. J. Statist.
  doi: 10.2307/3315251.n
  contributor:
    fullname: Kneip
– volume: 61
  start-page: 89
  year: 1989
  ident: 2023041910321585900_b23
  article-title: Formation and control of optimal trajectory in human multijoint arm movement
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204593
  contributor:
    fullname: Uno
– volume: 99
  start-page: 464
  year: 1994
  ident: 2023041910321585900_b8
  article-title: Misdirections in slow, goal-directed arm movements are not primarily visually based
  publication-title: Exptl Brain Res.
  doi: 10.1007/BF00228983
  contributor:
    fullname: de Graaf
– volume-title: Curve alignment by moments. Technical Report
  year: 2007
  ident: 2023041910321585900_b10
  contributor:
    fullname: James
– volume: 98
  start-page: 397
  year: 2003
  ident: 2023041910321585900_b12
  article-title: Clustering for sparsely sampled functional data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214503000189
  contributor:
    fullname: James
– volume: 13
  start-page: 537
  year: 2004
  ident: 2023041910321585900_b3
  article-title: Human animation using nonparametric regression
  publication-title: J. Computnl Graph. Statist.
  doi: 10.1198/106186004X2507
  contributor:
    fullname: Faraway
– volume: 57
  start-page: 673
  year: 1995
  ident: 2023041910321585900_b22
  article-title: Incorporating parametric effects into functional principal components analysis
  publication-title: J. R. Statist. Soc. B
  contributor:
    fullname: Silverman
– volume: 66
  start-page: 959
  year: 2004
  ident: 2023041910321585900_b5
  article-title: Self-modelling warping functions
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2004.B5582.x
  contributor:
    fullname: Gervini
– volume: 27
  start-page: 439
  year: 1999
  ident: 2023041910321585900_b24
  article-title: Synchronizing sample curves nonparametrically
  publication-title: Ann. Statist.
  contributor:
    fullname: Wang
SSID ssj0000104
ssj0018311
Score 1.8301866
Snippet We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a...
SourceID proquest
crossref
repec
pascalfrancis
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 415
SubjectTerms Algorithms
Applications
Bayesian analysis
Bayesian networks
Correlation
Curvature
Data analysis
Data smoothing
Distribution theory
Exact sciences and technology
Fingers
Functional data
Gibbs sampling
Hastings algorithm
Human behaviour
Human movement
Landmarks
Markov chain Monte Carlo methods
Markovian processes
Mathematics
Metropolis
Missing data
Monte Carlo simulation
Movement
Multivariate analysis
Orthographic projections
Probability and statistics
Probability theory and stochastic processes
Procrustes analysis
Sciences and techniques of general use
Shape
Social science research
Statistical analysis
Statistical methods
Statistics
Studies
Trajectories
Variance analysis
SummonAdditionalLinks – databaseName: JSTOR Arts and Sciences I Collection
  dbid: JAS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6x7aUXSksRoVByqDggReD6mSOEbvdChVgQ3CzHdUShbFbJbtX-e2acZGkOlXpwEuXtGU_8TWb8GeBYG3HhReWzk9L4TLhoUtiWq7wMlfTKMEbjnWdzff7TfDolmpzjYSwMpVXGvMAYxUeAVF6FdwJRt9ZqAhPDehLcOxRR5E_0YQPDGRt4GHN0fcapO_RNQBdbDcSF2PcOjEd9f7RNor0ZUhMpT9K1KKqqm-NiBEK3m7AMfgxpY5803X1YbZ7A4x5zph-6RrIHj8JiH3aH-RzS3rz3YYeQZ0fc_BTefnS3gUZYpgNvSVpXafznn36uI8v4Ki3WzXVoD-D79PRbMcv6iRUyLxHuZRxBQh40904GhXvKYIxjvPREhocYiCOu8qySiJXyUgQvggroByLywd1OvufPYGtRL8JzSIlNR5mgROVK4RRzDM_hqGghS-OCToAN4rXLjj_DjvwObUklNBsmBcJRJfYmgTdRD5sLXPOH8s-0tD_Oz2xesC9TPZ_aWQIHUbqbE3vRJnA0Utz_J-cUWtInCRwOmrS9zbb4Cgw_fzyXCbzeHEVjowiKW4R63VquNCXOY62KqP7Njcsr97tu2tbba8udVLi4xRJrxd0lFoFlSWsmLbp89tfqbwIqNp4HC8Z-nc8L3HpxT70PYaf79Uz5iS9ha9WswyuYtBfro2g0_wALOAg7
