Bayesian analysis of human movement curves
We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to descr...
Saved in:
Published in: | Applied statistics Vol. 56; no. 4; pp. 415 - 428 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-08-2007
Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Series: | Journal of the Royal Statistical Society Series C |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing-the Bayesian methodology is easily adapted to cope with this situation. |
---|---|
AbstractList | We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing—the Bayesian methodology is easily adapted to cope with this situation. We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing--the Bayesian methodology is easily adapted to cope with this situation. [PUBLICATION ABSTRACT] We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing-the Bayesian methodology is easily adapted to cope with this situation. Copyright 2007 Royal Statistical Society. We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a system of cameras records the three-dimensional Cartesian co-ordinates of the markers during the reaching movement. It is of interest to describe the mean and variability of the curves that are traced by the markers during one reaching movement, and to identify any differences due to covariates. We propose a methodology based on a hierarchical Bayesian model for the curves. An important part of the method is to obtain identifiable features of the movement so that different curves can be compared after temporal warping. We consider four landmarks and a set of equally spaced pseudolandmarks are located in between. We demonstrate that the algorithm works well in locating the landmarks, and shape analysis techniques are used to describe the posterior distribution of the mean curve. A feature of this type of data is that some parts of the movement data may be missing-the Bayesian methodology is easily adapted to cope with this situation. Reprinted by permission of Blackwell Publishers |
Author | Litton, C. D. Richardson, J. Dryden, I. L. Alshabani, A. K. S. |
Author_xml | – sequence: 1 givenname: A. K. S. surname: Alshabani fullname: Alshabani, A. K. S. organization: University of Sebha, Libya – sequence: 2 givenname: I. L. surname: Dryden fullname: Dryden, I. L. organization: University of Nottingham, UK – sequence: 3 givenname: C. D. surname: Litton fullname: Litton, C. D. organization: University of Nottingham, UK – sequence: 4 givenname: J. surname: Richardson fullname: Richardson, J. organization: Institut National de la Santé et de la Recherche Médicale, U731, Paris, and Université Paris Sud, Paris, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19013272$$DView record in Pascal Francis http://econpapers.repec.org/article/blajorssc/v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415-428.htm$$DView record in RePEc |
BookMark | eNqNUE2L1EAQbWQFZ0f_gYcg6EFI7E5_pQ8edHB2lUXFUTwWPU2FTczHbHcyTv69nc0ygicLqqup915R9S7JRdd3SEjCaMZivKkzJpROTaFVllOqM0plIbLTI7I6AxdkRSmXqcmleEIuQ6hpDEbFirx-bycMle0S29lmClVI-jK5HdvYafsjttgNiRv9EcNT8ri0TcBnD3VNfmw_fN9cpzdfrj5u3t2kTmotUk4NM6i5sxJV7OyxKCzjeyeF4LlUnEnhWCmVEGYv0AlUKKJGmti2kvI1ebXMPfj-bsQwQFsFh01jO-zHAFzpnFOtI_HFP8S6H308I0BOmaacGxlJxUJyvg_BYwkHX7XWT8AozA5CDbNRMBsFs4Nw7yCcovTTIvV4QHfW7Rtb9z4EB0fgVqr4TDHvpdxWMUXMw1yZBJEXcDu0cdjLh2VtcLYpve1cFf4uYyjjeTxsTd4uvN9Vg9N_LwvfdrtN_EX980Vfh6H3Z71QudJaRThd4CoMeDrD1v8CpbmW8PPzFZgN-7rVuy1c8z9pJbRe |
