Antiangiogenic Agents Can Increase Lymphocyte Infiltration into Tumor and Enhance the Effectiveness of Adoptive Immunotherapy of Cancer

Adoptive cell transfer (ACT)-based immunotherapies can mediate objective cancer regression in animal models and in up to 70% of patients with metastatic melanoma; however, it remains unclear whether the tumor vasculature impedes the egress of tumor-specific T cells, thus hindering this immunotherapy...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Vol. 70; no. 15; pp. 6171 - 6180
Main Authors: SHRIMALI, Rajeev K, ZHIYA YU, THEORET, Marc R, CHINNASAMY, Dhanalakshmi, RESTIFO, Nicholas P, ROSENBERG, Steven A
Format: Journal Article
Language:English
Published: Philadelphia, PA American Association for Cancer Research 01-08-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adoptive cell transfer (ACT)-based immunotherapies can mediate objective cancer regression in animal models and in up to 70% of patients with metastatic melanoma; however, it remains unclear whether the tumor vasculature impedes the egress of tumor-specific T cells, thus hindering this immunotherapy. Disruption of the proangiogenic interaction of vascular endothelial growth factor (VEGF) with its receptor (VEGFR-2) has been reported to "normalize" tumor vasculature, enhancing the efficacy of chemotherapeutic agents by increasing their delivery to the tumor intersitium. We thus sought to determine whether disrupting VEGF/VEGFR-2 signaling could enhance the effectiveness of ACT in a murine cancer model. The administration of an antibody against mouse VEGF synergized with ACT to enhance inhibition of established, vascularized, B16 melanoma (P = 0.009) and improve survival (P = 0.003). Additive effects of an antibody against VEGFR-2 in conjunction with ACT were seen in this model (P = 0.013). Anti-VEGF, but not anti-VEGFR-2, antibody significantly increased infiltration of transferred cells into the tumor. Thus, normalization of tumor vasculature through disruption of the VEGF/VEGFR-2 axis can increase extravasation of adoptively transferred T cells into the tumor and improve ACT-based immunotherapy. These studies provide a rationale for the exploration of combining antiangiogenic agents with ACT for the treatment of patients with cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-10-0153