  priority: 102
  providerName: JSTOR
Title Bayesian analysis of human movement curves
URI https://api.istex.fr/ark:/67375/WNG-9C1PF7SF-H/fulltext.pdf
https://www.jstor.org/stable/4626776
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9876.2007.00584.x
http://econpapers.repec.org/article/blajorssc/v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415-428.htm
https://www.proquest.com/docview/201703395
https://search.proquest.com/docview/36723077
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Be-mFllJEKCw5IA5IQbh-JUe6dLviUFUsCG6W7Tri1c0q2a3af8-M86ARHBDi4N0oGydrz4z9TTz-BuC5zsWFF6XPjlzuM2GjSaEul4ULpfQqZ4z2O88X-uxz_vaEaHLe9XthWn6I4YUbWUYcr8nArWt-N3L0mVXPRIiT6SvCk-g0xN0c_PwWkxS5Hd3qQs4Z6-kaC_SQxhE-f7zraNraJglc9xGMFE5pG-zRsk2FMcKq23VYBT9GvnHqmu3-z0bvwb0OwKZvWo27D3fCch92--QQaTdW7MMOwdiWBfoBvDy2N4G2a6a2I0FJqzKN-QHTyypSlq9Tv6mvQnMAH2cnH6bzrMvSkHmJ2DHjiDiKoLm3Mig840KeW8adJ2Y9BFQcQZpnpUTgVTgRvAgqoFOJMApPW_maP4StZbUMjyAlah6VByVK64RVzDK8hqPWCOlyG3QCrBeCWbVkHGbkxGhDPUOpNWlVHXvGXCfwIkprqGDr7xTMpqX5dHZqiik7n-nFzMwTOIjiHC4U6OtprRKYjMT768kFrVPpowQOe3mbbgBo8C8wHEt5IRN4NvyKlkvLMXYZqk1juNIUhY-tmkYlGW7sfthvVd003lwZbqXCjxsssVXcfsUisKzom0mD_qP5sr5MQEXF-euOMe8XiykePf7Xioew077opmjIJ7C1rjfhKdxtLjaTaHuTyFb9E31ZJqY
link.rule.ids 315,782,786,817,1408,27933,27934,46064,46488,58023,58256
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_B-sBeGIwhwmDLA-IBKQjPX8kjlJWijWqiQ_BmOZ4jYFtTJe20_ffcOR8QwQNCPDit0iSNfXf27-zz7wCe6VScOVG45CBPXSJsMCnU5SLLfSGdShmj_c7TuZ59Sd8eEk3OUbcXpuGH6CfcyDJCf00GThPSv1s5Os2qoyLE0fQlAsqRUKiXtJ-Dn_zCJUWOR7u-kHLGOsLGDH2kYYzPHx87GLhGJIPrLoaRAiptjW1aNMkwBmh1VPmld0PsGwavydZ_rfY9uNti2Ph1o3T34ZZfbMNWlx8ibruLbdgkJNsQQT-AF2_sjacdm7FteVDisohDisD4sgys5avYrasrX-_Ap8nh6XiatIkaEicRPiYcQUfmNXdWeoVncp-mlvHcEbkeYiqOOM2xQiL2ynLhnfDKo1-JSApPW_mKP4SNRbnwjyAmdh6VeiUKmwurmGV4DUfFETJPrdcRsE4KZtnwcZiBH6MNtQxl16SFdWwZcx3B8yCu_gZbnVM8m5bm8-ydycbsZKLnEzONYCfIs79QoLuntYpgbyDfn_-c0VKVPohgtxO4afuAGl-BYXfKMxnBfv8rGi-tyNiFL9e14UpTID7Wahy0pH9wfmG_l1VdO3NluJUKDzdYQq24_YZFYFnSJ5MGXUjzdXUZgQqa89cNYz7O52P89vhfb9yHO9PTD8fm-P3saBc2m3lvCo58Ahurau2fwu36bL0XDPEHNhApzw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BKqG9MBhDhMGWB8QDUhCev5JH6FbKh6qKguDNclxHfK2pknba_nvunA-I4AEhHtxGaZzUvjv7d_H5dwCPdCqWThQuOclTlwgbTAp1uchyX0inUsZov_N0oWef0tMzosl53e2Fafgh-hduZBlhvCYDXy-L340cfWbVMRHiZPoU8eRIIConHn3O579QSZHf0S4vpJyxjq8xQxdpGOLzx9sO5q0RieCyC2GkeEpbY5cWTS6MAVgdVX7t3RD6hrlrsvc_W30LbrYINn7eqNxtuOZX-7DXZYeI28FiH3YJxzY00HfgyQt75Wm_ZmxbFpS4LOKQIDA-LwNn-SZ22-rC1wfwYXL2fjxN2jQNiZMIHhOOkCPzmjsrvcIzuU9Ty3juiFoPERVHlOZYIRF5ZbnwTnjl0atEHIWnrXzG78LOqlz5exATN49KvRKFzYVVzDK8hqPaCJmn1usIWCcEs27YOMzAi9GGeoZya9KyOvaMuYzgcZBWX8FW3yiaTUvzcfbSZGM2n-jFxEwjOAji7C8U6OxprSI4Goj355MzWqjSJxEcdvI27QhQ419gOJjyTEZw3P-KpkvrMXbly21tuNIUho-tGgcl6W-cf7dfy6qunbkw3EqFH1dYQqu4_YJFYFnTN5MGHUjzeXMegQqK89cdY94tFmM8uv-vFY_hxvx0Yt6-mr05hN3mpTdFRj6AnU219Q_her3cHgUz_AFWgSh1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+analysis+of+human+movement+curves&rft.jtitle=Journal+of+the+Royal+Statistical+Society%3A+Series+C+%28Applied+Statistics%29&rft.au=Alshabani%2C+A.+K.+S.&rft.au=Dryden%2C+I.+L.&rft.au=Litton%2C+C.+D.&rft.au=Richardson%2C+J.&rft.date=2007-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-9254&rft.eissn=1467-9876&rft.volume=56&rft.issue=4&rft.spage=415&rft.epage=428&rft_id=info:doi/10.1111%2Fj.1467-9876.2007.00584.x&rft.externalDBID=10.1111%252Fj.1467-9876.2007.00584.x&rft.externalDocID=RSSC584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9254&client=summon