CODEN | APSTAG |
CitedBy_id | crossref_primary_10_1080_01621459_2020_1724115 crossref_primary_10_1198_016214507000001210 |
Cites_doi | 10.1007/BF00231466 10.1201/9780429258480 10.1016/S0001-6918(98)00024-9 10.1523/JNEUROSCI.20-03-01066.2000 10.1093/biomet/87.3.587 10.1037/0096-1523.23.3.890 10.1037/0096-1523.22.1.42 10.1007/BF00236911 10.1111/1467-9868.00129 10.1111/1467-9868.00283 10.1093/biomet/92.4.801 10.2307/3315251.n 10.1007/BF00204593 10.1007/BF00228983 10.1198/016214503000189 10.1198/106186004X2507 10.1111/j.1467-9868.2004.B5582.x |
ContentType | Journal Article |
Copyright | Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd. 2007 INIST-CNRS 2007 Royal Statistical Society |
Copyright_xml | – notice: Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd. – notice: 2007 INIST-CNRS – notice: 2007 Royal Statistical Society |
DBID | BSCLL IQODW DKI X2L AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1111/j.1467-9876.2007.00584.x |
DatabaseName | Istex Pascal-Francis RePEc IDEAS RePEc CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Computer Science Mathematics |
EISSN | 1467-9876 |
EndPage | 428 |
ExternalDocumentID | 1323895881 10_1111_j_1467_9876_2007_00584_x blajorssc_v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415_428_htm 19013272 RSSC584 4626776 ark_67375_WNG_9C1PF7SF_H |
Genre | article Feature |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 10A 1OB 1OC 1OL 29L 2AX 3-9 31~ 33P 3R3 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 66C 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAONW AARHZ AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCSF ABCUV ABEML ABFAN ABIVO ABLJU ABPFR ABPQH ABPTD ABWST ABXSQ ABYAD ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXQS ADACV ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK ADZMN AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVYC AFXHP AFZJQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD ARCSS ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EJD EMK F00 F5P FEDTE FVMVE G-S G.N GODZA H.T H.X HF~ HQ6 HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG OWPYF P2W P2X P4D PQQKQ PZZ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TUS U5U UAP UB1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YF5 ZGI ZL0 ZZTAW ~IA ~WT 0R~ ABHUG ACXME ADAWD ADDAD AFVGU AFXKK AGJLS AIHXQ EFSUC OJZSN IQODW SAMSI 0R 31 3N 4S ABDEX AS DKI FSPIC GA HZ IA IPNFZ MEWTI NF P4A PQEST RIG WRC WT X X2L XHC Y3 AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c5774-30919e73ca5e6577be88a13bc54432563154c1f56449b4ec4e6e4091594c1a503 |
IEDL.DBID | 33P |
ISSN | 0035-9254 |
IngestDate | Fri Oct 25 05:14:55 EDT 2024 Thu Oct 10 20:38:31 EDT 2024 Fri Nov 22 00:28:42 EST 2024 Wed Aug 18 03:51:56 EDT 2021 Sun Oct 22 16:09:31 EDT 2023 Sat Aug 24 00:58:33 EDT 2024 Fri Feb 02 07:04:36 EST 2024 Wed Oct 30 09:47:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Bayes estimation Human Data analysis Correlation Three-dimensional calculations Shape Image processing Functional data Metropolis-Hastings algorithm Covariate Gibbs sampling Algorithm Mean estimation Statistics Missing data Distribution function Hierarchical model Markov chain Monte Carlo methods Application Procrustes analysis Posterior distribution Human movement |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5774-30919e73ca5e6577be88a13bc54432563154c1f56449b4ec4e6e4091594c1a503 |
Notes | ark:/67375/WNG-9C1PF7SF-H ArticleID:RSSC584 istex:1AC99D7509C1FAA63B767D918EEE9A87D2AAB8C2 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://academic.oup.com/jrsssc/article-pdf/56/4/415/50007835/jrsssc_56_4_415.pdf |
PQID | 201703395 |
PQPubID | 32577 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_36723077 proquest_journals_201703395 crossref_primary_10_1111_j_1467_9876_2007_00584_x repec_primary_blajorssc_v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415_428_htm pascalfrancis_primary_19013272 wiley_primary_10_1111_j_1467_9876_2007_00584_x_RSSC584 jstor_primary_4626776 istex_primary_ark_67375_WNG_9C1PF7SF_H |
PublicationCentury | 2000 |
PublicationDate | August 2007 |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: August 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series C |
PublicationTitle | Applied statistics |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishers – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | Gervini , D. and Gasser , T. ( 2005 ) Nonparametric maximum likelihood estimation of the structural mean of a sample of curves . Biometrika , 92 , 801 - 820 . Morasso , P. ( 1981 ) Spatial control of arm movements . Exptl Brain Res. , 42 , 223 - 227 . Ramsay , J. O. and Silverman , B. W. ( 2004 ) Functional Data Analysis , 2nd edn . New York : Springer . Dryden , I. L. and Mardia , K. V. ( 1998 ) Statistical Shape Analysis . Chichester : Wiley . de Graaf , J. B. , Sittig , A. C. and Denier van der Gon , J. J. ( 1994 ) Misdirections in slow, goal-directed arm movements are not primarily visually based . Exptl Brain Res. , 99 , 464 - 472 . Osu , R. , Uno , Y. , Koike , Y. and Kawato , M. ( 1997 ) Possible explanations for trajectory curvature in multijoint arm movements . J. Exptl Psychol. Hum. Percept. Perform. , 23 , 890 - 913 . Haggard , P. and Richardson , J. ( 1996 ) Spatial patterns in the control of human arm movement . J. Exptl Psychol. Hum. Percept. Perform. , 22 , 42 - 62 . de Graaf , J. B. , Sittig , A. C. and Denier van der Gon , J. J. ( 1991 ) Misdirections in slow goal-directed arm movements and pointer-setting tasks . Exptl Brain Res. , 84 , 434 - 438 . Faraway , J. ( 2004 ) Human animation using nonparametric regression . J. Computnl Graph. Statist. , 13 , 537 - 553 . James , G. M. , Hastie , T. J. and Sugar , C. A. ( 2000 ) Principal component models for sparse functional data . Biometrika , 87 , 587 - 602 . Alshabani , A. K. S. ( 2005 ) Statistical analysis of human movement functional data . PhD Thesis . University of Nottingham , Nottingham . Johnston , J. ( 1972 ) Econometric Methods , 2nd edn . Tokyo : McGraw-Hill Kogakusha . Klein Breteler , M. D. , Meulenbroek , R. G. and Gielen , S. C. ( 1998 ) Geometric features of workspace and joint-space paths of 3d reaching movements . Acta Psychol. , 100 , 37 - 53 . Kneip , A. , Li , X. , MacGibbon , K. B. and Ramsay , J. O. ( 2000 ) Curve registration by local regression . Can. J. Statist. , 28 , 19 - 29 . Gelman , A. , Carlin , J. B. , Stern , H. S. and Rubin , D. B. ( 2003 ) Bayesian Data Analysis , 2nd edn . London : Chapman and Hall-CRC . James , G. M. ( 2007 ) Curve alignment by moments . Technical Report . Marshall School of Business, University of Southern California , Los Angeles . Gervini , D. and Gasser , T. ( 2004 ) Self-modelling warping functions . J. R. Statist. Soc. B , 66 , 959 - 971 . Sanger , T. D. ( 2000 ) Human arm movements described by a low-dimensional superposition of principal components . J. Neursci. , 20 , 1066 - 1072 . James , G. M. and Sugar , C. A. ( 2003 ) Clustering for sparsely sampled functional data . J. Am. Statist. Ass. , 98 , 397 - 408 . Uno , Y. , Kawato , M. and Suzuki , R. ( 1989 ) Formation and control of optimal trajectory in human multijoint arm movement . Biol. Cybern. , 61 , 89 - 101 . Ramsay , J. O. and Li , X. ( 1998 ) Curve registration . J. R. Statist. Soc. B , 60 , 351 - 363 . Rønn , B. B. ( 2001 ) Nonparametric maximum likelihood estimation for shifted curves . J. R. Statist. Soc. B , 63 , 243 - 259 . Silverman , B. W. ( 1995 ) Incorporating parametric effects into functional principal components analysis . J. R. Statist. Soc. B , 57 , 673 - 689 . Wang , K. and Gasser , T. ( 1999 ) Synchronizing sample curves nonparametrically . Ann. Statist. , 27 , 439 - 460 . 2004; 66 1989; 61 2000; 28 2000; 87 1995; 57 1999; 27 2004; 13 1991; 84 1997; 23 2000; 20 1998 1994; 99 2007 2005 1972 2005; 92 2004 2003 1998; 60 1998; 100 2003; 98 1981; 42 2001; 63 1996; 22 Osu (2023041910321585900_b17) 1997; 23 Uno (2023041910321585900_b23) 1989; 61 Morasso (2023041910321585900_b16) 1981; 42 James (2023041910321585900_b12) 2003; 98 de Graaf (2023041910321585900_b8) 1994; 99 Haggard (2023041910321585900_b9) 1996; 22 James (2023041910321585900_b11) 2000; 87 Kneip (2023041910321585900_b15) 2000; 28 Gervini (2023041910321585900_b5) 2004; 66 Sanger (2023041910321585900_b21) 2000; 20 Faraway (2023041910321585900_b3) 2004; 13 James (2023041910321585900_b10) 2007 Alshabani (2023041910321585900_b1) 2005 Klein Breteler (2023041910321585900_b14) 1998; 100 Gervini (2023041910321585900_b6) 2005; 92 Ramsay (2023041910321585900_b18) 1998; 60 Silverman (2023041910321585900_b22) 1995; 57 Rønn (2023041910321585900_b20) 2001; 63 Dryden (2023041910321585900_b2) 1998 Wang (2023041910321585900_b24) 1999; 27 de Graaf (2023041910321585900_b7) 1991; 84 Johnston (2023041910321585900_b13) 1972 Gelman (2023041910321585900_b4) 2003 Ramsay (2023041910321585900_b19) 2004 |
References_xml | – volume: 23 start-page: 890 year: 1997 end-page: 913 article-title: Possible explanations for trajectory curvature in multijoint arm movements publication-title: J. Exptl Psychol. Hum. Percept. Perform. – volume: 92 start-page: 801 year: 2005 end-page: 820 article-title: Nonparametric maximum likelihood estimation of the structural mean of a sample of curves publication-title: Biometrika – volume: 63 start-page: 243 year: 2001 end-page: 259 article-title: Nonparametric maximum likelihood estimation for shifted curves publication-title: J. R. Statist. Soc. B – volume: 60 start-page: 351 year: 1998 end-page: 363 article-title: Curve registration publication-title: J. R. Statist. Soc. B – volume: 100 start-page: 37 year: 1998 end-page: 53 article-title: Geometric features of workspace and joint‐space paths of 3d reaching movements publication-title: Acta Psychol. – year: 2005 – volume: 87 start-page: 587 year: 2000 end-page: 602 article-title: Principal component models for sparse functional data publication-title: Biometrika – volume: 57 start-page: 673 year: 1995 end-page: 689 article-title: Incorporating parametric effects into functional principal components analysis publication-title: J. R. Statist. Soc. B – volume: 28 start-page: 19 year: 2000 end-page: 29 article-title: Curve registration by local regression publication-title: Can. J. Statist. – year: 2007 – volume: 42 start-page: 223 year: 1981 end-page: 227 article-title: Spatial control of arm movements publication-title: Exptl Brain Res. – year: 2003 – year: 2004 – volume: 13 start-page: 537 year: 2004 end-page: 553 article-title: Human animation using nonparametric regression publication-title: J. Computnl Graph. Statist. – volume: 99 start-page: 464 year: 1994 end-page: 472 article-title: Misdirections in slow, goal‐directed arm movements are not primarily visually based publication-title: Exptl Brain Res. – year: 1972 – volume: 61 start-page: 89 year: 1989 end-page: 101 article-title: Formation and control of optimal trajectory in human multijoint arm movement publication-title: Biol. Cybern. – volume: 22 start-page: 42 year: 1996 end-page: 62 article-title: Spatial patterns in the control of human arm movement publication-title: J. Exptl Psychol. Hum. Percept. Perform. – volume: 84 start-page: 434 year: 1991 end-page: 438 article-title: Misdirections in slow goal‐directed arm movements and pointer‐setting tasks publication-title: Exptl Brain Res. – volume: 98 start-page: 397 year: 2003 end-page: 408 article-title: Clustering for sparsely sampled functional data publication-title: J. Am. Statist. Ass. – volume: 20 start-page: 1066 year: 2000 end-page: 1072 article-title: Human arm movements described by a low‐dimensional superposition of principal components publication-title: J. Neursci. – volume: 27 start-page: 439 year: 1999 end-page: 460 article-title: Synchronizing sample curves nonparametrically publication-title: Ann. Statist. – volume: 66 start-page: 959 year: 2004 end-page: 971 article-title: Self‐modelling warping functions publication-title: J. R. Statist. Soc. B – year: 1998 – volume-title: Functional Data Analysis year: 2004 ident: 2023041910321585900_b19 contributor: fullname: Ramsay – volume: 84 start-page: 434 year: 1991 ident: 2023041910321585900_b7 article-title: Misdirections in slow goal-directed arm movements and pointer-setting tasks publication-title: Exptl Brain Res. doi: 10.1007/BF00231466 contributor: fullname: de Graaf – volume-title: Bayesian Data Analysis year: 2003 ident: 2023041910321585900_b4 doi: 10.1201/9780429258480 contributor: fullname: Gelman – volume: 100 start-page: 37 year: 1998 ident: 2023041910321585900_b14 article-title: Geometric features of workspace and joint-space paths of 3d reaching movements publication-title: Acta Psychol. doi: 10.1016/S0001-6918(98)00024-9 contributor: fullname: Klein Breteler – volume: 20 start-page: 1066 year: 2000 ident: 2023041910321585900_b21 article-title: Human arm movements described by a low-dimensional superposition of principal components publication-title: J. Neursci. doi: 10.1523/JNEUROSCI.20-03-01066.2000 contributor: fullname: Sanger – volume: 87 start-page: 587 year: 2000 ident: 2023041910321585900_b11 article-title: Principal component models for sparse functional data publication-title: Biometrika doi: 10.1093/biomet/87.3.587 contributor: fullname: James – volume-title: Econometric Methods year: 1972 ident: 2023041910321585900_b13 contributor: fullname: Johnston – volume: 23 start-page: 890 year: 1997 ident: 2023041910321585900_b17 article-title: Possible explanations for trajectory curvature in multijoint arm movements publication-title: J. Exptl Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.23.3.890 contributor: fullname: Osu – volume: 22 start-page: 42 year: 1996 ident: 2023041910321585900_b9 article-title: Spatial patterns in the control of human arm movement publication-title: J. Exptl Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.22.1.42 contributor: fullname: Haggard – volume: 42 start-page: 223 year: 1981 ident: 2023041910321585900_b16 article-title: Spatial control of arm movements publication-title: Exptl Brain Res. doi: 10.1007/BF00236911 contributor: fullname: Morasso – volume: 60 start-page: 351 year: 1998 ident: 2023041910321585900_b18 article-title: Curve registration publication-title: J. R. Statist. Soc. B doi: 10.1111/1467-9868.00129 contributor: fullname: Ramsay – volume: 63 start-page: 243 year: 2001 ident: 2023041910321585900_b20 article-title: Nonparametric maximum likelihood estimation for shifted curves publication-title: J. R. Statist. Soc. B doi: 10.1111/1467-9868.00283 contributor: fullname: Rønn – volume-title: Statistical Shape Analysis year: 1998 ident: 2023041910321585900_b2 contributor: fullname: Dryden – volume-title: Statistical analysis of human movement functional data year: 2005 ident: 2023041910321585900_b1 contributor: fullname: Alshabani – volume: 92 start-page: 801 year: 2005 ident: 2023041910321585900_b6 article-title: Nonparametric maximum likelihood estimation of the structural mean of a sample of curves publication-title: Biometrika doi: 10.1093/biomet/92.4.801 contributor: fullname: Gervini – volume: 28 start-page: 19 year: 2000 ident: 2023041910321585900_b15 article-title: Curve registration by local regression publication-title: Can. J. Statist. doi: 10.2307/3315251.n contributor: fullname: Kneip – volume: 61 start-page: 89 year: 1989 ident: 2023041910321585900_b23 article-title: Formation and control of optimal trajectory in human multijoint arm movement publication-title: Biol. Cybern. doi: 10.1007/BF00204593 contributor: fullname: Uno – volume: 99 start-page: 464 year: 1994 ident: 2023041910321585900_b8 article-title: Misdirections in slow, goal-directed arm movements are not primarily visually based publication-title: Exptl Brain Res. doi: 10.1007/BF00228983 contributor: fullname: de Graaf – volume-title: Curve alignment by moments. Technical Report year: 2007 ident: 2023041910321585900_b10 contributor: fullname: James – volume: 98 start-page: 397 year: 2003 ident: 2023041910321585900_b12 article-title: Clustering for sparsely sampled functional data publication-title: J. Am. Statist. Ass. doi: 10.1198/016214503000189 contributor: fullname: James – volume: 13 start-page: 537 year: 2004 ident: 2023041910321585900_b3 article-title: Human animation using nonparametric regression publication-title: J. Computnl Graph. Statist. doi: 10.1198/106186004X2507 contributor: fullname: Faraway – volume: 57 start-page: 673 year: 1995 ident: 2023041910321585900_b22 article-title: Incorporating parametric effects into functional principal components analysis publication-title: J. R. Statist. Soc. B contributor: fullname: Silverman – volume: 66 start-page: 959 year: 2004 ident: 2023041910321585900_b5 article-title: Self-modelling warping functions publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2004.B5582.x contributor: fullname: Gervini – volume: 27 start-page: 439 year: 1999 ident: 2023041910321585900_b24 article-title: Synchronizing sample curves nonparametrically publication-title: Ann. Statist. contributor: fullname: Wang |
SSID | ssj0000104 ssj0018311 |
Score | 1.8301866 |
Snippet | We consider the Bayesian analysis of human movement data, where the subjects perform various reaching tasks. A set of markers is placed on each subject and a... |
SourceID | proquest crossref repec pascalfrancis wiley jstor istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 415 |
SubjectTerms | Algorithms Applications Bayesian analysis Bayesian networks Correlation Curvature Data analysis Data smoothing Distribution theory Exact sciences and technology Fingers Functional data Gibbs sampling Hastings algorithm Human behaviour Human movement Landmarks Markov chain Monte Carlo methods Markovian processes Mathematics Metropolis Missing data Monte Carlo simulation Movement Multivariate analysis Orthographic projections Probability and statistics Probability theory and stochastic processes Procrustes analysis Sciences and techniques of general use Shape Social science research Statistical analysis Statistical methods Statistics Studies Trajectories Variance analysis |
SummonAdditionalLinks | – databaseName: JSTOR Arts and Sciences I Collection dbid: JAS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6x7aUXSksRoVByqDggReD6mSOEbvdChVgQ3CzHdUShbFbJbtX-e2acZGkOlXpwEuXtGU_8TWb8GeBYG3HhReWzk9L4TLhoUtiWq7wMlfTKMEbjnWdzff7TfDolmpzjYSwMpVXGvMAYxUeAVF6FdwJRt9ZqAhPDehLcOxRR5E_0YQPDGRt4GHN0fcapO_RNQBdbDcSF2PcOjEd9f7RNor0ZUhMpT9K1KKqqm-NiBEK3m7AMfgxpY5803X1YbZ7A4x5zph-6RrIHj8JiH3aH-RzS3rz3YYeQZ0fc_BTefnS3gUZYpgNvSVpXafznn36uI8v4Ki3WzXVoD-D79PRbMcv6iRUyLxHuZRxBQh40904GhXvKYIxjvPREhocYiCOu8qySiJXyUgQvggroByLywd1OvufPYGtRL8JzSIlNR5mgROVK4RRzDM_hqGghS-OCToAN4rXLjj_DjvwObUklNBsmBcJRJfYmgTdRD5sLXPOH8s-0tD_Oz2xesC9TPZ_aWQIHUbqbE3vRJnA0Utz_J-cUWtInCRwOmrS9zbb4Cgw_fzyXCbzeHEVjowiKW4R63VquNCXOY62KqP7Njcsr97tu2tbba8udVLi4xRJrxd0lFoFlSWsmLbp89tfqbwIqNp4HC8Z-nc8L3HpxT70PYaf79Uz5iS9ha9WswyuYtBfro2g0_wALOAg7 priority: 102 providerName: JSTOR |
Title | Bayesian analysis of human movement curves |
URI | https://api.istex.fr/ark:/67375/WNG-9C1PF7SF-H/fulltext.pdf https://www.jstor.org/stable/4626776 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9876.2007.00584.x http://econpapers.repec.org/article/blajorssc/v_3a56_3ay_3a2007_3ai_3a4_3ap_3a415-428.htm https://www.proquest.com/docview/201703395 https://search.proquest.com/docview/36723077 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Be-mFllJEKCw5IA5IQbh-JUe6dLviUFUsCG6W7Tri1c0q2a3af8-M86ARHBDi4N0oGydrz4z9TTz-BuC5zsWFF6XPjlzuM2GjSaEul4ULpfQqZ4z2O88X-uxz_vaEaHLe9XthWn6I4YUbWUYcr8nArWt-N3L0mVXPRIiT6SvCk-g0xN0c_PwWkxS5Hd3qQs4Z6-kaC_SQxhE-f7zraNraJglc9xGMFE5pG-zRsk2FMcKq23VYBT9GvnHqmu3-z0bvwb0OwKZvWo27D3fCch92--QQaTdW7MMOwdiWBfoBvDy2N4G2a6a2I0FJqzKN-QHTyypSlq9Tv6mvQnMAH2cnH6bzrMvSkHmJ2DHjiDiKoLm3Mig840KeW8adJ2Y9BFQcQZpnpUTgVTgRvAgqoFOJMApPW_maP4StZbUMjyAlah6VByVK64RVzDK8hqPWCOlyG3QCrBeCWbVkHGbkxGhDPUOpNWlVHXvGXCfwIkprqGDr7xTMpqX5dHZqiik7n-nFzMwTOIjiHC4U6OtprRKYjMT768kFrVPpowQOe3mbbgBo8C8wHEt5IRN4NvyKlkvLMXYZqk1juNIUhY-tmkYlGW7sfthvVd003lwZbqXCjxsssVXcfsUisKzom0mD_qP5sr5MQEXF-euOMe8XiykePf7Xioew077opmjIJ7C1rjfhKdxtLjaTaHuTyFb9E31ZJqY |
link.rule.ids | 315,782,786,817,1408,27933,27934,46064,46488,58023,58256 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_B-sBeGIwhwmDLA-IBKQjPX8kjlJWijWqiQ_BmOZ4jYFtTJe20_ffcOR8QwQNCPDit0iSNfXf27-zz7wCe6VScOVG45CBPXSJsMCnU5SLLfSGdShmj_c7TuZ59Sd8eEk3OUbcXpuGH6CfcyDJCf00GThPSv1s5Os2qoyLE0fQlAsqRUKiXtJ-Dn_zCJUWOR7u-kHLGOsLGDH2kYYzPHx87GLhGJIPrLoaRAiptjW1aNMkwBmh1VPmld0PsGwavydZ_rfY9uNti2Ph1o3T34ZZfbMNWlx8ibruLbdgkJNsQQT-AF2_sjacdm7FteVDisohDisD4sgys5avYrasrX-_Ap8nh6XiatIkaEicRPiYcQUfmNXdWeoVncp-mlvHcEbkeYiqOOM2xQiL2ynLhnfDKo1-JSApPW_mKP4SNRbnwjyAmdh6VeiUKmwurmGV4DUfFETJPrdcRsE4KZtnwcZiBH6MNtQxl16SFdWwZcx3B8yCu_gZbnVM8m5bm8-ydycbsZKLnEzONYCfIs79QoLuntYpgbyDfn_-c0VKVPohgtxO4afuAGl-BYXfKMxnBfv8rGi-tyNiFL9e14UpTID7Wahy0pH9wfmG_l1VdO3NluJUKDzdYQq24_YZFYFnSJ5MGXUjzdXUZgQqa89cNYz7O52P89vhfb9yHO9PTD8fm-P3saBc2m3lvCo58Ahurau2fwu36bL0XDPEHNhApzw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BKqG9MBhDhMGWB8QDUhCev5JH6FbKh6qKguDNclxHfK2pknba_nvunA-I4AEhHtxGaZzUvjv7d_H5dwCPdCqWThQuOclTlwgbTAp1uchyX0inUsZov_N0oWef0tMzosl53e2Fafgh-hduZBlhvCYDXy-L340cfWbVMRHiZPoU8eRIIConHn3O579QSZHf0S4vpJyxjq8xQxdpGOLzx9sO5q0RieCyC2GkeEpbY5cWTS6MAVgdVX7t3RD6hrlrsvc_W30LbrYINn7eqNxtuOZX-7DXZYeI28FiH3YJxzY00HfgyQt75Wm_ZmxbFpS4LOKQIDA-LwNn-SZ22-rC1wfwYXL2fjxN2jQNiZMIHhOOkCPzmjsrvcIzuU9Ty3juiFoPERVHlOZYIRF5ZbnwTnjl0atEHIWnrXzG78LOqlz5exATN49KvRKFzYVVzDK8hqPaCJmn1usIWCcEs27YOMzAi9GGeoZya9KyOvaMuYzgcZBWX8FW3yiaTUvzcfbSZGM2n-jFxEwjOAji7C8U6OxprSI4Goj355MzWqjSJxEcdvI27QhQ419gOJjyTEZw3P-KpkvrMXbly21tuNIUho-tGgcl6W-cf7dfy6qunbkw3EqFH1dYQqu4_YJFYFnTN5MGHUjzeXMegQqK89cdY94tFmM8uv-vFY_hxvx0Yt6-mr05hN3mpTdFRj6AnU219Q_her3cHgUz_AFWgSh1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+analysis+of+human+movement+curves&rft.jtitle=Journal+of+the+Royal+Statistical+Society%3A+Series+C+%28Applied+Statistics%29&rft.au=Alshabani%2C+A.+K.+S.&rft.au=Dryden%2C+I.+L.&rft.au=Litton%2C+C.+D.&rft.au=Richardson%2C+J.&rft.date=2007-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-9254&rft.eissn=1467-9876&rft.volume=56&rft.issue=4&rft.spage=415&rft.epage=428&rft_id=info:doi/10.1111%2Fj.1467-9876.2007.00584.x&rft.externalDBID=10.1111%252Fj.1467-9876.2007.00584.x&rft.externalDocID=RSSC584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9254&client=summon |